微网多目标优化运行及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日渐枯竭以及环境污染的日益严重,为了满足日益增长的电力负荷需求,必须充分利用各地丰富的清洁和可再生能源,大力发展分布式发电技术,并将分布式发电供能系统以微网形式接入到大电网并网运行,与大电网互为支撑。由于分布式发电(Distributed generation, DG)具有间歇性、复杂性、多样性、不稳定性的特点,如何优化调度各种分布式发电以保证微网的经济运行,多台DG并联运行时如何抑制环流、合理进行功率分配,以及如何实现分布式发电的并网运行,成为了现代电力工业技术领域新的研究热点。本文针对这些问题进行了深入研究,主要的研究内容如下:
     (1)考虑到太阳能光伏发电、风力发电的不可调度性,以及其它不同类型、容量的分布式发电所消耗的燃料、效率、运行和维护费用、温室气体的排放水平,建立了综合考虑发电成本与排放成本的微网环保经济运行数学模型。
     (2)为了满足电力负荷需求,并实现微网的低碳优化运行,综合考虑分布式发电接入前后系统的总线路损耗、节点电压偏差、发电成本、CO2排放量,建立了微网多目标低碳优化运行的数学模型。
     (3)自治微网中,多台DG并联运行时会在各DG间产生环流。在介绍环流危害及常用的环流抑制措施后,提出了基于主从控制的等电压、等电流、等功率、混合式4种环流抑制策略。仿真结果表明这4种策略均能很好地抑制环流,其中等电流策略效果最佳,等功率与混合式策略次之,等电压策略稍差。
     (4)为实现自治微网中多台DG的并联运行,满足负载需求、快速响应负载变化以及系统的稳定运行,必须在各DG间合理分配功率。在分析PQ控制与下垂控制的基础上,针对低压自治微网特殊的阻抗特性,提出了基于反下垂控制的功率共享控制策略,实现了各DG间更精准、快速的功率共享控制
     (5)分析了常规的并网逆变器直接输出电流控制方法的局限性,结合LCL型三相并网逆变器的数学模型,提出了LCL型并网逆变器的输入-输出反馈线性化控制方法。仿真结果表明该方法可实现逆变器的并网运行,且动态响应快,稳态误差小,无需附加阻尼电阻以保证系统稳定运行。
With the gradual depletion of fossil fuels and growing environmental pollution, the clean and renewable energy should be made full use of, and distributed generation (DG) technology should be developed greatly and integrated into large power grid in forms of Microgrid to meet the increasing load demand. Considering the characteristics of DG such as intermittent, complexity, diversity and instability, how to optimal operation of various DG to ensure economic operation of Microgrid, how to restrain circulating current and distribute power when multiple DG units operate in parallel, and how to implement grid-connected operation have been the new research hotspots in modern power industry technology. This paper studies these issues in depth, and the main contents are as follows:
     (1)Considering the undispatchable characteristics of photovoltaic and wind turbine and different fuel consumption, efficiency, operation and maintenance costs, greenhouse gas emission level of DG with various types and capacity, a novel environmental and economical model of Microgrid which considered generation cost and emission cost all together was presented.
     (2)In order to meet the load demand and achieve low carbon operation of Microgrid, a novel model of multi-objective low carbon operation of Microgrid was presented, which took the line losses, voltage difference, generation cost and CO2 emission on a whole.
     (3)Circulating current will be generated in autonomous Microgrid when multiple DG units operate in parallel. The hazards and conventional restrain strategy of circulating current were introduced, and four master-slave control strategies, namely equal voltage control strategy, equal current control strategy, equal power control strategy and hybrid control strategy, were proposed. Simulation results showed that all theses four strategies could restrain circulating current effectively.
     (4)When multiple DGs operate in parallel, power should be distributed reasonably among all DGs to meet the load demands, respond to demands changes rapidly and achieve stable operation of the system. Based on the analysis of the conventional power sharing control strategies of Microgrid, such as PQ control and droop control, a novel power sharing control strategy based on inverse droop control was proposed, in which the special impedance characteristic of low voltage Microgrid has been taken into account. More precise power sharing among the DGs and rapider dynamic response could be achieved by the proposed strategy.
     (5)Limitation of the traditional direct output current control method of the inverter was analyzed, the model of the grid-connect inverter with LCL filter and the inverter input-output feedback linearization control method were proposed. Simulation results showed that the proposed control method could implement grid-connected operation of inverter with prompt dynamic respond and little steady state error, and achive stable operation of the system without damping resisters.
引文
[1]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,32(20):1-4,31
    [2]R. Lasseter, A. Akhil, C. Marnay, et al. Integration of distributed energy resources: the CERTS MicroGrid concept[EB/OL]. http://certs.lbl.gov/pdf/50829.pdf
    [3]F. Katiraei, M.R. Iravani. Power management strategies for a Microgrid with multiple distributed generation units[J]. IEEE Transactions on Power Systems, 2006,21(4):1821-1831
    [4]Huaxia Xia, H. Dail, H. Casanova. The MicroGrid:using online simulation to predict application performance in diverse grid network environments[C]. Proceedings of the Second International Workshop on Challenges of Large Applications in Distributed Environments, Honolulu, USA,2004:52-61
    [5]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97
    [6]鲁宗相,工彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107
    [7]徐建中,隋军,金红光.分步式能源系统现状及趋势[J].太阳能,2004,4:14-16
    [8]张文涛.美国电网发展设想-Gird2030[R]电力系统安全及其战略防御高级学术研讨会分布式能源设计研讨班,2004:224-229
    [9]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[EB/OL]. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm
    [10]黄全权.国家电网公司2020年建成统一的“坚强智能电网”[EB/OL]. http:// www.sgcc.com.cn/xwzx/mtbd/196465.shtml
    [11]梁才浩,段献忠.分布式发电及其对电力系统的影响[J].电力系统自动化,2001,25(12):53-56
    [12]李盛伟.微型电网故障分析及电能质量控制技术研究[D].天津:天津大学,2009
    [13]N. Jenkins. Distributed generation[EB/OL]. http://www.theiet.org/factfiles/ energy/distributed-generation.cfm?type=pdf
    [14]European Renewable Energy Council. Renewable energy scenario to 2040:half of the global energy supply from renewables in 2040[R].2004
    [15]G. Pepermans, J. Driesen, D. Haeseldonckx, et al. Distributed generation: definition, benefits issues[J]. Energy Policy,2005,33(6):787-798
    [16]European Technology SmartGrids Platform. SmartGrids:Vision and strategy for European electricity networks of the future[EB/OL]. http://www.smartgrids.eu/ docments/vision.pdf
    [17]国家电力信息网.世界电力工业概况[EB/OL]. http://www.sp.com.cn/sjdl/ ggdlgygk/200805/t20080515_104131.htm
    [18]Distributed generation policy[EB/OL]. http://www.powerco.co.nz/NR/rdonlyres/ 1D8DB8E2-03FF-497C-B510-2AF09E233923/0/PowercoDistributedGeneration DGPolicy.pdf
    [19]Energy Information Administration. US Department of Energy[EB/OL]. http:// www.eia.doe.gov/oil_gas/natural_gas/info_glance/natural_gas.html
    [20]Draft Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems[S]. IEEE Standard P1547.4,2008
    [21]Distributed generation-the future for energy resources[EB/OL]. http:// www.iea.org/dbtw-wpd/Textbase/work/2004/distgen/Minett.pdf
    [22]Commission of the European communities. A European strategy for sustainable, competitive and secure energy[R]. Green paper,2006
    [23]European Renewable Energy Council. Renewable energy target for Europe:20% by2020[EB/OL].http://www.erec-renewables.org/fileadmin/erec_docs/Documents /Publications/EREC_Targets_2020_def.pdf
    [24]白明,许敏,崔新雨,等.基于可再生能源的分布式发电技术的应用及前景[J].节能与环保,2008,2:20-23
    [25]国家发展改革委.能源节约与资源综合利用“十一五”规划[R].2007
    [26]陈琳.分布式发电接入电力系统若干问题的研究[D].杭州:浙江大学,2007
    [27]梁振锋,杨晓萍,张娉.分布式发电技术及其在中国的发展[J].西北水电,2006,1:51-53
    [28]王仲颖,李俊峰,梁志鹏,等.2002中国新能源和可再生能源发展分析[R].国家发展委员会,2002
    [29]肖朝霞.微网控制及运行特性分析[D].天津:天津大学,2008
    [30]纪明伟.分布式发电中微电网技术控制策略研究[D].合肥:合肥工业大学2009
    [31]J. Lynch. Northern power system update on Mad River Microgrid and related activities[EB/OL]. http://der.lbl.gov/new_site/2005microgrids_files/presentation_pdfs/CERTS-Lynch.pdf
    [32]郑漳华,艾芊.微电网的研究现状及在我国的应用前景[J].电网技术,2008,32(16):27-31,58
    [33]A. Arulampalam, M. Barnes, A. Engler, et al. Control of power electronic interfaces in distributed generation Microgrids[J]. International Journal of Electronics,2004,91(9):503-523
    [34]王成山,高菲,李鹏,等.可再生能源与分布式发电接入技术欧盟研究项目述评[J].南方电网技术,2008,2(6):1-6
    [35]MicroGrids. BETA SESSION 4b:Integration of Renewable Energy Sources and Distributed Generation[R]. Greece:Nikos ATZIARGYRIOU,2003
    [36]MicroGrids Project Consortium. MICROGRIDS Introduction[EB/OL]. http:// microgrids.power.ece.ntua.gr/micro/index.php?page=index
    [37]MicroGrids Project Consortium. MORE MICROGRIDS Introduction[EB/OL]. http://www. eu-deep. com
    [38]S. Morozumi. Micro-grid demonstration projects in Japan[C]. Fourth Power Conversion Conference, Nagoya, Japan,2007:635-642
    [39]S. Morozumi. Overview of MicroGrid research and development activities in Japan[EB/OL]. http://www.ceem.unsw.edu.au/content/userDocs/OverviewofMicr ogridManangementandControl_000.pdf
    [40]S. Morozumi, K. Nara. Recent trend of new type power delivery system and its demonstrative project in Japan[J]. IEEJ Transactions on Power and Energy,2007, 127(7):770-775
    [41]B. Kroposki, C. Pink, T. Basso, et al. MicroGrid standards and technology development[C]. IEEE Power Engineering Society General Meeting, Tampa, USA,2007:1-4
    [42]T. Funabashi, R. Yokoyama. MicroGrid field test experiences in Japan[C]. IEEE Power Engineering Society General Meeting, Montreal, Canada,2006:1-4
    [43]T. Funabashi, G. Fujita, K. Koyanagi, et al. Field tests of a MicroGrid control system[C]. Proceedings of the 41st International Universities Power Engineering Conference, Newcastle-Upon-Tyne, UK,2006:232-236
    [44]林在豪.上海浦东机场能源中心冷、热、电三联供系统[J].上海节能,2005,6:158-164
    [45]周小谦.中国电力改革和推进热电联产、分布式供电的发展[J].热电技术,2006,2:1-3,14
    [46]张国立,李庚银,谢宏,等.多目标加权模糊经济调度模型[J].华北电力大学学报(自然科学版),2004,31(2):48-52
    [47]丁明,包敏,吴红斌,等.复合能源分布式发电系统的机组组合问题[J].电力系统自动化,2008,32(6):46-50
    [48]D. Pudjianto, G. Strbac. Investigation of regulatory, commercial, economic and environmental issues in Microgrid[J]. International Journal of Distributed Energy Resources,2006,2(3):245-259
    [49]A.G. Tsikalakis, N.D. Hatziargyriou. Environmental benefits of distributed generation with and without emissions trading[J]. Energy Policy,2007,35(6): 3395-3409
    [50]张坤民,潘家华,崔大鹏.低碳经济论[M].北京:中国环境科学出版社,2008
    [51]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2008,33(2):1-7
    [52]J.H. Talaq, F. El-Hawary, M.E. El-Hawary. A summary of environmental/ economic dispatch algorithms[J]. IEEE Transactions on Power Systems,1994, 9(3):1508-1516
    [53]T.D. King, M.E. El-Hawary, F. El-Hawary. Optimal environmental dispatching of electric power systems via an improved hopfield neural network model[J]. IEEE Transactions on Power Systems,1995,10(3):1559-1565
    [54]Lu Bo, M. Shahidehpour. Unit commitment with flexible generating units[J]. IEEE Transactions on Power Systems,2005,20(2):1022-1034
    [55]J. Choi, S. Jeong, Bo Shi, et al. CO2, SOx and NOx emissions constrained multi-criteria-best generation mix using fuzzy set theory[C]. Large Engineering Systems Conference on Power Engineering, Montreal, Canada,2007:118-124
    [56]S.G. Kim. Evaluating the impacts of environmental constraints on ancillary service in integrated energy and reserve market[C]. International Conference on Power System Technology, Chongqing, China,2006:1-5
    [57]刘盛松,邰能灵,侯志俭.基于最优潮流与模糊贴近度的电力系统环境保护研究[J].中国电机工程学报,2003,23(4):21-26
    [58]喻洁,李扬,夏安邦.兼顾环境保护与经济效益的发电调度分布式优化策略[J].中国电机工程学报,2008,29(16):63-68
    [59]姚玮,陈敏,牟善科,等.基于改进下垂法的微电网逆变器并联控制技术[J].电力系统自动化,2008,33(6):77-80
    [60]陈良亮,肖岚,胡文斌,等.一种基于耦合电感的逆变器并联系统环流抑制 方法[J].南京航空航天大学学报,2004,36(2):205-209
    [61]张纯江,陈桂涛,祖峰,等.一种数字化互动跟踪式单相逆变电源均流控制策略[J].中国电机工程学报,2006,26(10):63-66
    [62]张宇,段善旭,康勇,等.逆变器并联系统中谐波环流抑制研究[J].中国电机工程学报,2006,26(12):67-72
    [63]张宇,段善旭,康勇,等.三相逆变器并联系统中零序环流研究[J].中国电机工程学报,2006,26(13):62-67
    [64]余蜜,康勇,张宇,等.基于环流阻抗的逆变器并联控制策略[J].中国电机工程学报,2008,28(18):42-46
    [65]Pan Ching-Tsai, Liao Yi-Hung. Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers[J]. IEEE Transactions on Industrial Electronics,2007,54(2):825-838
    [66]Ye Zhihong, D. Boroyevich, J.Y. Choi, et al. Control of circulating current in two parallel three-phase boost rectifiers[J]. IEEE Transactions on Power Electronics, 2002,17(5):609-615
    [67]陈良亮,肖岚,胡文斌,等.双闭环控制电压源逆变器并联系统环流特性研究[J].电工技术学报,2004,19(5):21-25
    [68]周松林.并联逆变器的均流技术[J].铜陵学院学报,2005,3:59-61
    [69]周同旭,周松林.逆变器并联运行的环流反馈控制[J].安徽工业大学学报,2006,23(2):182-185
    [70]刘小四,熊蕊.逆变器并联运行时环流的产生及抑制研究[J].电力电子技术,1999,33(3):16-18
    [71]王文军,汤钰鹏,张哗.逆变器并联运行的环流反馈控制[J].电力系统保护与控制,2008,37(17):16-19
    [72]Y.W. Li; C.N. Kao. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. IEEE Transactions on Power Electronics,2009,24(12):2977-2988
    [73]杨淑英,张兴,张崇巍.基于下垂特性的逆变器并联技术研究[J].电工电能新技术,2006,25(2):7-10
    [74]张尧,马皓,雷彪,等.基于下垂特性控制的无互联线逆变器并联动态性能分析[J].中国电机工程学报,2008,29(3):42-48
    [75]阚加荣,谢少军,吴云亚.无互联线并联逆变器的功率解耦控制策略[J].中国电机工程学报,2008,28(21):40-45
    [76]张丹红,李乐,刘开培.无互联线逆变器并联控制的一种改进下垂算法[J].武汉大学学报(工学版),2006,39(5):97-101
    [77]Y.A. Mohamed, E.F. Saadany. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids[J]. IEEE Transactions on Power Electronics,2008,23(6):2806-2816
    [78]C.T. Lee, C.C. Chuang, C.C. Chu, et al. Control strategies for distributed energy resources interface converters in the low voltage Microgrid[C]. IEEE Energy Conversion Congress and Exposition, San Jose, USA,2009,2022-2029
    [79]J.M. Guerrero, L.G. de Vicuna, J. Matas, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J]. IEEE Transactions on Power Electronics,2004,19(5):1205-1213
    [80]Sun Xiao, Y.S. Lee, D.H. Xu. Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme[J]. IEEE Transactions on Power Electronics,2003,18(3):844-856
    [81]M.N. Marwali, J.W. Jung, A. Keyhani. Stability analysis of load sharing control for distributed generation systems[J]. IEEE Transactions on Energy Conversion, 2007,22(3):737-745
    [82]K. De Brabandere, B. Bolsens, J. Van den Keybus, et al. A voltage and frequency droop control method for parallel inverters[J]. IEEE Transactions on Power Electronics,2007,22(4):1107-1115
    [83]U. Borup, F. Blaabjerg, P.N. Enjeti. Sharing of nonlinear load in parallel-connected three-phase converters [J]. IEEE Transactions on Industrial Electronics,2001,37(6):1817-1823
    [84]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007,27(16):61-64
    [85]J.W. Dixon, B.T. Ooi. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier[J]. IEEE Transactions on Industry Electronics,1988,35(4):508-515
    [86]Hyosung Kim, Taesik Yu, Sewan Choi. Indirect current control algorithm for utility interactive inverters in distributed generation systems[J]. IEEE Transactions on Power Electronics,2008,23(3):1342-1347
    [87]Kazmierkowski M P, Malesani L. Current control techniques for three-phase voltage-source PWM converters:a survey[J]. IEEE Transactions on Industry Electronics,1998,45(5):691-703
    [88]姜俊峰,刘会金,陈允平,等.有源滤波器的电压空间矢量双滞环电流控制新方法[J].中国电机工程学报,2004,24(10):82-86
    [89]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):108-112
    [90]R. Ottersten, J. Svensson. Vector current controlled voltage source converter: deadbeat control and saturation strategies[J]. IEEE Trans. Power Electronics, 2002,17(2):279-285
    [91]A. Kotsopoulos, J.L. Duarte, M.A.M. Hendrix. A predictive control scheme for DC voltage and AC current in grid-connected photovoltaic inverters with minimum DC link capacitance[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, USA,2001:1994-1999
    [92]A. Sakhare, A. Davari, A. Feliachi. Fuzzy logic control of fuel cell for stand-alone and grid connection[J]. Journal of Power Sources,2004,135(1): 165-176
    [93]夏德钤.自动控制理论[M].北京:机械工业出版社,1999:54-57
    [94]唐欣,罗安,涂春鸣.基于递推积分PI混合型有源电力滤波器电流控制[J].中国电机工程学报,2003,23(10):38-41
    [95]孙强,程明,周鹗,等.新型双凸极永磁电机调速系统的变参数PI控制[J].中国电机工程学报,2003,23(6):117-122
    [96]王宝诚,郭小强,邬伟扬.高性能并网逆变器数字控制技术研究[J].电力自动化设备,2008,28(9):49-51
    [97]郭小强,邬伟扬,赵清林,等.三相并网逆变器比例复数积分电流控制技术[J].中国电机工程学报,2009,29(15):8-14
    [98]D.N. Zmood, D.G. Holmes. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. IEEE Transactions on Power Electronics,2003, 18(3):814-822
    [99]郭小强,邬伟扬,顾和荣,等.分布式发电系统中并网逆变器的比例反馈积分控制技术[J].控制理论与应用,2009,26(8):923-926
    [100]李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究[J].中国电机工程学报,2006,26(22):74-79
    [101]马进,马永光,高建强,等.负荷经济调度的可变区问编码遗传算法研究[J].华北电力大学学报(自然科学版),2004,31(4):36-43
    [102]姚鹏,院晓涛.实时经济调度决策支持系统算法的研究[J].电力科学与工程,2007,23(3):17-19
    [103]F.A. Mohamed, H.N. Koivo. System modeling and online optimal management of Microgrid using multiobjective optimization[C]. International Conference on Clean Electrical Power,2007,5:148-153
    [104]C.A. Hernandez-Aramburo, T.C. Green, N. Mugniot. Fuel consumption minimization of a Microgrid[J]. IEEE Transaction on Industry Applications,2005, 41(3):673-681
    [105]张伯泉,杨宜民.风力和太阳能光伏发电现状及发展趋势[J].中国电力,2006,39(6):65-69
    [106]王新刚.微电网中变流器控制策略的多目标优化[D].上海:上海交通大学2009
    [107]国家发展和改革委员会国家科学技术部.光伏/风力及互补发电村落系统[M].北京:中国电力出版社,2004
    [108]王成山,郑海峰,谢莹华,等.计及分布式发电的配电系统随机潮流计算[J].电力系统自动化,2005,29(24):39-44
    [109]许洪华,郭金东,鄂春良.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,6(10):106-108
    [110]江岳文,陈冲,温步瀛.基于随机模拟粒子群算法的含风电场电力系统经济调度[J].电工电能新技术,2007,26(3):37-41
    [111]赵豫,于尔铿.新型分散式发电装置——微型燃气轮机[J].电网技术,2004,28(4):47-50
    [112]刁正纲.微型燃气轮机走向商业化[J].燃气轮机技术,2000,13(4):13-16
    [113]熊一权.燃料电池发电技术[J].中国电力,1998,31(9):61-64
    [114]吕婷婷.微电源控制方法与微电网暂态特性研究[D].济南:山东大学,2010
    [115]K.M. Sim, W.H. Sun. Ant colony optimization for routing and load-balancing: survey and new directions[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans,2003,33(5):560-572
    [116]杨红,罗飞,许玉格,等.基于混沌优化的LS_SVM非线性预测控制方法[J].计算机工程与应用,2010,46(5):229-232
    [117]R.V. Sole, O. Miramontes, B.C. Goodwin. Oscillations and chaos in ant societies[J]. Journal of theoretical Biology,1993,161(3):343-357
    [118]L.X. Li, H.P. Peng, X.D. Wang, et al. An optimization method inspired by "chaotic" ant behavior[J]. International Journal of Bifurcation and Chaos,2006, 16(8):2351-2364
    [119]Y.G. Tang, M.Y. Cui, L.X. Li, et al. Parameter identification of time-delay chaotic system using chaotic ant swarm[J]. Chaos, Solitons and Fractals,2009, 41(4):2097-2102
    [120]S. Papathanassiou, N. Hatziargyriou, K. Strunz. A benchmark low voltage microgrid network[EB/OL]. http://users.ntua.gr/stpapath/paper_2.51.pdf
    [121]W. Morgantown. Emission rates for new DG technologies [EB/OL]. http://www. raponline.org/projdocs/dremsrul/collfile/dgemissionsmay2001.pdf
    [122]鞠洪新.分布式微网电力系统中多逆变电源的并网控制研究[D].合肥:合肥工业大学,2006
    [123]摆世彬.微型电网控制技术的研究[D].天津:天津大学,2008
    [124]N. Pogaku, M. Prodanovic, T.C. Green. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactins on Power Electronics,2007,22(2):613-625
    [125]李旭光.微电网的建模、仿真及运行特性分析[D].天津:天津大学,2009
    [126]林新春,段善旭,康勇,等.基于下垂特性控制的无互联线并联UPS建模与稳定性分析[J].中国电机工程学报,2004,24(2):33-38
    [127]林新春,段善旭,康勇,等.UPS无互联线并联中基于解耦控制的下垂特性控制方案[J].中国电机工程学报,2003,23(12):117-122
    [128]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107
    [129]A. Tuladhar, H. Jin, T. Unger, et al. Control of parallel inverters in distributed ac power systems with consideration of line impedance effect[J]. IEEE Transactions on Industrial Application,2000,36(1):131-138
    [130]R. Majumder, A. Ghosh, G. Ledwich, et al. Power management and power flow control with back-to-back converters in a utility connected Microgrid[J]. IEEE Transactions on Power Systems,2010,25(2):821-834
    [131]F. Blaabjerg, Z. Chen, S.B. Kjaer. Power electronics as efficient interface in dispersed power generation systems[J]. IEEE Transactions on Power Electronics, 2004,19(5):1184-1194
    [132]Y. Xue, L. Chang, S.B. Kjaer, et al. Topologies of single-phase inverters for small distributed power generators:an overview[J]. IEEE Transactions on Power Electronics,2004,19(5):1305-1314
    [133]Bruno Bolsens, Karel Brabandere, Jeroen Keybus, et al. Model-based generation of low distortion currents in grid-coupled PWM-inverters using an LCL output filter[J]. IEEE Transactions on Power Electronics,2006,21(4): 1032-1040
    [134]卢强,梅生伟,孙元章.电力系统非线性控制[M].北京:清华大学出版社,2008
    [135]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社,2002
    [136]高为炳.非线性控制系统导论[M].北京:科学出版社,1988
    [137]程代展.非线性系统的几何理论[M].北京:科学出版社,1988
    [138]冯纯伯,费树岷.非线性控制系统分析与设计[M].北京:电子工业出版社,1998
    [139]宋晓晶.永磁同步电动机反馈线性化控制系统研究[D].天津:天津大学,2008
    [140]D.E. Kim, D.C. Lee. Feedback linearization control of grid-interactive PWM converters with LCL filters[J]. Journal of Power Electronics,2009,9(2):288-299
    [141]J. Jung, s. Lim, K. Nam. A feedback linearizing control scheme for a PWM converter-inverter having a very small dc-link capacitor[J]. IEEE Transactions on Industry Applications,1999,35(5):1124-1131
    [142]D.C. Lee, J. Jang. Output voltage control of PWM inverters for stand-alone wind power generation systems using feedback linearization[C]. IEEE Industry Applications Conference, Hongkong, China,2005:1626-1631
    [143]D.E. Kim, D.C. Lee. Feedback linearization control of three-phase UPS inverter systems[J]. IEEE Transactions on Industrial Electronics,2010,57(3):963-968
    [144]兰华,尹鹏,蔡国伟,等.风电场中静止同步补偿器的输入-输出反馈线性化控制[J].电网技术,2009,33(17):141-145
    [145]D.E. Kim, D.C. Lee. Feedback linearization control of three-phase AC/DC PWM converters with LCL input filters[C]. International Conference on Power Electronics, Daegu, Korea,2007:766-771
    [146]D.E. Kim, D.C. Lee. Inverter output voltage control of three-phase UPS systems using feedback linearization[C]. The Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan,2007:1737-1742
    [147]M. Karimi-Ghartemani, S.A. Khajehoddin, P. Jain, et al. Control of three-phase converters for grid-connected renewable energy systems using feedback linearization technique[C]. IEEE International Symposimu on Industrial Electronics, Bari, Italy,2010:179-183
    [148]N.C. Sahoo, R. Ranjan, P.K. Dash, et al. A novel feedback linearizing STATCOM controller for power system damping[J]. International Journal of Power & Energy Systems,2006,26(3):281-290
    [149]Y. Sato, T. kataoka. State feedback control of current type PWM ac-to-dc converters[J]. IEEE Transactions on Industry Application,1993,6(29): 1090-1097
    [150]郭小强,邬伟扬,顾和荣,等.并网逆变器LCL接口直接输出电流控制建模及稳定性分析[J].电工技术学报,2010,25(3):102-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700