基于核酸修饰电极的新型电化学生物传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速、廉价、高灵敏度和高选择性检测生命活动相关的蛋白质与小分子、疾病相关的特征DNA序列以及环境毒性污染物是现代生物化学分析的重要课题,这一多学科的共性目标促使了生物传感器的出现和发展。电化学核酸传感器是一类以核酸分子作为识别元素,以电极作为信号转换器的生物传感器。核酸分子探针具有结构简单、特异性强、靶物质分子广泛和易于大量商业化合成的优点。电化学核酸传感器结合了核酸探针的优异性能和电化学检测方法的高灵敏度特性,在现代生物传感器研究领域中处于主体地位。核酸探针在电极表面的稳定固定、探针与目标分子间的有效识别以及识别事件的灵敏电化学信号转换,是构建高性能电化学核酸传感器的三个关键问题。此外,发掘核酸修饰电极的新性能、设计与制备新型核酸探针,对于扩大电化学核酸传感器的应用范围和开发新型高效传感系统具有重要的意义。本论文围绕这些电化学核酸传感器研究中的共性问题,在核酸修饰电极的新用途、核酸探针固定新方法和高灵敏度信号转换方法以及新型核酸探针设计等方面开展了一系列的研究工作,主要内容如下:
     (1)多巴胺在电沉积DNA修饰电极表面的电催化氧化检测双链DNA是一种具有规则双螺旋结构的阴离子聚合物,广泛用作合成导电聚合物和金属纳米材料的分子模板。第2章的研究工作采用一步电沉积的方法将小牛胸腺DNA沉积于玻碳电极表面制成表面负电性的DNA修饰电极。修饰电极表面的负电性DNA分子层对中性pH值溶液中正电性的多巴胺分子表现出明显的静电吸附富集作用,可显著增强多巴胺分子的直接电化学氧化电流;同时该电沉积DNA修饰电极可以有效地分离多巴胺与电活性干扰组分抗坏血酸和尿酸的电化学氧化峰。基于电沉积DNA修饰电极这种选择性电催化氧化多巴胺分子的性质,发展了一种简单、快速、高灵敏度和高选择性的多巴胺电化学检测方法,有效地拓展了核酸修饰电极的应用范围。
     (2)基于T-Hg(Ⅱ)-T络合与酶催化信号放大的电化学汞离子传感器酶催化信号放大是生物传感器系统中常用的一种高灵敏度信号转换手段,现己广泛应用于免疫传感和核酸分析。第3章的研究工作将酶催化信号放大引入基于汞离子特异核酸修饰电极的电化学传感体系中,根据碱基互补配对原则和T-Hg(Ⅱ)-T络合原理设计了两条汞离子特异的核酸探针,包括巯基固定基团标记的捕获核酸探针和生物素分子标记的信号核酸探针。利用T-Hg(Ⅱ)-T络合调节的核酸探针杂交和生物素-亲核素结合系统将链酶亲和素标记的辣根过氧化酶(streptavidin-horseradish peroxidase,S-HRP)固定于电极表面,固定化的S-HRP催化过氧化氢将对苯酚氧化为对苯醌,氧化性的酶催化产物对苯醌进一步在基底电极表面被电化学还原,提供用于Hg2+定量分析的放大电流信号。该酶催化信号放大电化学传感器对汞离子的检测表现出很高的灵敏度和选择性,汞离子浓度检测线性范围为0.5nM~1μM,检测限可低至0.3nM。
     (3)基于乌嘌呤四股螺旋-血红素络合物电化学催化信号放大的汞离子传感器分子内包含重复鸟嘌呤碱基(guanine,G)单元的核酸链可与血红素分子(hemin)形成具有类似于辣根过氧化酶催化活性的鸟嘌呤四股螺旋-血红素络合物(G4-Hemin).在第4章,研究了通过核酸杂交固定于金电极表面的G4-Hemin络合物的电化学性质,发现G4-Hemin络合物在金电极表面表现出直接的电化学行为,并且可以显著催化过氧化氢的电化学还原。基于G4-Hemin络合物的电化学催化性质,设计了一条同时包含Hg2+特异碱基序列和G4序列的信号核酸探针,该信号核酸探针可以选择性识别Hg2+,同时可结合Hemin形成电化学催化信号标记。基于该新型核酸探针,成功地构建了一个无需共价修饰信号标记、电化学催化信号放大的高灵敏度和高选择性电化学汞离子传感器。
     (4)基于分子识别调节碳纳米管隧道电流效应的电化学传感平台经由疏水作用吸附于烷基硫醇白组装层上的碳纳米管可以恢复电活性探针铁氰化钾被烷基硫醇绝缘单分子层抑制的氧化还原电流,表现出碳纳米管的“隧道电流效应”;单链核酸可通过分子内碱基与碳纳米管管壁间的π-π共轭作用稳定地结合于碳纳米管表而。第5章的研究工作发现烷基硫醇自组装层上碳纳米管吸附层的“隧道电流效应”可通过碳纳米管表面结合的单链核酸探针与目标分予间的识别反应进行灵活的调节,即核酸探针与目标分子之间的结合可调控铁氰化钾在碳纳米管吸附层上的隧道电流响应。利用这一独特的性质,开发了一种基于新的核酸探针固定方法和信号转换方法的电化学传感系统,并实现了重金属离子银离子的高灵敏度和高选择性电化学检测。
     (5)基于发夹探针与酶催化信号放大的核酸扫描电化学显微镜研究第6章的研究工作针对传统三电极DNA电化学传感体系中工作电极(即DNA修饰电极)表面电化学惰性常常造成电化学响应信号灵敏度损失的缺点,尝试将四电极体系的扫描电化学显微镜(scanning electrochemical microscopy,SECM)引入DNA电化学传感器的设计与制备。在该SECM核酸传感体系中,末端分别标记巯基基团和生物素分子的发夹DNA探针通过自组装的方法固定于金电极表面,目标DNA与发夹探针的杂交导致发夹探针末端的生物素分子暴露于电极表面,进一步通过生物素-亲和素结合系统将链酶亲和素标记的辣根过氧化酶(streptavidin-horseradish peroxidase,S-HRP)固定,电极表面固定化的S-HRP催化过氧化氢氧化对苯二酚生成大量电化学氧化活性的对苯醌,然后采用SECM的“基底产生-探针收集”工作模式监测酶催化产物对苯醌的还原电流并以此实现对目标DNA的定量分析和电化学扫描成像。该SECM传感体系对目标DNA的检测限可低至17pM,并且对碱基错配具有良好的区分能力。
The quick, low-cost, highly sensitive and selective detection of biologically active proteins and small molecules, pathogenically associated sequence-specific nucleic acids and highly toxic heavy metal ions is one of the most important and attractive topics in modern biochemical analysis, which has activated the development of biosensors. An electrochemical nucleic acid-based biosensor is a biosensor that integrates an nucleic acid as the biological recognition element and an electrode as the physicochemical transducer. Electrochemical nucleic acid-based biosensor combines the high specificity of nucleic acid probes and the excellent sensitivity of electrochemical detection techniques; it has become the most important branch of biosensors. Typically, the design of an electrochemical nucleic acid-based biosensor includes three key steps:immobilization of the nucleic acid probe, interaction with the target molecule and electrochemical signal transduction of the molecular recognition event. Optimization of each step is required to improve the overall performance of the devices. For the development of novel electrochemical nucleic acid-based biosensors that meet the challenges of modern biochemical analysis, it is essential to explore new properties and application of the nucleic acid-modified electrodes, to construct simple and effective methods for immobilizing of the nucleic acid probes and highly sensitive signal transduction of the molecular recognition event. Focused on these basic items in the development of high-performance electrochemical nucleic acid-based biosensors, the extending application of nucleic acid-modified electrodes to new bioanalysis, the design of novel nucleic acid probes and the novel strategies for immobilizing nucleic acid probes and amplifying sensing signals have been investigated in the present dissertation and described as follows:
     In chapter2, A DNA-modified glass carbon electrode (DNA-GCE) obtained by one-step electrodeposition was developed for electrochemical detection of dopamine (DA). The negatively charged DNA film electrodeposited on the GCE could electrostatically attract the positively charged DA in neutral buffer solution (pH:7.0), which greatly increased the electrochemical oxidation current of DA. The common overlapped oxidation peaks of DA and ascorbic acid were separated completely on the DNA-GCE. Based on this selective electrocatalysis of the DNA-GCE toward the oxidation of DA, a highly sensitive and selective electrochemical platform has been successfully established for DA detection.
     In chapter3, a novel electrochemical sensor for Hg2+detection was developed using two mercury-specific oligonucleotide probes and streptavidin-horseradish peroxidase (HRP) enzymatic signal amplification. The two mercury-specific oligonucleotide probes comprised a thiolated capture probe and a biotinated signal probe. The thiolated capture probe was immobilized on a gold electrode. In the presence of Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) interaction between the mismatched T-T base pairs directed the biotinated signal probe hybridizing to the capture probe and yielded a biotin-functioned electrode surface. HRP was then immobilized on the biotin-modified substrate via biotin-streptavidin interaction. The immobilized HRP catalyzed the oxidation of hydroquinone (H2Q) to benzoquinone (BQ) by hydrogen peroxide and the generated BQ was further electrochemically reduced at the modified gold electrode, producing a readout signal for quantitative detection of Hg2+. The results showed that the enzyme-amplified electrochemical sensor system was highly sensitive to Hg2+in the concentration of0.5nM to1μM with a detection limit of0.3nM, and it also demonstrated excellent selectivity against other interferential metal ions.
     In chapter4, a novel electrochemical catalytic biosensor for sensitive and selective detecting of Hg2+was developed. To construct the electrochemical catalytic Hg2+sensing system, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a oligonucleotide signal probe integrating a mercury-specific oligonucleotide sequence and a G-quadruplex (G4) sequence was then captured on the gold electrode surface through the thymine-mercury(Ⅱ)-thymine interaction-mediated surface hybridization. The further interaction of the immobilized G4sequence with hemin generated a G4-Hemin complex monolayer. The G4-Hemin units exhibited good electrochemical catalytic activity toward the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+sensing events. The electrochemical catalytic Hg2+sensor system was highly sensitive and selective to Hg2+in the concentration of1.0nM to1μM with a detection limit of0.5nM. This simple and effective electrochemical catalytic sensor system provides a potential alternative for Hg2+assay.
     In chapter5, the electrochemical redox behavior of ferricyanide at the dodecanethiol modified electrode (H25C12S-Au), the single-walled carbon nanotube-dodecanethiol modified electrode (SWCNT-H25C12S-Au) and the single-stranded DNA-single-walled carbon nanotube-dodecanethiol modified electrode (ssDNA-SWCNT-H25C12S-Au) was thoroughly investigated. The results showed that SWCNT adsorbed on the surface of the H25C12S-Au could restore the restrained redox current of ferricyanide on the H25C12S-Au modified electrode, and this so-called "tunneling current effect" could be flexibly mediated by C-Ag+-C interaction between Ag+and the Ag+-specific oligonucleotide probe adsorbed on the sidewall of SWCNT. Based on this unique phenomenon, a sensitive, selective and simple electrochemical platform for Ag+detection was successfully developed.
     In chapter6, a novel scheme for scanning electrochemical microscopy (SECM) assay of DNA based on molecular beacon (MB) and enzymatic amplification biosensor was described. In this method, streptavidin-horseradish peroxidase (HRP) was captured by double-stranded DNA (ds-DNA) modified gold substrate via biotin-streptavidin interaction after hybridization of target DNA to the immobilized MB probe functioned with a biotin at its3'-end. In the presence of H2O2, hydroquinone (H2Q) was oxidized to benzoquinone (BQ) at the modified substrate surface through the HRP catalytic reaction, and then the generated BQ corresponding to the amount of target DNA was electrochemically reduced by a SECM tip. The resulting reduction current allowed sensitive concentration determination of target DNA and SECM imaging of hybridization between the target DNA and the immobilized MB probe. The detection limit of this method was as low as17pM for the complementary target DNA and it has good selectivity to discriminate between the complementary target and the sequence containing mismatched bases.
引文
[1]Chambers J P, Arulanandam B P, Matta L L, et al. Biosensor recognition elements. Current issues in molecular biology,2008,10:1-12
    [2]张炯,万莹,王丽华等.电化学DNA生物传感器.化学进展,2007,19(10):1576-1584
    [3]Umek R M, Lin S W, Vielmetter J, et al. Electronic detection of nucleic acids:a versatile platform for molecular diagnostics. Journal of Molecular Diagnostics, 2001,3(2):74-84
    [4]Labuda J, Brett A M O, Evtugyn G, et al. Electrochemical nucleic acid-based biosensors:Concepts, terms, and methodology (IUPAC Technical Report). Pure and Applied Chemistry,2010,82:1161-1187
    [5]Lee T M-H. Over-the-Counter Biosensors:Past, Present, and Future. Sensors, 2008,8(9):5535-5559
    [6]Sadik O, Aluoch A O, Zhou A. Status of biomolecular recognition using electrochemical techniques. Biosensors and Bioelectronics,2009,24(9): 2749-2765
    [7]Lucarelli F, Marrazza G, Turner A P F, et al. Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosensors and Bioelectronics,2004,19(6):515-530
    [8]Privett B J, Shin J H, Schoenfisch M H. Electrochemical Sensors. Analytical Chemistry,2010,82(12):4723-4741
    [9]Ito Y, Fukusaki E. DNA as a 'nanomaterial'. Journal of Molecular Catalysis B-Enzymatic,2004,28(4-6):155-166
    [10]Shi L X, Xiao Y, Willner I. Electrical contacting of glucose oxidase by DNA-templated polyaniline wires on surfaces. Electrochemistry Communications,2004,6(10):1057-1060
    [11]Liu X D, Diao H Y, Nishi N. Applied chemistry of natural DNA. Chemical Society Reviews,2008,37(12):2745-2757
    [12]Yitzchaik S, Bardavid Y, Ghabboun J, et al. Formation of polyaniline layer on DNA by electrochemical polymerization. Polymer,2008,49(9):2217-2222
    [13]Lisdat F, Sarauli D, Tanne J, et al. Multilayer electrodes:Fully electroactive cyt c on gold as a part of a DNA/protein architecture. Electrochemistry Communications,2009,11(12):2288-2291
    [14]Lu Y, Liu J W, Cao Z H. Functional Nucleic Acid Sensors. Chemical reviews, 2009,109(5):1948-1998
    [15]Sassolas A, Leca-Bouvier B D, Blum L J. DNA biosensors and microarrays. Chemical reviews,2008,108(1):109-139
    [16]Egholm M, Buchardt O, Christensen L, et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 1993,365(6446):566-568
    [17]Brandt O, Hoheisel J D. Peptide nucleic acids on microarrays and other biosensors. Trends in Biotechnology,2004,22(12):617-622
    [18]Kerman K, Mundelanji V, Nagatani N, et al. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: electrostatic interactions with a metal cation. Analytical Chemistry,2006,78(7): 2182-2189
    [19]Tyagi S, Kramer F R. Molecular beacons:probes that fluoresce upon hybridization. Nature biotechnology,1996,14(3):303-308
    [20]Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Sciences,1999,96(11):6171-6176
    [21]Wang K M, Tang Z W, Yang C Y J, et al. Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition,2009,48(5): 856-870
    [22]Plaxco K W, Xiao Y, Lai R Y. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nature Protocols,2007,2(11):2875-2880
    [23]Miranda-Castro R, De-Los-Santos-Alvarez P, Lobo-Castanon M J, et al. Hairpin-DNA probe for enzyme-amplified electrochemical detection of Legionella pneumophila. Analytical chemistry,2007,79(11):4050-4055
    [24]Ono A, Cao S, Togashi H, et al. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes. Chemical Communications,2008, (39):4825-4827
    [25]Tanaka Y, Oda S, Yamaguchi H, et al. 15N-15N J-coupling across HgⅡ:Direct observation of HgⅡ-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society,2007,129(2):244-245
    [26]Willner I, Zayats M. Electronic aptamer-based sensors. Angewandte Chemie International Edition,2007,46(34):6408-6418
    [27]Li B, Du Y, Dong S. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag (Ⅰ) ions. Analytica Chimica Acta,2009, 644(1-2):78-82
    [28]Li T, Dong S, Wang E. Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based dnazymes. Analytical Chemistry,2009,81(6):2144-2149
    [29]Dave N, Chan M Y, Huang P J J, et al. Regenerable DNA-Functionalized Hydrogels for Ultrasensitive, Instrument-Free Mercury(Ⅱ) Detection and Removal in Water. Journal of the American Chemical Society,2010,132(36): 12668-12673
    [30]Wen Y, Xing F, He S, et al. A graphene-based fluorescent nanoprobe for silver (Ⅰ) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chemical Communications,2010,46(15):2596-2598
    [31]Zhao C, Qu K, Song Y, et al. A Reusable DNA Single-Walled Carbon-Nanotube-Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+ and Cysteine in Aqueous Solutions. Chemistry-A European Journal,2010,16(27):8147-8154
    [32]Lai Y, Ma Y, Sun L, et al. A highly selective electrochemical biosensor for Hg2+ using hemin as a redox indicator. Electrochimica Acta,2011,56(9):3153-3158
    [33]Li H, Zhai J, Sun X. Highly sensitive and selective detection of silver (Ⅰ) ion using nano-C60 as an effective fluorescent sensing platform. The Analyst,2011, 136(10):2040-2043
    [34]Li H, Zhai J, Sun X. Sensitive and Selective Detection of Silver (Ⅰ) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensing Platform. Langmuir,2011,27(8):4305-4308
    [35]Irvine D, Tuerk C, Gold L. Selexion:Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. Journal of molecular biology,1991,222(3):739-761
    [36]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346(6287):818-822
    [37]Bock L C, Griffin L C, Latham J A, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature,1992,355(6360): 564-566
    [38]Que-Gewirth N, Sullenger B. Gene therapy progress and prospects:RNA aptamers. Gene therapy,2007,14(4):283-291
    [39]Dollins C M, Nair S, Sullenger B A. Aptamers in immunotherapy. Human gene therapy,2008,19(5):443-450
    [40]Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics,2005,20(12):2424-2434
    [41]Xiao Y, Piorek B D, Plaxco K W, et al. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. Journal of the American Chemical Society,2005,127(51):17990-17991
    [42]Hamula C L A, Guthrie J W, Zhang H, et al. Selection and analytical applications of aptamers. TrAC Trends in Analytical Chemistry,2006,25(7): 681-691
    [43]Mairal T, Cengiz Ozalp V, Lozano Sanchez P, et al. Aptamers:molecular tools for analytical applications. Analytical and Bioanalytical Chemistry,2008, 390(4):989-1007
    [44]Chiu T-c, Huang C-c. Aptamer-Functionalized Nano-Biosensors. Sensors,2009, 9(12):10356-10388
    [45]Yu H Z, Cheng A K H, Sen D. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry,2009,77(1):1-12
    [46]Han K, Liang Z, Zhou N. Design Strategies for Aptamer-Based Biosensors. Sensors,2010,10(5):4541-4557
    [47]Prieto-Simon B, Campas M, Marty J-L. Electrochemical aptamer-based sensors. Bioanalytical Reviews,2010,1(2-4):141-157
    [48]Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition,2005,44(34):5456-5459
    [49]Xu C, Cai H, Xu Q, et al. Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection. Fresenius Journal of Analytical Chemistry,2001,369(5):428-432
    [50]Cai H, Wang Y Q, He P G, et al. Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label. Analytica Chimica Acta,2002,469(2):165-172
    [51]蔡宏,徐颖,何品刚等.脱氧核糖核酸在电极表面的固定化研究进展.分析化学,2004,32(6):815-820
    [52]Azek F, Grossiord C, Joannes M, et al. Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA. Analytical Biochemistry,2000,284(1):107-113
    [53]Pang D W, Abrua H D. Micromethod for the investigation of the interactions between DNA and redox-active molecules. Analytical Chemistry,1998,70(15): 3162-3169
    [54]Escosura-Muniz A d I, Gonzalez-Garcia M B, Costa-Garcia A. DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosensors and Bioelectronics,2007,22(6):1048-1054
    [55]Erdem A, Kerman K, Meric B, et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the hepatitis B virus. Electroanalysis,1999,11(8):586-587
    [56]Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosensors and Bioelectronics,1999,14(1):43-51
    [57]Wang J, Cai X, Rivas G, et al. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosensors and Bioelectronics, 1997,12(7):587-599
    [58]Wang J, Cai X, Rivas G, et al. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Analytical Chemistry,1996,68(15):2629-2634
    [59]Wang J, Rivas G, Fernandes J R, et al. Indicator-free electrochemical DNA hybridization biosensor. Analytica Chimica Acta,1998,375(3):197-203
    [60]Wilchek M, Bayer E A. The avidin-biotin complex in bioanalytical applications. Analytical Biochemistry,1988,171(1):1-32
    [61]Kai E, Sawata S, Ikebukuro K, et al. Detection of PCR products in solution using surface plasmon resonance. Analytical Chemistry,1999,71(4):796-800
    [62]Park J W, Lee H Y, Kim J M, et al. Electrochemical detection of nonlabeled oligonucleotide DNA using biotin-modified DNA (ss) on a streptavidin-modified gold electrode. Journal of bioscience and bioengineering, 2004,97(1):29-32
    [63]Pan S, Rothberg L. Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir, 2005,21(3):1022-1027
    [64]Eggers M, Hogan M, Reich R, et al. A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups. Biotechniques,1994,17(3):516-525
    [65]Guo Z, Guilfoyle R A, Thiel A J, et al. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic acids research,1994,22(24):5456-5465
    [66]Lamture J B, LBeattie K, Burke B E, et al. Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic acids research, 1994,22(11):2121-2125
    [67]Chrisey L A, Lee G U, O'Ferrall C E. Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic acids research,1996,24(15): 3031-3039
    [68]Okahata Y, Matsunobu Y, Ijiro K, et al. Hybridization of nucleic acids immobilized on a quartz crystal microbalance. Journal of the American Chemical Society,1992,114(21):8299-8300
    [69]Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces. Journal of the American Chemical Society,1997,119(38):8916-8920
    [70]Levicky R, Herne T M, Tarlov M J, et al. Using self-assembly to control the structure of DNA monolayers on gold:a neutron reflectivity study. Journal of the American Chemical Society,1998,120(38):9787-9792
    [71]Janese C O B, Stickney J T, Porter M D. Self-assembled double-stranded DNA (dsDNA) microarrays for protein:dsDNA screening using atomic force microscopy. Journal of the American Chemical Society,2000,122(20): 5004-5005
    [72]Huang E, Satjapipat M, Han S, et al. Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir,2001,17(4):1215-1224
    [73]Palecek E. Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature,1960,188:656-657
    [74]Palecek E. Adsorptive transfer stripping voltammetry:Determination of nanogram quantities of DNA immobilized at the electrode surface. Analytical Biochemistry,1988,170(2):421-431
    [75]Singhal P, Kuhr W G. Direct electrochemical detection of purine-and pyrimidine-based nucleotides with sinusoidal voltammetry. Analytical Chemistry,1997,69(17):3552-3557
    [76]Wang H S, Ju H X, Chen H Y. Voltammetric behavior and detection of DNA at electrochemically pretreated glassy carbon electrode. Electroanalysis,2001, 13(13):1105-1109
    [77]Wang H S, Ju H X, Chen H Y. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Analytica Chimica Acta,2002,461(2):243-250
    [78]Kerman K, Morita Y, Takamura Y, et al. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochemistry Communications,2003, 5(10):887-891
    [79]Wu K B, Fei J J, Bai W, et al. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Analytical and Bioanalytical Chemistry,2003,376(2):205-209
    [80]Wang J, Flechsig G U, Erdem A, et al. Label-free DNA Hybridization Based on Coupling of a Heated Carbon Paste Electrode with Magnetic Separations. Electroanalysis,2004,16(11):928-931
    [81]Ontko A C, Armistead P M, Kircus S R, et al. Electrochemical detection of single-stranded DNA using polymer-modified electrodes. Inorganic chemistry, 1999,38(8):1842-1846
    [82]Szalai V A, Jayawickamarajah J, Thorp H H. Electrocatalysis of guanine oxidation in polyethylene glycol solutions:The interplay of adsorption and reaction rate. The Journal of Physical Chemistry B,2002,106(3):709-716
    [83]Gore M R, Szalai V A, Ropp P A, et al. Detection of attomole quantitites of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation. Analytical Chemistry,2003,75(23):6586-6592
    [84]Armistead P M, Thorp H H. Modification of indium tin oxide electrodes with nucleic acids:detection of attomole quantities of immobilized DNA by electrocatalysis. Analytical Chemistry,2000,72(16):3764-3770
    [85]Kelley S O, Barton J K, Jackson N M, et al. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate chemistry,1997,8(1):31-37
    [86]Kelley S O, Boon E M, Barton J K, et al. Single-base mismatch detection based on charge transduction through DNA. Nucleic acids research,1999,27(24): 4830-4837
    [87]Boon E M, Ceres D M, Drummond T G, et al. Mutation detection by electrocatalysis at DNA-modified electrodes. Nature Biotechnology,2000, 18(10):1096-1100
    [88]Kelley S O, Barton J K. Electron transfer between bases in double helical DNA. Science,1999,283(5400):375-381
    [89]Takenaka S, Yamashita K, Takagi M, et al. DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Analytical Chemistry,2000,72(6):1334-1341
    [90]Tansil N C, Xie H, Xie F, et al. Direct detection of DNA with an electrocatalytic threading intercalator. Analytical Chemistry,2005,77(1):126-134
    [91]Xia F, White R J, Zuo X, et al. An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. Journal of the American Chemical Society,2010,132(41):14346-14348
    [92]Zhang Y, Wang Y, Wang H, et al. Electrochemical DNA Biosensor Based on the Proximity-Dependent Surface Hybridization Assay. Analytical Chemistry,2009, 81(5):1982-1987
    [93]Immoos C E, Lee S J, Grinstaff M W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. Journal of the American Chemical Society,2004, 126(35):10814-10815
    [94]White R J, Plaxco K W. Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Analytical Chemistry,2009, 82(1):73-76
    [95]Liu G, Wan Y, Gau V, et al. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. Journal of the American Chemical Society,2008,130(21):6820-6825
    [96]Mao X, Jiang J, Xu X, et al. Enzymatic amplification detection of DNA based on "molecular beacon" biosensors. Biosensors and Bioelectronics,2008,23(10): 1555-1561
    [97]Caruana D J, Heller A. Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-μm-diameter microelectrode. Journal of the American Chemical Society, 1999,121(4):769-774
    [98]Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nature biotechnology,2001,19(3): 253-257
    [99]Xie H, Zhang C, Gao Z. Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Analytical Chemistry,2004,76(6):1611-1617
    [100]Fan C H, Zhang J, Song S P, et al. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature Protocols,2007,2(11): 2888-2895
    [101]Giljohann D A, Mirkin C A. Drivers of biodiagnostic development. Nature, 2009,462:461-464
    [102]Wei F, Lillehoj P B, Ho C-M. DNA diagnostics:nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatric research,2010,67: 458-468
    [103]Wang M J, Sun C Y, Wang L Y, et al. Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. Journal of Pharmaceutical and Biomedical Analysis,2003,33(5):1117-1125
    [104]Authier L, Grossiord C, Brossier P, et al. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Analytical Chemistry,2001,73(18): 4450-4456
    [105]Daniel M C, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews,2004,104(1):293-346
    [106]Thaxton C S, Georganopoulou D G, Mirkin C A. Gold nanoparticle probes for the detection of nucleic acid targets. Clinica Chimica Acta,2006,363(1-2): 120-126
    [107]Merkoci A, Castaneda M T, Alegret S. Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis,2007,19(7-8):743-753
    [108]Peng H, Soeller C, Cannell M B, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles. Biosensors and Bioelectronics,2006, 21(9):1727-1736
    [109]Travas-Sejdic J, Peng H, Cooney R, et al. Amplification of a conducting polymer-based DNA sensor signal by CdS nanoparticles. Current Applied Physics,2006,6(3):562-566
    [110]Wang J, Polsky R, Xu D K. Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir,2001,17(19):5739-5741
    [111]Wang J, Xu D K, Kawde A N, et al. Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Analytical Chemistry, 2001,73(22):5576-5581
    [112]Ozsoz M, Erdem A, Kerman K, et al. Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Analytical Chemistry,2003,75(9): 2181-2187
    [113]Wang J. Nanoparticle-based electrochemical DNA detection. Analytica Chimica Acta,2003,500(1-2):247-257
    [114]Kawde A N, Wang J. Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis,2004,16(1-2):101-107
    [115]Lee T M H, Cai H, Hsing I M. Gold nanoparticle-catalyzed silver electrodeposition on an indium tin oxide electrode and its application in DNA hybridization transduction. Electroanalysis,2004,16(19):1628-1631
    [116]Li L L, Cai H, Lee T M H, et al. Electrochemical detection of PCR amplicons using electroconductive polymer modified electrode and multiple nanoparticle labels. Electroanalysis,2004,16(1-2):81-87
    [117]Merkoci A, Aldavert M, Marin S, et al. New materials for electrochemical sensing Ⅴ:Nanoparticles for DNA labeling. TrAC Trends in Analytical Chemistry,2005,24(4):341-349
    [118]Moller R, Powell R D, Hainfeld J F, et al. Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips. Nano Letters,2005,5(7):1475-1482
    [119]Kurzatkowska K, Dolusic E, Dehaen W, et al. Gold Electrode Incorporating Corrole as an Ion-Channel Mimetic Sensor for Determination of Dopamine. Analytical Chemistry,2009,81(17):7397-7405
    [120]Baron R, Zayats M, Willner I. Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles:assays for the detection of neurotransmitters and of tyrosinase activity. Analytical Chemistry,2005,77(6): 1566-1571
    [121]Nagaraja P, Vasantha R, Sunitha K. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta,2001, 55(6):1039-1046
    [122]Nagaraja P, Vasantha R, Sunitha K. A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations. Journal of pharmaceutical and biomedical analysis, 2001,25(3-4):417-424
    [123]Carrera V, Sabater E, Vilanova E, et al. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine:Application to the secretion of bovine chromaffin cell cultures. Journal of Chromatography B,2007,847(2):88-94
    [124]Ji C, Li W, Ren X, et al. Diethylation labeling combined with UPLC/MS/MS for simultaneous determination of a panel of monoamine neurotransmitters in rat prefrontal cortex microdialysates. Analytical Chemistry,2008,80(23): 9195-9203
    [125]Yoshitake M, Nohta H, Ogata S, et al. Liquid chromatography method for detecting native fluorescent bioamines in urine using post-column derivatization and intramolecular FRET detection. Journal of Chromatography B,2007, 858(1-2):307-312
    [126]Yoshitake T, Yoshitake S, Fujino K, et al. High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex. Journal of neuroscience methods,2004,140(1-2):163-168
    [127]Chen P Y, Vittal R, Nien P C, et al. Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion(R). Biosensors and Bioelectronics,2009,24(12):3504-3509
    [128]Hu C, Zhang Y, Bao G, et al. DNA functionalized single-walled carbon nanotubes for electrochemical detection. The Journal of Physical Chemistry B, 2005,109(43):20072-20076
    [129]Shahrokhian S, Zare-Mehrjardi H R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid. Electrochimica Acta,2007,52(22):6310-6317
    [130]Zhao Y, Gao Y, Zhan D, et al. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta,2005,66(1):51-57
    [131]Li F, Chai J, Yang H, et al. Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010,81(3):1063-1068
    [132]Tan L, Zhou K G, Zhang Y H, et al. Nanomolar detection of dopamine in the presence of ascorbic acid at beta-cyclodextrin/graphene nanocomposite platform. Electrochemistry Communications,2010,12(4):557-560
    [133]Wang Y, Li Y, Tang L, et al. Application of graphene-modified electrode for selective detection of dopamine. Electrochemistry Communications,2009,11(4): 889-892
    [134]Ali S R, Ma Y, Parajuli R R, et al. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry,2007,79(6):2583-2587
    [135]Hou S, Zheng N, Feng H, et al. Determination of dopamine in the presence of ascorbic acid using poly (3,5-dihydroxy benzoic acid) film modified electrode. Analytical biochemistry,2008,381(2):179-184
    [136]Lakshmi D, Bossi A, Whitcombe M J, et al. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Analytical Chemistry,2009,81(9): 3576-3584
    [137]Pihel K, Walker Q D, Wightman R M. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Analytical Chemistry,1996,68(13):2084-2089
    [138]Zhang L, Shi Z, Lang Q. Fabrication of poly (orthanilic acid)-multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid. Journal of Solid State Electrochemistry,2011,15(4):1-9
    [139]Zhang X, Ogorevc B, Tavcar G, et al. Over-oxidized polypyrrole-modified carbon fibre ultramicroelectrode with an integrated silver/silver chloride reference electrode for the selective voltammetric measurement of dopamine in extremely small sample volumes. The Analyst,1996,121(12):1817-1822
    [140]Codognoto L, Winter E, Paschoal J A R, et al. Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers. Talanta, 2007,72(2):427-433
    [141]Hu G, Liu Y, Zhao J, et al. Selective response of dopamine in the presence of ascorbic acid on 1-cysteine self-assembled gold electrode. Bioelectrochemistry, 2006,69(2):254-257
    [142]Liu T, Li M X, Li Q Y. Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer. Talanta,2004,63(4): 1053-1059
    [143]Malem F, Mandler D. Self-assembled monolayers in electroanalytical chemistry: application of.omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid. Analytical Chemistry,1993,65(1):37-41
    [144]Raj C R, Tokuda K, Ohsaka T. Electroanalytical applications of cationic self-assembled monolayers:square-wave voltammetric determination of dopamine and ascorbate. Bioelectrochemistry,2001,53(2):183-191
    [145]Shervedani R K, Bagherzadeh M, Mozaffari S A. Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor. Sensors and Actuators B:Chemical, 2006,115(2):614-621
    [146]Becerril H A, Woolley A T. DNA-templated nanofabrication. Chemical Society Reviews,2008,38(2):329-337
    [147]Ma Y, Ali S R, Dodoo A S, et al. Enhanced sensitivity for biosensors:multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. The Journal of Physical Chemistry B,2006, 110(33):16359-16365
    [148]Shao Y, Jin Y, Dong S. DNA-templated assembly and electropolymerization of aniline on gold surface. Electrochemistry Communications,2002,4(10): 773-779
    [149]Lin X, Jiang X, Lu L. DNA deposition on carbon electrodes under controlled dc potentials. Biosensors and Bioelectronics,2005,20(9):1709-1717
    [150]Dalmia A, Liu C, Savinell R. Electrochemical behavior of gold electrodes modified with self-assembled monolayers with an acidic end group for selective detection of dopamine. Journal of Electroanalytical Chemistry,1997,430(1-2): 205-214
    [151]Korbas M, Blechinger S R, Krone P H, et al. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proceedings of the National Academy of Sciences,2008,105(34):12108-12112
    [152]Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics,1998: 543-566
    [153]Huang C C, Chang H T. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution. Analytical Chemistry, 2006,78(24):8332-8338
    [154]Kim I B, Bunz U H F. Modulating the sensory response of a conjugated polymer by proteins:An agglutination assay for mercury ions in water. Journal of the American Chemical Society,2006,128(9):2818-2819
    [155]Liu X F, Tang Y L, Wang L H, et al. Optical detection of mercury(Ⅱ) in aqueous solutions by using conjugated polymers and label-free oligonucleotides. Advanced Materials,2007,19(11):1471-1474
    [156]Nolan E M, Lippard S J. A "Turn-On" fluorescent sensor for the selective detection of mercuric ion in aqueous media. Journal of the American Chemical Society,2003,125(47):14270-14271
    [157]Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. Journal of the American Chemical Society,2007,129(18): 5910-5918
    [158]Prodi L, Bargossi C, Montalti M, et al. An effective fluorescent chemosensor for mercury ions. Journal of the American Chemical Society,2000,122(28): 6769-6770
    [159]Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Journal of the American Chemical Society,2005,127(48):16760-16761
    [160]Zhu C Q, Li L, Fang F, et al. Functional InP nanocrystals as novel near-infrared fluorescent sensors for mercury ions. Chemistry Letters,2005,34(7):898-899
    [161]Zhu X J, Fu S T, Wong W K, et al. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin. Angewandte Chemie International Edition,2006,45(19):3150-3154
    [162]Nolan M A, Kounaves S P. Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry. Analytical Chemistry,1999,71(16):3567-3573
    [163]Wang S P, Forzani E S, Tao N J. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Analytical Chemistry,2007,79(12):4427-4432
    [164]Lee J S, Ulmann P A, Han M S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Letters,2008, 8(2):529-533
    [165]Miyake Y, Togashi H, Tashiro M, et al. Mercury(Ⅱ)-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. Journal of the American Chemical Society,2006,128(7):2172-2173
    [166]Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(Ⅱ) in aqueous solution. Analytical Chemistry,2008,80(10):3716-3721
    [167]Guo L Q, Hu H, Sun R Q, et al. Highly sensitive fluorescent sensor for mercury ion based on photoinduced charge transfer between fluorophore and pi-stacked T-Hg(Ⅱ)-T base pairs. Talanta,2009,79(3):775-779
    [168]Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chemical Communications,2009, (23):3395-3397
    [169]Wang J, Liu B. Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green Ⅰ. Chemical Communications,2008, (39):4759-4761
    [170]Zhang L B, Tao L, Li B L, et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(Ⅱ) ion. Chemical Communications,2010,46(9):1476-1478
    [171]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International Edition,2007,46(22):4093-4096
    [172]Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angewandte Chemie International Edition,2008,47(21):3927-3931
    [173]Liu C W, Hsieh Y T, Huang C C, et al. Detection of mercury(Ⅱ) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chemical Communications,2008, (19):2242-2244
    [174]Wang Y, Yang F, Yang X R. Colorimetric biosensing of mercury(Ⅱ) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosensors and Bioelectronics,2010,25(8):1994-1998
    [175]Xue X J, Wang F, Liu X G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society,2008,130(11):3244-3245
    [176]Kong R M, Zhang X B, Zhang L L, et al. An ultrasensitive electrochemical "turn-on" label-free biosensor for Hg2+ with AuNP-functionalized reporter DNA as a signal amplifier. Chemical Communications,2009, (37):5633-5635
    [177]Liu S J, Nie H G, Jiang J H, et al. Electrochemical Sensor for Mercury(Ⅱ) Based on Conformational Switch Mediated by Interstrand Cooperative Coordination. Analytical Chemistry,2009,81(14):5724-5730
    [178]Mor-Piperberg G, Tel-Vered R, Elbaz J, et al. Nanoengineered Electrically Contacted Enzymes on DNA Scaffolds:Functional Assemblies for the Selective Analysis of Hg2+ Ions. Journal of the American Chemical Society,2010, 132(20):6878-6879
    [179]Wu D H, Zhang Q, Chu X, et al. Ultrasensitive electrochemical sensor for mercury (Ⅱ) based on target-induced structure-switching DNA. Biosensors and Bioelectronics,2010,25(5):1025-1031
    [180]Zhu X, Chen L F, Lin Z Y, et al. A highly sensitive and selective "signal-on" electrochemiluminescent biosensor for mercury. Chemical Communications, 2010,46(18):3149-3151
    [181]Zhu Z Q, Su Y Y, Li J, et al. Highly Sensitive Electrochemical Sensor for Mercury(Ⅱ) Ions by Using a Mercury-Specific Oligonucleotide Probe and Gold Nanoparticle-Based Amplification. Analytical Chemistry,2009,81(18): 7660-7666
    [182]Bakker E. Electrochemical sensors. Analytical chemistry,2004,76(12): 3285-3298
    [183]Hwang S, Kim E, Kwak J. Electrochemical detection of DNA hybridization using biometallization. Analytical Chemistry,2005,77(2):579-584
    [184]Lucarelli F, Marrazza G, Mascini M. Dendritic-like streptavidin/alkaline phosphatase nanoarchitectures for amplified electrochemical sensing of DNA sequences. Langmuir,2006,22(9):4305-4309
    [185]Patolsky F, Lichtenstein A, Willner I. Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chemistry-A European Journal,2003,9(5):1137-1145
    [186]Zhang J, Lao R J, Song S P, et al. Design of an Oligonucleotide-Incorporated Nonfouling Surface and Its Application in Electrochemical DNA Sensors for Highly Sensitive and Sequence-Specific Detection of Target DNA. Analytical Chemistry,2008,80(23):9029-9033
    [187]Zhang Z P, Zhou J Y, Tang A A, et al. Scanning electrochemical microscopy assay of DNA based on hairpin probe and enzymatic amplification biosensor. Biosensors and Bioelectronics,2010,25(8):1953-1957
    [188]Markham N R, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research,2005,33:W577-W581
    [189]Ferrer M L, Levy D, Gomez-Lor B, et al. High operational stability in peroxidase-catalyzed non-aqueous sulfoxidations by encapsulation within sol-gel glasses. Journal of Molecular Catalysis B-Enzymatic,2004,27(2-3): 107-111
    [190]Lloyd C R, Eyring E M. Protecting heme enzyme peroxidase activity from H2O2 inactivation by sol-gel encapsulation. Langmuir,2000,16(23):9092-9094
    [191]Baker B R, Lai R Y, Wood M S, et al. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. Journal of the American Chemical Society,2006,128(10):3138-3139
    [192]Ferapontova E E, Gothelf K V. Optimization of the Electrochemical RNA-Aptamer Based Biosensor for Theophylline by Using a Methylene Blue Redox Label. Electroanalysis,2009,21(11):1261-1266
    [193]Lai R Y, Plaxco K W, Heeger A J. Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Analytical Chemistry,2007,79(1):229-233
    [194]White R J, Phares N, Lubin A A, et al. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir,2008,24(18):10513-10518
    [195]Ferapontova E E, Olsen E M, Gothelf K V. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. Journal of the American Chemical Society,2008,130(13):4256-4258
    [196]Lu Y, Zhu N, Yu P, et al. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. The Analyst,2008,133(9):1256-1260
    [197]Radi A E, Acero Sanchez J L, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society,2006,128(1):117-124
    [198]Sanchez J L A, Baldrich E, Radi A E G, et al. Electronic'Off-On'Molecular Switch for Rapid Detection of Thrombin. Electroanalysis,2006,18(19-20): 1957-1962
    [199]Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry,2007,79(7):2933-2939
    [200]Zhang Y L, Huang Y, Jiang J H, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society,2007, 129(50):15448-15449
    [201]Zhang Y L, Pang P F, Jiang J H, et al. Electrochemical Aptasensor Based on Proximity-Dependent Surface Hybridization Assay for Protein Detection. Electroanalysis,2009,21(11):1327-1333
    [202]Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society,2007,129(5):1042-1043
    [203]Ding C, Ge Y, Lin J M. Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosensors and Bioelectronics,2010,25(6):1290-1294
    [204]Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society,2006,128(7):2228-2229
    [205]He P, Shen L, Cao Y, et al. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Analytical Chemistry, 2007,79(21):8024-8029
    [206]Numnuam A, Chumbimuni-Torres K Y, Xiang Y, et al. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Analytical Chemistry,2008,80(3):707-712
    [207]Polsky R, Gill R, Kaganovsky L, et al. Nucleic acid-functionalized Pt nanoparticles:Catalytic labels for the amplified electrochemical detection of biomolecules. Analytical Chemistry,2006,78(7):2268-2271
    [208]Sharon E, Freeman R, Tel-Vered R, et al. Impedimetric or Ion-Sensitive Field-Effect Transistor (ISFET) Aptasensors Based on the Self-Assembly of Au Nanoparticle-Functionalized Supramolecular Aptamer Nanostructures. Electroanalysis,2009,21(11):1291-1296
    [209]Wang J, Meng W, Zheng X, et al. Combination of aptamer with gold nanoparticles for electrochemical signal amplification:application to sensitive detection of platelet-derived growth factor. Biosensors and Bioelectronics,2009, 24(6):1598-1602
    [210]Campbell C N, Gal D, Cristler N, et al. Enzyme-amplified amperometric sandwich test for RNA and DNA. Analytical Chemistry,2002,74(1):158-162
    [211]Centi S, Sanmartin L B, Tombelli S, et al. Detection of C Reactive Protein (CRP) in Serum by an Electrochemical Aptamer-Based Sandwich Assay. Electroanalysis,2009,21(11):1309-1315
    [212]Centi S, Tombelli S, Minunni M, et al. Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Analytical Chemistry,2007,79(4):1466-1473
    [213]de Lumley-Woodyear T, Campbell C, Heller A. Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. Journal of the American Chemical Society,1996,118(23):5504-5505
    [214]Feng K, Kang Y, Zhao J J, et al. Electrochemical immunosensor with aptamer-based enzymatic amplification. Analytical Biochemistry,2008,378(1): 38-42
    [215]Fukasawa M, Yoshida W, Yamazaki H, et al. An Aptamer-Based Bound/Free Separation System for Protein Detection. Electroanalysis,2009,21(11): 1297-1302
    [216]Ikebukuro K, Kiyohara C, Sode K. Electrochemical detection of protein using a double aptamer sandwich. Analytical Letters,2004,37(14):2901-2909
    [217]Ikebukuro K, Kiyohara C, Sode K. Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosensors and Bioelectronics, 2005,20(10):2168-2172
    [218]Limoges B, Marchal D, Mavre F, et al. Theory and practice of enzyme bioaffinity electrodes. Direct electrochemical product detection. Journal of the American Chemical Society,2008,130(23):7259-7275
    [219]Mir M, Vreeke M, Katakis L. Different strategies to develop an electrochemical thrombin aptasensor. Electrochemistry Communications,2006,8(3):505-511
    [220]Papamichael K I, Kreuzer M P, Guilbault G G. Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means. Sensors and Actuators B-Chemical,2007,121(1):178-186
    [221]Travascio P, Li Y, Sen D. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chemistry & biology,1998,5(9):505-517
    [222]Li W, Liu Z, Lin H, et al. Label-Free Colorimetric Assay for Methyltransferase Activity Based on a Novel Methylation-Responsive DNAzyme Strategy. Analytical Chemistry,2010,82(5):1935-1941
    [223]Li D, Shlyahovsky B, Elbaz J, et al. Amplified analysis of low-molecular-weight substrates or proteins by the self-assembly of DNAzyme-aptamer conjugates. Journal of the American Chemical Society,2007, 129(18):5804-5805
    [224]Li D, Wieckowska A, Willner I. Optical Analysis of Hg2+ Ions by Oligonucleotide-Gold-Nanoparticle Hybrids and DNA-Based Machines. Angewandte Chemie International Edition,2008,120(21):3991-3995
    [225]Li T, Shi L, Wang E, et al. Silver-Ion-Mediated DNAzyme Switch for the Ultrasensitive and Selective Colorimetric Detection of Aqueous Ag+ and Cysteine. Chemistry-A European Journal,2009,15(14):3347-3350
    [226]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [227]Shlyahovsky B, Li D, Katz E, et al. Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosensors and Bioelectronics, 2007,22(11):2570-2576
    [228]Weizmann Y, Beissenhirtz M K, Cheglakov Z, et al. A virus spotlighted by an autonomous DNA machine. Angewandte Chemie International Edition,2006, 45(44):7384-7388
    [229]Zhu C, Wen Y, Li D, et al. Inhibition of the In Vitro Replication of DNA by an Aptamer-Protein Complex in an Autonomous DNA Machine. Chemistry-A European Journal,2009,15(44):11898-11903
    [230]Yang Q, Nie Y, Zhu X, et al. Study on the electrocatalytic activity of human telomere G-quadruplex-hemin complex and its interaction with small molecular ligands. Electrochimica Acta,2009,55(1):276-280
    [231]Zhu X, Zhang W, Xiao H, et al. Electrochemical study of a hemin-DNA complex and its activity as a ligand binder. Electrochimica Acta,2008,53(13): 4407-4413
    [232]Steel A B, Herne T M, Tarlov M J. Electrochemical quantitation of DNA immobilized on gold. Analytical Chemistry,1998,70(22):4670-4677
    [233]Keighley S D, Li P, Estrela P, et al. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosensors and Bioelectronics,2008,23(8):1291-1297
    [234]Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie International Edition,2004,43(45):6042-6108
    [235]Wang J. Nanomaterial-based electrochemical biosensors. The Analyst,2005, 130(4):421-426
    [236]Wang H. Yang R, Yang L, et al. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano,2009,3(9):2451-2460
    [237]Willner I, Willner B. Katz E. Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry,2007,70(1):2-11
    [238]Staii C, Johnson Jr A T, Chen M, et al. DNA-decorated carbon nanotubes for, chemical sensing. Nano Letters,2005,5(9):1774-1778
    [239]Tang X, Bansaruntip S, Nakayama N, et al. Carbon nanotube DNA sensor and sensing mechanism. Nano Letters,2006,6(8):1632-1636
    [240]Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials,2003,2(5):338-342
    [241]Strano M S, Zheng M, Jagota A, et al. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Letters,2004,4(4):543-550
    [242]Hersam M C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotechnology,2008,3(7):387-394
    [243]Yang R, Jin J, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. Journal of the American Chemical Society,2008,130(26):8351-8358
    [244]Yang R, Tang Z, Yan J, et al. Noncovalent assembly of carbon nanotubes and single-stranded DNA:an effective sensing platform for probing biomolecular interactions. Analytical chemistry,2008,80(19):7408-7413
    [245]Wu Z, Zhen Z, Jiang J H, et al. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. Journal of the American Chemical Society,2009, 131(34):12325-12332
    [246]Liu X, Li Y, Zheng J, et al. Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin. Talanta,2010,81(4-5):1619-1624
    [247]Niu S Y, Li Q Y, Ren R, et al. DNA/Single-Walled Carbon Nanotubes Based Fluorescence Detection of Hg2+. Analytical Letters,2010,43(15):2432-2439
    [248]Song Y, Wang X, Zhao C, et al. Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity. Chemistry-A European Journal,2010,16(12): 3617-3621
    [249]Zhu Z, Yang R, You M, et al. Single-walled carbon nanotube as an effective quencher. Analytical and Bioanalytical Chemistry,2010,396(1):73-83
    [250]Chen Z, Zhang X B, Yang R H, et al. Single-walled carbon nanotubes as optical materials for biosensing. Nanoscale,2011,3(5):1949-1956
    [251]Guo L Q, Yin N, Nie D D, et al. Label-free fluorescent sensor for mercury(Ⅱ) ion by using carbon nanotubes to reduce background signal. The Analyst,2011, 136(8):1632-1636
    [252]Li H L, Tian J Q, Wang L, et al. Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. Journal of Materials Chemistry,2011,21(3):824-828
    [253]Yao J, Li J, Owens J, et al. Combing DNAzyme with single-walled carbon nanotubes for detection of Pb (Ⅱ) in water. The Analyst,2011,136(4):764-768
    [254]Zhang Y F, Li B X, Van C G, et al. One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. Biosensors and Bioelectronics, 2011,26(8):3505-3510
    [255]Bradbury C R, Zhao J, Fermin D J. Distance-Independent Charge-Transfer Resistance at Gold Electrodes Modified by Thiol Monolayers and Metal Nanoparticles.The Journal of Physical Chemistry C,2008,112(27): 10153-10160
    [256]Diao P, Guo M, Zhang Q. How does the particle density affect the electrochemical behavior of gold nanoparticle assembly? Journal of Physical Chemistry C,2008,112(17):7036-7046
    [257]Zhao J, Bradbury C R, Fermin D J. Long-range electronic communication between metal nanoparticles and electrode surfaces separated by polyelectrolyte multilayer films. Journal of Physical Chemistry C,2008,112(17):6832-6841
    [258]Zhao J, Wasem M, Bradbury C R, et al. Charge transfer across self-assembled nanoscale metal-insulator-metal heterostructures. Journal of Physical Chemistry C,2008,112(18):7284-7289
    [259]Le Saux G, Ciampi S, Gaus K, et al. Electrochemical Behavior of Gold Colloidal Alkyl Modified Silicon Surfaces. Acs Applied Materials & Interfaces, 2009,1(11):2477-2483
    [260]Shein J B, Lai L M H, Eggers P K, et al. Formation of Efficient Electron Transfer Pathways by Adsorbing Gold Nanoparticles to Self-Assembled Monolayer Modified Electrodes. Langmuir,2009,25(18):11121-11128
    [261]Dyne J, Lin Y S, Lai L M H, et al. Some More Observations on the Unique Electrochemical Properties of Electrode-Monolayer-Nanoparticle Constructs. Chemphyschem,2010,11(13):2807-2813
    [262]Kissling G P, Bunzli C, Fermin D J. Tuning Electrochemical Rectification via Quantum Dot Assemblies. Journal of the American Chemical Society,2010, 132(47):16855-16861
    [263]Chazalviel J N, Allongue P. On the Origin of the Efficient Nanoparticle Mediated Electron Transfer across a Self-Assembled Monolayer. Journal of the American Chemical Society,2011,133(4):762-764
    [264]Su L, Gao F, Mao L Q. Electrochemical properties of carbon nanotube (CNT) film electrodes prepared by controllable adsorption of CNTs onto an alkanethiol monolayer self-assembled on gold electrodes. Analytical chemistry,2006,78(8): 2651-2657
    [265]Lan G H, Liu Y X, Zeng X D, et al. Carbon nanotubes on low resistance monolayer-modified glassy carbon electrode as chemo/biosensor. Journal of Electroanalytical Chemistry,2009,634(2):98-103
    [266]Zheng D, Li X L, Ye J S. Adsorption and release behavior of bare and DNA-wrapped-carbon nanotubes on self-assembled monolayer surface. Bioelectrochemistry,2009,74(2):240-245
    [267]Qin C, Wong W Y, Wang L. A Water-Soluble Organometallic Conjugated Polyelectrolyte for the Direct Colorimetric Detection of Silver Ion in Aqueous Media with High Selectivity and Sensitivity. Macromolecules,2011,44(3): 483-489
    [268]Aoki H, Buhlmann P, Umezawa Y. Electrochemical detection of a one-base mismatch in an oligonucleotide using ion-channel sensors with self-assembled PNA monolayers. Electroanalysis,2000,12(16):1272-1276
    [269]Del Giallo M L, Lucarelli F, Cosulich E, et al. Steric factors controlling the surface hybridization of PCR amplified sequences. Analytical chemistry,2005, 77(19):6324-6330
    [270]Xiao Y, Lubin A A, Baker B R, et al. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proceedings of the National Academy of Sciences,2006,103(45): 16677-16680
    [271]de-los-Santos-Alvarez P, Lobo-Castanon M J, Miranda-Ordieres A J, et al. Current strategies for electrochemical detection of DNA with solid electrodes. Analytical and bioanalytical chemistry,2004,378(1):104-118
    [272]Drummond T G, Hill M G, Barton J K. Electrochemical DNA sensors. Nature Biotechnology,2003,21(10):1192-1199
    [273]Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences,2003, 100(16):9134-9137
    [274]Immoos C E, Lee S J, Grinstaff M W. Conformationally gated electrochemical gene detection. ChemBioChem,2004,5(8):1100-1103
    [275]Lucarelli F, Marrazza G, Mascini M. Enzyme-based impedimetric detection of PCR products using oligonucleotide-modified screen-printed gold electrodes. Biosensors and Bioelectronics,2005,20(10):2001-2009
    [276]Munge B, Liu G, Collins G, et al. Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Analytical chemistry, 2005,77(14):4662-4666
    [277]Patolsky F, Katz E, Willner I. Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. Angewandte Chemie International Edition,2002,114(18):3548-3552
    [278]Wang J, Kawde A N, Musameh M, et al. Dual enzyme electrochemical coding for detecting DNA hybridization. The Analyst,2002,127(10):1279-1282
    [279]Bard A J, Fan F R, Pierce D T, et al. Chemical imaging of surfaces with the scanning electrochemical microscope. Science,1991,254(5028):68-74
    [280]Amemiya S, Guo J, Xiong H, et al. Biological applications of scanning electrochemical microscopy:chemical imaging of single living cells and beyond. Analytical and bioanalytical chemistry,2006,386(3):458-471
    [281]Turcu F, Hartwich G, Sch fer D, et al. Ink-Jet Microdispensing for the Formation of Gradients of Immobilised Enzyme Activity. Macromolecular rapid communications,2005,26(4):325-330
    [282]Wang J, Zhou F. Scanning electrochemical microscopic imaging of surface-confined DNA probes and their hybridization via guanine oxidation. Journal of Electroanalytical Chemistry,2002,537(1-2):95-102
    [283]Zhang X, Peng X, Jin W. Scanning electrochemical microscopy with enzyme immunoassay of the cancer-related antigen CA15-3. Analytica chimica acta, 2006,558(1-2):110-114
    [284]Lu X, Wang Q, Liu X. Review:Recent applications of scanning electrochemical microscopy to the study of charge transfer kinetics. Analytica chimica acta, 2007,601(1):10-25
    [285]Gyurcsanyi R E, Jagerszki G, Kiss G, et al. Chemical imaging of biological systems with the scanning electrochemical microscope. Bioelectrochemistry, 2004,63(1-2):207-215
    [286]Komatsu M, Yamashita K, Uchida K, et al. Imaging of DNA microarray with scanning electrochemical microscopy. Electrochimica Acta,2006,51(10): 2023-2029
    [287]Liu B, Bard A J, Li C Z, et al. Scanning electrochemical microscopy.51. Studies of self-assembled monolayers of DNA in the absence and presence of metal ions. Journal of Physical Chemistry B,2005,109(11):5193-5198
    [288]Palchetti I, Laschi S, Marrazza G, et al. Electrochemical imaging of localized sandwich DNA hybridization using scanning electrochemical microscopy. Analytical chemistry,2007,79(18):7206-7213
    [289]Turcu F, Schulte A, Hartwich G, et al. Imaging immobilised ssDNA and detecting DNA hybridisation by means of the repelling mode of scanning electrochemical microscopy (SECM). Biosensors and Bioelectronics,2004, 20(5):925-932
    [290]Turcu F, Schulte A, Hartwich G, et al. Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM. Angewandte Chemie International Edition,2004,43(26):3482-3485
    [291]Wain A J, Zhou F M. Scanning electrochemical microscopy imaging of DNA microarrays using methylene blue as a redox-active intercalator. Langmuir, 2008,24(9):5155-5160
    [292]Wang J, Song F Y, Zhou F M. Silver-enhanced imaging of DNA hybridization at DNA microarrays with scanning electrochemical microscopy. Langmuir,2002, 18(17):6653-6658
    [293]Yamashita K, Takagi M, Uchida K, et al. Visualization of DNA microarrays by scanning electrochemical microscopy (SECM). The Analyst,2001,126(8): 1210-1211
    [294]卢小泉,王晓强,胡丽娜.扫描电化学显微镜及其在界面电化学研究中的应用.化学通报,2004,67(9):673-678
    [295]Cornut R, Lefrou C. New analytical approximations for negative feedback currents with a microdisk SECM tip. Journal of Electroanalytical Chemistry, 2007,604(2):91-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700