光子计数激光外差探测及拍频信号频谱识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光外差探测在空间目标探测、伪装目标识别中广泛应用,相对于直接激光探测它有着探测灵敏度高、速度分辨率高等优势;最近十年美国林肯实验室将光子计数器引入到外差探测,实现了弱本振光、低散粒噪声外差信号探测。
     本论文主要讨论了两大方面内容:一是光子计数体制下激光外差探测,及对记录光子时间信号处理,从记录光子时间频谱密度分布和相邻光子时间间隔概率密度两个方面解析得到拍频频率;二是激光外差探测多类目标,对目标运动造成的回波信号多普勒频谱进行识别,获取目标的运动速度、转动目标的频谱展宽曲线、振动目标的二维频谱图像等目标运动信息。在这两个方面工作的基础上,对激光外差探测系统形成一个系统而完整的认识,对外差探测系统中多个技术环节进一步加深认识并形成一定的设计优化方案;在实验过程中对激光外差探测系统中噪声来源、光路系统布局、外差探测影响因素等均实现一定探索和认知。其工作内容详细如下:
     (1)介绍了激光外差探测基本理论基础、光子统计理论、外差信号光子时间频谱解析理论及外差系统激光传输信噪比分析。为后续实验工作开展提供了良好理论基础。
     (2)应用多像素单光子计数器(MPPC),实现对激光外差信号的探测及拍频频率解析。首先采用了频谱分析法,对记录光子时间进行快速傅里叶变换得到光子时间频谱密度分布,采取多数据段均值及归一化累乘两种方式得到最大拍频频率为1.04MHz的频谱峰值。然后采用统计的方式,创新性提出从相邻光子时间间隔满足的概率密度分布中解析拍频频率,得到6MHz、8MHz、10MHz和12MHz拍频频率,分析了探测频率上限问题,指出统计方式解析频率上限不受奈奎斯特采样定理限制,进一步实验解析得到80MHz拍频频率。
     (3)对激光外差探测系统做了详细分析,指出系统中存在的噪声源及提出一些解决方案,并探讨了激光相干长度(线宽)对外差探测的影响,指出外差探测距离远远大于激光相干长度时,在外差信号频谱上得到的峰值宽度为激光线宽2倍。在大量调研和实验的基础上形成了比较成熟的外差探测系统。
     (4)在前述外差系统优化设计的基础上实现了对运动点目标频谱识别,实现了对类简谐运动、转动目标高精度实时测速,并用带宽1MHz激光器实现了外场8.1km激光外差探测实验,验证激光相干长度对外差探测影响。提出采用伪随机序列码调制方式来提高外差探测探测概率的方案。
     (5)分析了转动二次曲面面目标后向反射信号在频谱上的展宽模型,并以实验的形式验证了转动圆锥体和圆柱体的展宽曲线,与理论相符良好。采用点扫描方式,对转动、振动目标进行扫描测量,形成二维空间-频谱图像,实现对目标轮廓信号的探测,该探测方式能够对强度成像难以识别的伪装目标进行探测。
     本论文实现了光子计数体制外差信号探测,在探测器上实现一定创新;综合分析了整个外差探测系统中所遇到的一些实际问题,并对提出了解决方案,实现目标频谱识别及二维频谱图像。通过理论推导并结合大量实验,对外差探测有了深刻认知,并为后续研究提供一些借鉴。
Laser heterodyne detection is widely used in the detection of space target andthe discrimination of camouflaged target; Compared with the direct laser detection,it has the advantage of high detection sensitivity and high speed resolution. In recentten years, Lincoln Laboratory has introduced the photon counter into heterodynedetection to achieve the weak local oscillator light, low shot noise heterodyne signaldetection.
     Two aspects of work are mainly discussed in this paper which are heterodynedetection with the photon counter and the discrimination of the frequency-spectrumof the beat signal. For the first aspect, heterodyne detection is conducted usingphoton counter; the beat frequency is derived by two methods, one is by frequencyspectrum density distribution of the recording photons time and the other is by theprobability density distribution of successive photons time-interval. For the secondaspect, types of targets are detected by laser heterodyne detection, theretro-reflection signal’s Doppler frequency spectrum is identified which is caused bythe movement of the targets, the moving information such as the speed,frequency-spectrum broadening of rotation, two-dimension frequency-spectrumimaging of vibration are derived. Based on the work of the two aspects, we form acomplete understanding of laser heterodyne detection system, deeply explore of number of techniques, and give an optimization design project of the system. In theexperiment, we analyze the noise source, the optical setup, the influence factor andso on. The detail work contents are as follows:
     (1) We introduce the basic theory of laser heterodyne detection and photonstatistics, and the analytical theory to derive the photon time frequency-spectrum ofheterodyne signal; also analyze the Signal-to-noise ratio of the laser transmission.All the work provides a good theoretical basis for the experiment in the subsequentsection.
     (2) A multi-pixel single photon counter (MPPC) is used to detect the laserheterodyne signal and to get the beat frequency. In the first method, the frequencyspectrum analysis is used in which a fast Fourier transform is conducted on thephoton arrival time of the beat signal to get the frequency spectrum densitydistribution. With next process, sets of frequency spectrum density distribution areaveraged or multiplied together after normalized to obtain a maximum frequencypeak of1.04MHz. In the second method, the probability density distribution (PDF)of successive photons time-interval is derived, and in the experimental PDF curvewe achieve the beat frequencies of6MHz,8MHz,10MHz and12MHz. We give ananalysis of the upper limit of the frequency the method can derive, and point out thatthe upper frequency is not limited by the Nyquist criterion, and then the frequencyof80MHz is derived in the further experiment.
     (3) Based on the detailed analysis of the heterodyne laser detection system, wepoint out the source of noise and propose the solutions. The effect of the lasercoherent length on the heterodyne detection is investigated with the conclusion thatwhen the range of laser transmission is far larger than the laser coherent length, thepeak frequency in the frequency spectrum density distribution is broadened to about2times of the laser frequency line width. A relatively mature heterodyne detectionsystem is formed based on large number of research and experiment work.
     (4) Based on the optimized design system, we achieve the frequency spectrumidentification of moving point target which include the high-resolution real-timevelocity measurement of the harmonic motion and rotation, and achieve the successful detection experiment of cooperative target in the range of8.1km whichtest the effect of laser coherent length on laser heterodyne detection. We propose adetection scheme to improve the detection probability in which a modulation isconducted on the frequency of transmitted laser and local oscillation using thepseudo-random sequence code.
     (5) We analyze the model of the reflected laser signal frequency-spectrumbroadening for the quadric surface targets in rotation, and the theory is verified bythe experiment in which the rotating cone and cylinder is detected using scanningpoint by point, the frequency-spectrum broadening curve is in consistent with thetheory well. The rotating and vibrating targets are detected by point scanning, andthe two-dimensional space-frequency-spectrum image is formed which could beused to detect the target profile. The technique can identify the camouflage targetwhich the intensity image could not.
     In this paper, we achieve heterodyne detection with single photon counterwhich is an innovation in the detector; and give a comprehensive analysis of anumber of practical problems encountered in the heterodyne detection systemresulting in some optimization solutions for the impact factor; the frequencyspectrum identification and2D spectrum image is achieved. The paper provides adeep understanding of the laser heterodyne detection system by combination of thetheoretical analysis and experiment and provides some inference for the furtherstudy.
引文
[1] Vaughan John M, Kurt Over Steinvall, Christian Werner, et al. Coherent laserradar in europe [C]. In Proceedings of The IEEE,1996
    [2] Karlsson Christer J, Fredrik A. Olsson, Dietmar Letalick, et al. All-fibermultifunction continuous-wave coherent laser radar at1.55μm for range, speed,vibration, and wind measurements [J]. Appl Opt,2000,39(21):3718-3728
    [3] Hanson Frank, Mark Lasher. Coherent laser radar at3.6μm [J]. Appl Opt,2002,41(36):7689-7693
    [4] Gueguen Philippe, Veronique Jolivet, Clotaire Michel, et al. Comparison ofvelocimeter and coherent lidar measurements for building frequency assessment [J].Bull Earthquake Eng,2010,(8):327-338
    [5]周小林,孙东松,钟志庆,等.多普勒测风激光雷达研究进展[J].大气与环境光学学报,2007,2(3):161-168
    [6] Asaka Kimio, Takayuki Yanagisawa, Yoshihito Hirano.1.5-μm eye-safecoherent lidar system for wind velocity measurement [C]. In Proceeding of SPIE,2001
    [7] Dongsong Sun, Zhiqing Zhong, Jun Zhou, et al. Accuracy analysis of theFabry–Perot Etalon based Doppler wind lidar [J]. Optical Review,2005,12(5):409-414
    [8] Kameyama S, K. Asaka T. Ando, Y. Hirano, et al. Compact all-fiber pulsedcoherent doppler lidar sustem for wind sensing [J]. Appl Opt,2007,46(11):1953-1962
    [9] Koch Grady J, Jeffrey Y. Beyon, Bruce W. Barnes, et al. High-energy2μmDoppler lidar for wind measurements [J]. Optical Engineering,2007,46(11):116201:1-4
    [10] Lundqvist Stefan, Carl-Olof Falt, Ulf Persson, et al. Air pollution monitoringwith a Q-switched CO2-laser lidar using heterodyne detection [J]. Appl Opt,1981,20(14):2534-2538
    [11] Schultz K. L, S. Fisher. Ground-based laser radar measurements of satellitevabration [J]. Appl Opt,1992,31(36):7690-7695
    [12] Acharekar Madhu A, Philip Gatt, Lawrence J. Mizerka. Laser vibration sensor
    [C]. In SPIE's1995Symposium on OE/Aerospace Sensing and Dual Use Photonics,1995, International Society for Optics and Photonics
    [13] Schultz K. I, D. G. Kocher, J. A. Daley, et al. Satellite vibration measurementswith an autodyne CO2laser radar [J]. Appl Opt,1994,33(12):2349-2355
    [14] Greneker Gene, Jon Gersheimer, David Asbell, Extraction of micro-Dopplerdata from vehicle targets at x-band frequencies [C]. In Proceeding of SPIE,2001
    [15] Shang J. H, Y. He, D. Liu, et al. Laser Doppler vibrometer for real-timespeech-signal acquirement [J]. Chinese Optics Letters,2009,7(8):732-733
    [16] Lawrence Eric M, Kevin E. Speller, Duli Yu, et al. MEMS Characterizationusing Laser Doppler Vibrometry [C]. In Proceedings of SPIE,2003
    [17] Bankman Isaac. Analytical model of Doppler spectra of coherent lightbackscattered from rotating cones and cylinders [J]. J Opt Soc Am A, Opt Image SciVis,2000,17(3):465-76
    [18] Bankman Isaac. Model of Laser Radar Signatures of Ballistic MissileWarheads [J]. Proceeding of SPIE,1999,3699:133-137
    [19] Bankman Isaac, John W. Giles, Stephenc. Chan, et al. Model of lidarrange-Doppler signatures of solid rocket fuel plumes [C]. In Proceeding of SPIE,2004
    [20] Lutzmann Peter, R Frank, M Hebel, et al. Potential of remote laser vibrationsensing for military applications,2005, DTIC Document
    [21] Aranchuk Vyacheslav, James Stabtier, Alex Ekimov, et al. Standoff detection ofobscured vehicle with laser Doppler vibrometer [C]. In Detection and Sensing ofMines, Explosive Objects, and Obscured Targets XIV (Proc. of SPIE),2009
    [22] Lal Amit, Slava Aranchuk, Valentina Doushkina, et al. Advanced LDVinstruments for buried landmine detection [C]. In Detection and RemediationTechnologies for Mines and Minelike Targets XI (Proc. of SPIE),2006
    [23] Xiang Ning, James M. Sabatier. Moving Speed of Linear Acoustic LandmineDetection Systems [C]. In Proc. of SPIE,2005
    [24] Aranchuk Vyacheslav, Amit Lal, Cecil Hess, et al. Multi-beam laser Dopplervibrometer for landmine detection [J]. Optical Engineering,2006,45(10):104302:1-10
    [25] Lal Amit K, Hansheng Zhang, Vyacheslav Aranchuk, et al. Multiple-beamLDV System for Buried Landmine Detection [C]. In Detection and RemediationTechnologies for Mines and Minelike Targets VIII (Proc. of SPIE),2003
    [26] Strand Oliver T, Leon V. Berzins, David R. Goosman, et al. Velocimetry usingheterodyne techniques [C]. In Proc. of SPIE,2005
    [27] Gschwendtner Alfred B, William E. Keicher. Development of coherent laserradar at Lincoln Laboratory [J]. Lincoln Laboratory Journal,2000,12(2):383-396
    [28] Melngailis Ivars, William E. Keicher, Charles Freed, et al. Laser radarcomponent technology [J]. Proceedings of the IEEE,1996,84(2):227-267
    [29] Freed Charles. Ultrastable CO2lasers [J]. Lincoln Laboratory Journal,1990,3:479-500
    [30]朱大勇.远程多普勒激光雷达[J].红外与激光工程,1996,25(1):8-15
    [31] Hasson V, F. Corbett, M. Kovacs, et al. Acquisition, tracking and sizing ofsmall space objects [J]. High-Power Laser Ablation III,2000,4065:274-285
    [32] Mosley D. E, C. L. Matson, S. R. Czyzak. Active imaging of space objectsusing the HI-CLASS (High Performance CO2ladar surveillance sensor) laser system[J]. Laser Radar Technology And Applications II,1997,3065:52-60
    [33] Chou Hsian P, Richard S. Eng, Victor H. Hasson, et al. Advanced face-cooledacousto-optic modulator in a high-power, high-fidelity CO2laser transmitter [C]. inPhotonics West'96.1996. International Society for Optics and Photonics.
    [34] Mosley Debora E, Charles L. Matson, Stanley R. Czyzak. Applications of theHI-CLASS (high-performance CO2laser radar surveillance sensor) laser system foractive imaging of space objects [C]. In Aerospace/Defense Sensing and Controls,1998, International Society for Optics and Photonics
    [35] Corbett F, G. Nordstrom, M. Groden. Design considerations for amulti-channel, laser radar receiver/processor [J]. Gas And Chemical Lasers,1996,2702:140-153
    [36] Corbett F, M. Groden, G. Dryden, et al. The digital image processing systemfor a high powered CO2laser radar [J]. Applications Of Digital Image ProcessingXIX,1996,2847:35-57
    [37] Eng R. S, V. Hasson, B. C. Willman, et al. Extending spectral coverage of gaslasers using EO and AO modulators: Spectral purity issues [J]. Gas And ChemicalLasers,1996,2702:130-139
    [38] Hanes S. A, V. N. Benham, J. B. Lasche, et al. Field demonstration andcharacterization of a10.6micron reflection tomography imaging system [J].Atmospheric Propagation, Adaptive Systems, And Laser Radar Technology forRemote Sensing,2000,4167:230-241
    [39] Kovacs Mark A, Gordon L. Dryden, Victor H. Hasson, et al. The field ladardemonstration (HI-CLASS) program: a review of the phase2testing effort [C]. InPhotonics West'97,1997, International Society for Optics and Photonics
    [40] Kovacs M, S. Ghoshroy, V. Hasson, et al. The FLD (Field LADARdemonstration) system, algorithms, and Phase I Phase II test results [J]. Laser RadarTechnology And Applications,1996,2748:309-324
    [41] Kovacs M, G. Dryden, R. Pohle, et al. HI-CLASS on AEOS: A large aperturelaser radar for space surveillance/situational awareness investigations [J].Multifrequency Electronic/Photonic Devices And Systems for Dual-UseApplications,2001,4490:298-306
    [42] Hasson V, R. Wendt, S. Czyzak. Overview of the field ladar demonstrationprogram developing a high-resolution imaging and remote sensing [J]. Laser RadarTechnology And Applications,1996,2748:294-308
    [43] Kovacs Mark A, Subrata Ghoshroy, Victor H. Hasson, et al. Phase1high-performance CO2ladar surveillance sensor description and test results [C]. InPhotonics West'96,1996, International Society for Optics and Photonics
    [44] Konkola Paul, Charles Crandall, Tim Georges, et al. Pushing the envelope:HI-CLASS Range and Range-rate [C]. In The Advanced Maui Optical and SpaceSurveillance Technologies Conference,2006
    [45] Corbett F, M. Groden, G. Dryden, et al. Real-time image generation with apulsed coherent laser radar [J]. Laser Radar Technology And Applications II,1997,3065:42-51
    [46] Matson Charles L, Eric P Magee, David Stone. Reflective tomography forspace object imaging using a short-pulselength laser [C]. In SPIE's1994International Symposium on Optics, Imaging, and Instrumentation,1994,International Society for Optics and Photonics
    [47] Hasson V. Review of recent advancements in the development of compact highpower pulsed CO2laser radar systems [J]. Laser Radar Technology AndApplications IV,1999,3707:499-512
    [48] Eng Richard S, James F. Cunningham, Yu-Lin Wang, et al. Single-modefrequency-agile9-11um CO2laser local oscillator [C]. In Photonics West'97,1997,International Society for Optics and Photonics
    [49] Campbell J. STARSAT: A joint NASA/AF project for laser calibration of smallobjects in space [J]. High-Power Laser Ablation IV, Pts1And2,2002,4760:821-832
    [50] Ghoshroy S, J. Dimercurio, R. S. Eng, et al. Status report of an airborne CO2transceiver for remote sensing employing direct and coherent detection [J]. LaserRadar Technology And Applications,1996,2748:189-200
    [51] Youmans D. G, W. J. Schafer, F. Corbett, et al. Theoretical and monte carloanalyses of the range-Doppler imaging capabilities of mode-locked CO2ladars [J].Gas And Chemical Lasers,1996,2702:40-51
    [52] Hasson V, F. Corbett, M. Kovacs, et al. Use of laser radar for small spaceobject experiments [J]. Imaging Technology And Telescopes,2000,4091:363-374
    [53] Herr David, Don Ruffatto, Clyde Shiraki, et al. Airborne Intercept Monitoring,2006, DTIC Document
    [54] Ashcom Jonathan, Sumanth Kaushik, Richard Heinrichs. Coherent Detectionwith Arrays of Photon-Counting Detectors [C]. In Coherent Optical Technologiesand Applications.2006, Optical Society of America
    [55] Luu Jane X, Leaf A. Jiang. Coherent photon counting ladar [J]. OSA/COTA,2006
    [56] Jiang L. A, J. X. Luu. Heterodyne detection with a weak local oscillator [J].Appl Opt,2008,47(10):1486-503
    [57] Luu J. X, L. A. Jiang. Saturation effects in heterodyne detection withGeiger-mode InGaAs avalanche photodiode detector arrays [J]. Applied Optics,2006,45(16):3798-3804
    [58] Jurna M, E. Buttner, J. Korterik, et al. Shot noise limited heterodyne detectionof CARS signals [C]. In Biomedical Optics (BiOS)2008,2008, InternationalSociety for Optics and Photonics
    [59] Jiang Leaf A, Jane X Luu. Turbulence Mitigation for Coherent Ladar usingPhoton Counting Detector Arrays [C]. In Coherent Optical Technologies andApplications.2006, Optical Society of America
    [60] Cohen S. C. Heterodyne Detection-Phase Front Alignment, Beam Spot Size,And Detector Uniformity [J]. Applied Optics,1975,14(8):1953-1959
    [61] Takenaka Takashi, Kazumasa Tanaka, Otozo Fukumitsu. Signal-to-noise ratioin optical heterodyne detection for Gaussian fields [J]. Appl Opt,1978,17(21):3466-3471
    [62] Foord R, R. Jones, J. M. Vaughan, et al. Precise comparison of experimentaland theoretical SNRs in CO2laser heterodyne systems [J]. Appl Opt,1983,22(23):3787-3795
    [63] Frehlich R. G. Heterodyne Efficiency for a Coherent Laser Radar with Diffuseor Aerosol Targets [J]. Journal of Modern Optics,1994,41(11):2115-2129
    [64] Holmes J. Fred, Badih J. Rask. Optimum optical local-oscillator power levelfor coherent detection with photodiodes [J]. Appl Opt,1996,34(8):927-933
    [65] Salem M, J. P. Rolland. Heterodyne efficiency of a detection system forpartially coherent beams [J]. J Opt Soc Am A, Opt Image Sci Vis,2010,27(5):1111-1119
    [66] Wei Guo, Jian Zhou, Xingwu Long. Analysis of signal-to-noise ratio andheterodyne efficiency for reference-beam laser Doppler velocimeter [J]. Optics&Laser Technology,2012,44:108-113
    [67] Chambers Diana M. Modeling of heterodyne efficiency for coherent laserradar in the presence of aberrations [J]. Opt Express,1997,1(3):60-67
    [68]左保军,张爱红.激光外差探测系统光学参量的确定[J].哈尔滨工业大学学报,2001,33(5):655-657
    [69]徐静,毛红敏,甄胜来,等.大气湍流引起激光外差探测空间相干性退化研究[J].激光与红外,2007,37(12):1245-1249
    [70] Salem Mohamed, Jannick P. Rolland. Effects of coherence and polarizationchanges on the heterodyne detection of stochastic beams propagating in free space[J]. Optics Communications,2008,281:5083-5091
    [71] Mercer Linden B.1/f Frequency Noise Effects on Self-Heterodyne LinewidthMeasurements [J]. Journal of Lightwave Technology,1991,9(4):485-493
    [72]鞠有伦,王振国,王磊,等.2μm单纵模激光频率短期不稳定度的测量[J].光学学报,2008,28(11):2164-2168
    [73] Hinkley Ed, Charles Freed. Direct observation of the Lorentzian line shape aslimited by quantum phase noise in a laser above threshold [J]. Physical ReviewLetters,1969,23(6):277-280
    [74] Hanneludvigsen, Mikatossavainen, Mattikaivola. Laser linewidthmeasurements using self-homodyne detection with short delay [J]. OpticsCommunications,1998,155:180-186
    [75] Richter L. E, H. I. Mandelberg, M. S. Kruger, et al. Linewidth Determinationfrom Self-Heterodyne Measurements with Subcoherence Delay Times [J]. IEEE,1986, QE-22(11):2070-2074
    [76] Ryu S, S. Yamamoto. Measurement of direct frequency modulationcharacterisitics of DFB-LD by delayed self-homodyne technique [J]. ElectronicsLetters,1986,22(20):1052-1054
    [77] Okoshi T, K. Kikuchi, A. Nakayama. Novel method for high resolutionmeasurement of laser output spectrum [J]. Electronics Letters,1980,16(16):630-631
    [78] Horak Peter, Wei H. Loh. On the delayed self-heterodyne interferometrictechnique for determining the linewidth of fiber lasers [J]. Opt Express,2006,14(9):3923-3928
    [79] Tsuchida Hidemi. Simple technique for improving the resolution of thedelayed self-heterodyne method [J]. Opt Lett,1990,15(11):640-642
    [80]贾豫东,欧攀,杨远洪,等.短光纤延时自外差法测量窄线宽激光器线宽[J].北京航空航天大学学报,2008,34(5):568-571
    [81]肖华菊,王翔,马云,等.基于DSHI的窄线宽光纤激光器线宽测量[J].光电工程,2010.37(8):57-61
    [82]王劲文,董小鹏,周金龙.基于延时零拍法的DFB光纤激光器线宽测量[J].厦门大学学报,2007,46(3):322-325
    [83]彭雪峰,马秀荣,张双根,等.两台独立激光器拍频线型对线宽测量的影响[J].中国激光,2011,38(4):0408001:1-4
    [84]曹翔科,何耀,张蓉竹.两种不同类型独立激光器的拍频实验[J].中国激光,2009,36(2):285-289
    [85]史寒星,吴轶.延时自外差测谱系统的基本要求[J].北京邮电大学学报,1997,20(2):55-60
    [86]俞本立,钱景仁,杨瀛海,等.窄线宽激光的零拍测量法[J].中国激光,2001, A28(4):351-354
    [87] Stipcevic M. Active quenching circuit for single-photon detection with Geigermode avalanche photodiodes [J]. Appl Opt,2009,48(9):1705-1714
    [88] Musienko Yuri. Advances in multipixel Geiger-mode avalanche photodiodes(silicon photomultiplies)[J]. Nuclear Instruments and Methods in Physics ResearchSection A: Accelerators, Spectrometers, Detectors and Associated Equipment,2009,598(1):213-216
    [89] Marino Richard M, Timothy Stephens, Robert E Hatch, et al. A compact3Dimaging laser radar system using Geiger-mode APD arrays: system andmeasurements [C]. In AeroSense2003,2003, International Society for Optics andPhotonics.
    [90] Bingham S. J, B. Borger, D. Suter. The design and sensitivity of microwavefrequency optical heterodyne receivers [J]. Review of Scientific Instruments,1998,69(9):3403-3409
    [91] Gatt P, S. Johnson, T. Nichols. Geiger-mode avalanche photodiode ladarreceiver performance characteristics and detection statistics [J]. Appl Opt,2009,48(17):3261-3276
    [92] Renker D. Geiger-mode avalanche photodiodes, history, properties andproblems [J]. Nuclear Instruments&Methods in Physics Research Sectiona-Accelerators Spectrometers Detectors and Associated Equipment,2006,567(1):48-56
    [93] Akiba M, K. Tsujino, K. Sato, et al. Multipixel silicon avalanche photodiodewith ultralow dark count rate at liquid nitrogen temperature [J]. Optics Express,2009,17(19):16885-16897
    [94] Golovin V, Valeri Saveliev. Novel type of avalanche photodetector with Geigermode operation [J]. Nuclear Instruments and Methods in Physics Research SectionA: Accelerators, Spectrometers, Detectors and Associated Equipment,2004,518(1):560-564
    [95] Akiba M, K. Inagaki, K. Tsujino. Photon number resolving SiPM detectorwith1GHz count rate [J]. Optics express,2012,20(3):2779-2788
    [96] Jiang Leaf A, Eric A. Dauler, Joshua T. Chang. Photon-number-resolvingdetector with10bits of resolution [J]. Physical Review A,2007,75(062325):1-5
    [97] Albota Marius A, Brian F. Aull, Daniel G. Fouche, et al. Three-dimensionalimaging laser radars with Geiger-mode avalanche photodiode arrays [J]. LincolnLaboratory Journal,2002,13(2):351-370
    [98] Vyas R, S. Singh. Photon-counting statistics of the degenerate opticalparametric oscillator [J]. Phys Rev A,1989,40(9):5147-5159
    [99] Vyas R, S. Singh. Quantum statistics of broadband squeezed light [J]. Opt Lett,1989,14(20):1110-2
    [100] Vyas R, S. Singh. Waiting-time distributions in the photodetection of squeezedlight [J]. Phys Rev A,1988,38(5):2423-2430
    [101] Carmichael H. J, S. Singh, R. Vyas, et al. Photoelectron Waiting-Times AndAtomic State Reduction In Resonance Fluorescence [J]. Physical Review A,1989,39(3):1200-1218
    [102] Calleja J, S. Jarabo, Ma Rebolledo. Study of different photon statisticstechniques, based on time-interval measurement, applied to fluorescence decayspectroscopy [J]. Applied spectroscopy,1993,47(8):1251-1255
    [103] Wheatland M. S, P. A. Sturrock, J. M. Mctiernan. The waiting-timedistribution of solar flare hard X-ray bursts [J]. Astrophysical Journal,1998,509(1):448-455
    [104] Laurence T. A, A. N. Kapanidis, X. X. Kong, et al. Photon arrival-time intervaldistribution (PAID): A novel tool for analyzing molecular interactions [J]. Journal ofPhysical Chemistry B,2004,108(9):3051-3067
    [105]吴永华,胡以华,戴定川,等.基于1.5μm多普勒激光雷达的飞机尾涡探测技术研究[J].光子学报,2011,40(6):811-817
    [106] Favreau X, A. Delaval, P. H. Flamant, et al. Four-Element Receiver for Pulsed10-mum Heterodyne Doppler Lidar [J]. Appl Opt,2000.39(15):2441-2448
    [107] Totems J, V. Jolivet, J. P. Ovarlez, et al. Advanced signal processing methodsfor pulsed laser vibrometry [J]. Appl Opt,2010,49(20):3967-3979
    [108] Ruck Brendan, Harvey Lewis, Andrew M Rogoyski, et al. Demodulationschemes for vibrometers and associated effects on target classification [C]. InAerospace/Defense Sensing and Controls,1998, International Society for Optics andPhotonics
    [109] Cole Timothy D, Ashruf S. El-Dinary. Estimation of target vibration spectrafrom laser radar backscatter using time-frequency distributions [C]. In OpticalEngineering and Photonics in Aerospace Sensing,1993, International Society forOptics and Photonics
    [110] Sabatier James M, Richard Burgett, Vyacheslav Aranchuk. High FrequencyA/S Coupling for AP Buried Landmine Detection using Laser Doppler Vibrometers
    [C]. In Proceedings of SPIE,2004, Bellingham
    [111] Xiang Ning, James M. Sabatier. Laser Doppler Vibrometer-Based AcousticLandmine Detection Using the Fast M-Sequence Transform [J]. Ieee Geoscience andRemote Sensing Letters,2004,1(4):292-294
    [112] Millnert Mille C, Christina Carlsson, Christer Karlsson, et al. Robust coherentlaser radar design and signal processing for vibrometry [C]. In Aerospace/DefenseSensing and Controls,1996, International Society for Optics and Photonics
    [113] Petculescu Andi G, James M. Sabatier. Doppler Ultrasound Techniques forLandmine Detection [J]. Proc. of SPIE,2004,5414:30-35
    [114] J. Waymond R. Scott, James S. Martin. Experimental investigation of theacousto-electromagnetic sensor for locating land mines [J]. Proc. of SPIE,1999,371:01-11
    [115] Sabatier James M, Ning Xiang. An investigation of acoustic-to-seismiccoupling to detect buried antitank landmines [J]. IEEE Transactions on Aerospaceand Electronic Systerms,2001,39(6):1146-1154
    [116] Sabatier James M, Vyacheslav Aranchuk, W. C. Kirkpatrick Alberts. Rapidhigh-spatial-resolution imaging of buried landmines using ESPI [C]. In Detectionand Remediation Technologies for Mines and Minelike Targets IX (Proc. of SPIE),2004
    [117] Lal Amit K, Cecil F. Hess, Hansheng Zhang, et al. Whole-field laservibrometer for buried landmine detection [C]. In Proceeding of SPIE,2002
    [118] Scott Waymond R, Gregg D. Larson, James S. Martin, et al. Field testing anddevelopment of a seismic landmine detection system [C]. In Proceedings of SPIE,2003
    [119]丁红胜,童莉葛,潘礼庆,等.用激光外差干涉仪探测金属表面超声振动的实验设计[J].物理实验,2004,24(2):16-19
    [120]李醒飞,王驰,向红标,等.光学外差干涉法检测微弱超声振动[J].光学精密工程,2008,16(7):1158-1162
    [121]江飞虹,王学勤,原帅.激光微多普勒效应探测系统[J].大气与环境光学学报,2008,3(3):199-202
    [122] G. Youmans. Douglas. Target spectral estimation using direct detection andcoherent detection ladar [J]. Proceeding of SPIE,2005,5791:97-108
    [123] Yan-Jun Gong, Wu Zhen-Sen, Wu Jia-Ji. Analytical Model of Doppler Spectraof Light Backscattered from Rotating Convex Bodies of Revolution in the GlobalCartesian Coordinate System [J]. Chin. Phys. Lett.,2009,26(2):1-5
    [124] Gong Yanjun, Zhensen Wu, Mingjun Wang, et al. Laser backscatteringanalytical model of Doppler power spectra about rotating convex quadric bodies ofrevolution [J]. Optics and Lasers in Engineering,2010,48:107-113
    [125]宫彦军,吴振森.转动圆柱和圆锥的激光距离多普勒像分析模型[J].物理学报,2009,58(9):6227-6235
    [126] Zhengjun Liu, Li Qi, Wang Qi. Coherent LADAR Range Image for TargetRecognition Using Back-propagation Neural Network [J]. IEEE,2010,224-227
    [127] Yang Fu, Yan He, Jianhua Shang, et al. Experimental study on the1550nm allfiber heterodyne laser range finder [J]. Appl Opt,2009,48(34):6575-6582
    [128]田兆硕,王琪,王春晖,等.脉冲相干激光雷达测距信号研究[J].光学学报,2002,22(9):1081-1083
    [129] Pfau T, S. Hoffmann, O. Adamczyk, et al. Coherent optical communicationTowards realtime systems at40Gbit/s and beyond [J]. Opt Express,2008,16(2):866-872
    [130] Okoshi Takanori. Heterodyne and coherent optical fiber communications:recent progress [J]. Microwave Theory and Techniques, IEEE Transactions on,1982,30(8):1138-1149
    [131] Fried D. L, J. B. Seidman. Heterodyne and photon-counting receivers foroptical communications [J]. Appl Opt,1967,6(2):245-250
    [132] Favre F, D. Le Guen. High frequency stability of laser diode for heterodynecommunication systems [J]. Electronics Letters,1980,16(18):709-710
    [133] Okoshi Takanori. Ultimate performance of heterodyne/coherent optical fibercommunications [J]. Lightwave Technology, Journal of,1986,4(10):1556-1562
    [134]贺岩,王文奎,夏文兵,等.激光多普勒振动计用于水下声光通信[J].中国激光,2007,34(5):703-706
    [135]贺岩,尚建华,刘丹,等.用于水下声光通信的外差式激光多普勒振动计[J].中国激光,2009,36(1):189-192
    [136] Youmans Douglas G. Coherent ladar imaging of the SEASAT satelliteretro-reflector array using linear-FM chirp waveforms and pulse-compression [C]. InDefense and Security Symposium,2007, International Society for Optics andPhotonics.
    [137] Camp William W, Joseph T. Mayhan, Robert M. O'donnell. Wideband radarfor ballistic missile defense and range-Doppler imaging of satellites [J]. LincolnLaboratory Journal,2000,12(2):267-280
    [138]王明军,吴振森,李应乐,等.激光雷达距离高分辨多普勒成像技术研究进展及关键技术[J].激光与红外,2009,39(5):464-467
    [139]姚进斌,王明军,吴振森,等.空间探测激光距离多普勒雷达系统原理设计[J].红外与激光工程,2006,35(4):445-448
    [140]张升康,宋岳鹏,杨汝良.双基地合成孔径雷达扩展距离多普勒成像算法[J].测试技术学报,2007,21(5):440-445
    [141]杨海亮,张森,唐劲松,等.一种精确的多接收阵合成孔径声纳距离多普勒成像算法[J].数据采集与处理,2010,25(003):313-317
    [142] Schmidt Jason D. Numerical Simulation of Optical Wave Propagation [M].Bellingham, Washington USA: SPIE Press,2010
    [143] Voelz David. Computational Fourier Optics [M]. Bellingham, WashingtonUSA: SPIE Press,2010
    [144] Osche Gregory R. Optical detection theory for laser applications [M].Hoboken, N.J.: Wiley-Interscience,2002
    [145] Goodman Joseph W. Statistical optics [M]. New York: Wiley,2000
    [146] Mandel Leonard,Emil Wolf. Optical coherence and quantum optics [M].Cambridge; New York: Cambridge University Press,1995
    [147] Dierking Matthew P, Bradley D. Duncan. Perodic pseudonoise waveforms formutifunction coherent ladar [J]. Appl Opt,2010,49(10):1908-1922
    [148] Asaka' Kimio, Yoshihito Hirano, Kenji Tatsumi, et al. A Pseudo-RandomFrequency Modulation Continuous Wave Coherent Lidar Using an Optical FieldCorrelation Detection Method [J]. Optical Review,1998,5(5):310-314
    [149] Matthey Renaud, Valentin Mitev. Pseudo-random noise-continuous-wave laserradar for surface and cloud measurements [J]. Optics and Lasers in Engineering,2005,43:557-571
    [150]肖弟权,何建新,邱万智.伪随机码调制的CW半导体激光雷达试制报告[J].成都气象学院学报,1993,27(4):21-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700