白钨矿与含钙脉石矿物浮选分离抑制剂的性能与作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白钨矿与含钙脉石矿物的浮选分离一直是选矿工作者研究的热点,其难点在于矿物的晶体性质、物理化学性质等相似,浮选过程中彼此间相互干扰,且可浮性相近,这就需要在浮选过程中强化白钨矿的选择性捕收,同时强化对含钙脉石矿物的选择性抑制。
     论文借助单矿物浮选试验,以及动电位、红外光谱、X射线光电子能谱等表面测试技术,系统研究了不同抑制剂对白钨矿、萤石和方解石浮选的抑制性能及与矿物间的作用机理;同时借助量子化学及能带理论,计算分析了三种矿物的结构,以及矿物与水和抑制剂间的作用机理,研究的主要内容如下:
     通过单矿物浮选试验,研究了硅酸钠、硅胶、硅酸钠与硅胶组合抑制剂对白钨矿、萤石和方解石浮选行为的影响。油酸钠和731作捕收剂、pH=9.7~10.3时,采用硅酸钠与硅胶组合抑制剂,硅胶比例的增加对白钨矿、萤石和方解石的浮选行为的影响很小。组合抑制剂的最佳浓度为2.5g/L,且三种矿物浮选回收率的大小顺序为白钨矿>方解石>萤石;采用单一硅酸钠为抑制剂时,硅酸钠对白钨矿、萤石和方解石浮选的影响规律基本一致。731浓度为75mg/L、pH=9.7~10.3时,Al3+、Pb2+、K+、Ca2+等四种金属离子均能增强硅酸钠的抑制能力。相对于白钨矿:方解石=1:1混合矿,硅酸钠更易于实现白钨矿:萤石=1:1混合矿的浮选分离;对白钨矿:萤石:方解石=1:1:1的三元混合矿有一定的分选性。
     有机抑制剂对白钨矿、萤石和方解石浮选选择性抑制能力大小顺序为:大分子量聚丙烯酸钠>柠檬酸>栲胶>淀粉。油酸钠浓度为5×104mol/L、pH=8.7~9.3时,PA-Na-2对三种矿物的浮选分离的选择性抑制效果最好,最佳浓度为37.5mg/L。
     731浓度为75mg/L、pH=8.7~9.3时,PA-Na-2和PA-Na-3对萤石和方解石的抑制能力很强,二者的回收率均低于20%,而白钨矿的回收率保持在70%左右。PA-Na-2和PA-Na-3均可能实现白钨矿与萤石、方解石浮选分离,且最佳浓度范围分别为37.5~50mg/L和22.5~30mg/L;在PA-Na-2作用下,金属离子Pb2+能促进白钨矿在弱碱性条件下的浮选,提高二元及三元混合矿浮选分离的选择性。
     白钨矿、萤石和方解石与药剂作用前后红外光谱图的变化表明:硅酸钠基团中的Si-O键振动使得白钨矿、萤石和方解石的特征峰均发生了位移,说明硅酸钠在三种矿物表面均发生了吸附;与聚丙烯酸钠作用后,白钨矿、萤石和方解石表面均出现了羧酸根(COO-)的反对称振动的特征峰和对称振动吸收峰,由此可见,聚丙烯酸钠在三种矿物表面发生了化学吸附。
     动电位研究表明,硅酸钠和聚丙烯酸钠对白钨矿表面电位的影响较小,而萤石和方解石的表面电位负移程度均较大。两种抑制剂作用下,矿物表面电位负移程度强弱顺序分别为:萤石>方解石>白钨矿、萤石≈方解石>白钨矿,这与矿物的浮选行为一致。
     X射线光电子能谱分析表明,硅酸钠和聚丙烯酸钠与矿物作用后,矿物表面的Ca2p结合能均向高能方向位移,大小顺序均为方解石>萤石>白钨矿,硅酸钠和聚丙烯酸钠在白钨矿表面的作用均最弱。说明硅酸钠和聚丙烯酸钠在三种矿物表面均发生了吸附,且在萤石和方解石表面的吸附强于白钨矿。
     通过矿物的量子化学计算及矿物与水和聚丙烯酸钠作用的能量计算,水溶液中聚丙烯酸钠在与三种矿物表面作用的吸附能的绝对值大小分别为萤石(293.29eV)>方解石(178.54eV)>白钨矿(133.57eV),与聚丙烯酸钠对三种矿物浮选的抑制能力强弱顺序一致。
     在处理江西某白钨选矿厂预先脱硫后的产品(含WO30.55%)时,粗选选用硅酸钠做抑制剂,经一粗五精(二次空白精选后精矿浓缩至50%,添加6000g/t硅酸钠并强搅拌45min)三扫的浮选开路流程,可获得浮选精矿含WO357.93%、回收率62%的指标。当粗选抑制剂为聚丙烯酸钠时,采用一粗六精(二次空白精选后精矿浓缩至50%,添加6000g/t硅酸钠并强搅拌45min)三扫的浮选开路流程,浮选精矿含W0353.06%,回收率52.75%。
The flotation separation of scheelite from fluorite and calcite is one of the interesting issues in the field of minerals processing. The separating difficulty of scheelite from fluorite and calcite is that the similar flotability of these minerals due to the similar crystal and surface chemical properties, therefore, it is necessary to strength the selective collecting of sheelite and the selective depressing of calcareous gangue minerals in the flotation prcess.
     The depressing behaviors and reaction mechanisms of different depressants on the flotation of scheelite, fluorite and calcite have been investigated by means of flotation test, zeta potential measurement, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. In order to reveal the microscopic mechanisms between depressants and minerals, the structure of minerals and the interaction between minerals and depressants have also been studied using the Quantum Chemistry and Band Theory. The major contents of this study are as follows:
     The depressing behaviors of sodium silicate, silica gel and the combined depressant of sodium silicate and silica gel on the flotation of scheelite, fluorite and calcite have been investigated by micro-flotation. In the presence of sodium oleate or731, the depressing effect can not be enhanced with increasing the dosage of silica gel in combined depressant for separating sheetite from fluorite and calcite by flotation within the pH range of9.7to10.3, and the optimum dosage of combined depressant is2.5g/L. The flotation recovery of three minerals changes according to the order:scheelite>calcite>fluorite while using combined depressant. In the presences of75mg/L731, the depressing effect of sodium silicate on the flotation of minerals can be strengthed with the addition of Al3+, Pb2+, K+and Ca2+over the pH range from9.7to10.3. The flotation separation of scheelite from artificial mixtures which composed with50%scheelite and50%calcite is easier than that from artificial mixtures which composed with50%scheelite and50%fluorite. The flotation separation of artificial mixtures composed with sheelite, calcite and fluorite had also shown some selectivity.
     The selective depressing effect of organic depressants on minerals falls in the following order:sodium poly acry late>citric acid>tannin extract>starch. The scheelite can be separated efficiently from fluorite and calcite by flotation in the pH range from8.7to9.3using5×10-4mol/L sodium oleate as collector and37.5mg/L PA-Na-2as depressant.
     Using75mg/L731as collector, fluorite and calcite can be depressed effectively by PA-Na-2and PA-Na-3in the pH range from8.7to9.3, and the flotation recoveries of these two minerals are below20%, while the flotation recovery of scheelite remaines at about70%. The optimum concentration of PA-Na-2and PA-Na-3for the flotation separation of scheelite from fluorite and calcite is37.5-50.0mg/L and22.5-30.0mg/L respectively. Pb2+can activate the floatability of scheelite in weak alkaline conditions when PA-Na-2is used as depressant, and then the flotation separating selectivity of the artificial mixtures can be improved.
     The FTIR spectra of minerals treated with sodium silicate were studied. The characteristic peaks of minerals shifted a little wavenumbers due to the stretching vibration of Si-O from sodium silicate, and it shows that sodium silicate adsorbed on three mineral surface. New antisymmetric vibration characteristic peaks and symmetric vibration absorption peaks of COO-were observed on the mineral surface after the reaction with sodium polyacrylate, and it indicates that sodium polyacrylate is bound to the three mineral surface by chemical adsorption.
     The results of zeta potential measurements show that the zeta potentials of scheelite shift negatively a little, however, the zeta potentials of fluorite and calcite shift to more negative values in the presence of sodium silicate and sodium polyacrylate. The zeta potentials shift negatively abide by the order:fluorite>calcite>scheelite with the adding of sodium silicate, and the order:fluorite≈calcite>scheelite with the adding of sodium polyacrylate, and these results are corresponding with the results of miroc flotation tests.
     The XPS measurments show that Ca2p binding energy of minerals surface move to the direction of high energy in the following order: calcite>fluorite> scheelite. It indicates that sodium silicate and sodium polyacrylate all adsorb on the surface of scheelite, fluorite and calcite, but the adsorption on the surface of scheelite is the weakest.
     The quantum chemical simulation indicates that the absolute value of adsorption energy abided by the oreder:fluorite (293.29eV)> calcite (178.54eV)> scheelite (133.57eV) when sodium polyacrylate adsorbs on the three mineral's surface in aqueous solution. These results are consistent with the results of micro-flotation experiments.
     Batch flotation tests have been conducted for Jiangxi scheelite ore (WO30.55%) with pre-desulfurization. By adopting a circuit with one stage rougher flotation, five stages of cleaner and three stages of scavenger, the scheelite concentrate was produced with the grade of57.93%WO3and the recovery of62%WO3while using Na2SiO3as rough floatation depressant. When the depressant PA-Na-2was used for rough floatation, the result shows that the WO3grade of scheelite concentrate is53.06%and the recovery of WO3is52.75%by adopting a circuit with one stage rougher flotation, six stages of cleaner and three stages of scavenger. For both batch tests, the concentrate after the twice blank cleaning was condensed to50%wt, and stirred strongly for45min with the addition of6000g/t Na2SiO3.
引文
[1]蔡改贫,吴叶彬,陈少平.世界钨矿资源浅析[J].世界有色金属,2009,(4):62-65.
    [2]戚开静,王斌,郑勇军,等.近10年中国钨矿资源开发利用国际比较及建议[J].资源与产业,2009,11(3):59-62.
    [3]孔昭庆.中国钨矿业资源现状与可持续发展[J].中国矿业,2001,10(1):29-31.
    [4]殷俐娟.我国钨资源现状与政策效应[J].中国矿业,2009,18(11):1-3.
    [5]张逸静.中国钨产业分析与储备机制研究[D].北京:北京化工大学,2005:8-25.
    [6]李俊萌.中国钨矿资源浅析[J].中国钨业,2009,24(6):9-13.
    [7]杨易琳.中国钨业发展战略[J].中国有色金属,2009,(13):56-57.
    [8]杨祖念.电化学技术制备白钨矿晶态薄膜的生长动力学研究[D].成都:四川大学,2006:15-17.
    [9]王步国,施尔畏,仲维卓,等.钨酸盐晶体中负离子配位多面体的结晶方位与晶体的形形貌[J].无机材料学报,1998,13(5):648-653.
    [10]张明荣,李倍俊,胡关钦,等.白钨矿结构的钨、钼酸盐晶体的光吸收边及其起因[J].光学学报,1998,18(11):1591-1595.
    [11]Llaby A, Llaby M. A D ictionary of Earth Science[J].Ox ford:Oxford University Press,1999.
    [12]王璞,潘兆橹,翁玲宝.系统矿物学(下册)[M].北京:地质出版社,1987.
    [13]高志勇,孙伟,刘晓文,等.白钨矿和方解石晶面的断裂键差异及其对矿物解离性质和表面性质的影响[J].矿物学报,2010,30(4):470-475.
    [14]Gratz A J,Hillner P E,Hansmaet P K,et al. Step dynamics and spiral growth on calcite[J]. Geochimica et Cosmochimica Acta,l993,57(2):491-495.
    [15]Cooper T QLeeuw N H.A combined adinitio and atomistic simulation study of the surface and interfacial structures and energies of hydrated scheelite: Introducing a CaWO4 potentialmodel[J].Surface Science,2003,531:159-176.
    [16]Leeuw N H,Parker S C.Atomistic simulation of the effect of molecular adsorpti-on of water on the surface structure and energies of calcite surfaces[J].J Chem Soc,Faraday Trans,1997,93(3):467-475.
    [17]Tttlloye J O,Leeuw N H,Parker S C.Atomistic simulation of the difference betw-een calcite and dolomite surfaces[J].Geochimicaet Cosmochimica Ac ta,1998,62(15):2637-2641.
    [18]Ronald P C,Neil C S.The calcite cleavage surface in water.Early results of a crystal truncation rod study[J].Geochimica et Cosmochimica Acta,1995,59(21): 4557-4561.
    [19]胡为柏.浮选[M].北京:冶金工业出版社,1983:9-43.
    [20]Mogilevsky P, Parthasarathy T A, Petry M D.Anisotropy in room temperature microhardness and fracture of CaWO4 scheelite[J].Acta Materialia,2004,(52): 5529-5537.
    [21]Somasundaran. P等.浮选溶液化学[J].国外金属矿选矿,1990,(11):1-8.
    [22]高玉德,邱显扬,冯其明.苯甲羟肟酸捕收白钨矿浮选溶液化学研究[J].有色金属(选矿部分),2003,(4):28-31.
    [23]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:209-215.
    [24]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005:211.
    [25]石伟,黄国智.萤石和方解石的溶解特性及浮选分离研究[J].非金属矿,2000,23(4):11-12.
    [26]张治元,王博,傅景海.矿物表面的相互转化对盐类矿物共存体系浮选的影响[J].金属矿山,1995,(4):38-41.
    [27]Miller J D.In "Principles of Mineral Flotation", The Wark Symposium, ed. By M.H. Jones and J.T[J]. Woodcock,1984:31-42.
    [28]Nordstrom D K, Plummcr L N, Langmuir E, et al. Revised chemical equilibrium data for major water-mineral reactions and their liminations. Chemical Modeling of Aqueous SystemⅡ [J]. Ameriean Chemical Soeiety Symposium Series,1990:398-413.
    [29]张治元,王博.共存体系中矿物表面的相互转化[J].西部探矿工程,1994,6(6):9-11.
    [30]张治元,王博.盐类矿物浮选中矿物的溶解与转化[J].江西有色金属,1997,11(3):20-23.
    [31]胡岳华.溶液化学计算及图形解法与盐类矿物浮选行为研究[D].长沙:中南工业大学,1989:52-58.
    [32]Tungsten.Proceding of the First InternationalTungsten Symposium Stockholm[M].1979.
    [33]王豫新,崔国际.钨(上册)[M].江西有色冶金研究所,1979:7.
    [34]毕承思.中国矽卡岩型白钨矿矿床成矿基本地质特征[J].中国地质科学院院报,1987,(17):49-64.
    [35]谭筱虹,李志均,杜再飞.滇东南南温河地区深变质岩中似层状白钨矿[J].云南地质,2010,29(4):382-387.
    [36]孙延绵.论我国白钨矿资源现状及其开发利用[C].中国有色金属学会第五届学术年会论文集,矿业研究与开发,2003,(08):69-72.
    [37]杨晓峰,刘全军.我国白钨矿的资源分布及选矿的现状和进展[J].矿业快报,2008,24(4):6-9.
    [38]谢光,吴威孙,刘广泌.选矿手册(第八卷第二册)[M].北京:冶金工业出版杜,1990:23-36.
    [39]安占涛,罗小娟.钨选矿工艺及其进展[J].矿业工程,2005,5(3):29-30.
    [40]张忠汉,张先华,叶志平.难选白钨矿重—浮选矿新工艺的研究[J].广东有色金属学报,2001,11(2):79-83.
    [41]孙伟,胡岳华,覃文庆,等.钨矿回收工艺研究进展[J].矿产保护与利用,2000,(1):43-46.
    [42]林海清.近20年来我国钨选矿技术的进展[J].中国钨业,2001,16(5/6):72-73.
    [43]魏庆玉.白钨的化学选矿[J].中国钨业,2000,15(4):27.
    [44]李豫学,邓芳超.国外钨选矿厂[J].中国选矿科技情报网,1984.4.
    [45]陈立新.近年钨的发展动向[J].江西有色冶金研究所情报室,1981.8.
    [46]周怒安.国外钨选厂[J].长沙有色设计研究院,1981.4.
    [47]冯其明.柿竹园多金属矿资源综合利用研究报告[R].长沙:中南工业大学,1993:12.
    [48]Barry A Wills,Tim Napier Munn.Mineral Processing Technology[M].Elsevier Science&Technology Books,2006:223.
    [49]胡岳华,冯其明.矿物资源加工技术与设备[M].北京:科学出版社,2006:79-134.
    [50]张忠汉,张先华,周晓彤.难选白钨矿石选矿新工艺流程研究[J].矿冶,2002,11(B07):181-184.
    [51]张忠汉,张先华,林日孝,等.难选白钨矿选矿新工艺的研究[J].广东有色金属学报,2000,10(2):84-87.
    [52]邹霓,郑承美,周德盛.柿竹园矿粗粒钨选矿新工艺研究[J].矿产综合利用,1997,(1):4-7.
    [53]Srivastava J P,Pathak P N. Pre-concentration:a necessary step for upgrading tungsten ore[J]. International Journal of Mineral Processing,2000,60(1):1-8.
    [54]章国权,戴惠新.云南某白钨矿重选试验研究[J].中国钨业,2008,23(5):23-25.
    [55]许德明.浮选尾矿重选回收钨矿工艺[J].有色矿山,1994,(6):48-52.
    [56]邓丽红,周晓彤.从原次生细泥中回收黑白钨矿的选矿工艺研究[J].金属矿山,2008,389(11):148-151.
    [57]陈家镛.湿法冶金手册[M].北京:冶金工业出版社,2005:873-905.
    [58]Li Honggui,Sun Peimei,Li Yunjiao,et al.Caustic decomposition of scheelite and scheelite-wolframite concentrates through mechanical activatilon[J].Cent.South. Univ. Techol.,1995, (12):16.
    [59]李洪桂,李运姣,孙培梅,等.钨矿物原料NaOH分解过程中抑制杂质的研究[J].中国工程科学,2000,2(3):59-61.
    [60]李洪桂,刘茂盛,孙培梅,等.钨矿物原料碱分解的基础理论及新工艺[M].长沙:中南工业大学出版社,1997:119-128.
    [61]徐晓玲.钨离子交换工艺中钨锡分离的研究[D].长沙:中南大学,2002:56-57.
    [62]张启修,龚柏凡,黄芍英,等.处理低品位钨物料生产高纯APT的新工艺研究[C].稀有金属与硬质合金(全国钨钼学术会议论文专集),1989,97(2):2-5.
    [63]龚柏凡,张启修.离子交换一步分离Mo、P、As、Si新工艺开始进入工业实施阶段[C].第七届全国钨钼学术交流会论文集,1995:50-52.
    [64]廖春发,张启修.从钨矿苛性钠浸出液中直接萃取钨时杂质锡行为的考察[J].南方冶金学院学报,2001,22(4):239-342.
    [65]方奇.苛性钠压煮法分解白钨矿[J].中国钨业,2001,16(5/6):80-81.
    [66]Martins J P,Martins F.Soda ash leaching of scheelite concentrates:the effect of high concentration of sodium carbonate [J]. Hydrometallurgy,1997,46(1-2): 191-203.
    [67]Martins J P.Kinetics of soda ash leaching of low-grade scheelite concentrates [J]. Hydrometallurgy,1996,42(2):221-236.
    [68]深沢浩二.用浮选和化学处理回收选矿尾矿中微量白钨矿的实践[J].日本矿业会志,1974,90(1035):321-327.
    [69]Srinivas K, Sreenivas T, Natarajan R,et al.Studies on the recovery of tungsten from a composite wolframite-scheelite concentrate [J]. Hydrometallurgy, 2000,58(1):43-50.
    [70]徐迎春,姜萍.白钨矿浸出工艺的现状及发展方向[J].世界有色金属,2004,(12):21-23.
    [71]魏庆玉.白钨矿的化学选矿[J].中国钨业,2000,15(4):26-18.
    [72]廖利波.白钨矿酸法处理工艺研究[D].长沙:中南大学,2002:50.
    [73]江信开,吕永信.含钙矿物浮选分离新方法及机理[J].有色金属,1987,39(4):52-58.
    [74]Sebahattin Gurmen,Servet Timur,Cuneyt Arslan,et al.Acidic leaching of scheelite concentrate and production of hetero-poly-tungstate salt[J]. Hydrometallurgy,1999,(51):227-238.
    [75]姚珍刚.氟化钠压煮分解白钨精矿工艺研究[J].中国钨业,1999,14(5/6):166-170.
    [76]周晓彤,林日孝.GY法浮选黑白钨新工艺的研究[J].矿产综合利用,2000,(2):1-4.
    [77]陈文胜.硫化钠在黑白钨加温精选中的应用研究[J].中国钨业,2002,17(3):26-28.
    [78]黄武,戚光荣.云南某白钨矿浮选试验研究与生产实践[J].江西有色金属,2008,22(1):26-28.
    [79]孟宪瑜,于雪,高起鹏.低品位白钨矿选矿工艺试验研究[J].有色矿冶,2007,23(5):15-17.
    [80]曾惠英.某白钨矿浮选试验研究[J].江西有色金属,2007,21(2):19-22.
    [81]邓丽红,周晓彤.白钨矿常温浮选工艺研究[J].中国钨业,2008,23(5):20-22.
    [82]杨晓峰.云南某中低品位白钨矿常温浮选技术研究[D].昆明:昆明理工大学,2008:46-80.
    [83]Vaquez L A,et al. Flotation-A.M[J]. Gaudin Memoroial.1976,(1):580-596.
    [84]黄万抚.“石灰法”浮选白钨矿的研究[J].江西冶金,1989,9(1):16-19.
    [85]杨思孝.用“石灰法”浮选白钨矿[J].江西冶金,1982,(2):39-41.
    [86]杨斌清.湖南某钨矿选矿试验研究[J].江西有色金属,1996,10(3):21-23.
    [87]肖庆苏.柿竹园多金属矿CF法浮选钨主干全浮选矿工艺研究[J].矿冶,1996,5(3):26-32.
    [88]Leonard J Warren.Shear-flocculation of ultrafine scheelite in sodium oleate solutions[J] Journal of Colloid and Interface Science,1975,50(2):307-318.
    [89]Sivamohan R, Cases J M.Dependence of shear-flocculation on surface coverage and zeta potential[J].International Journal of Mineral Processing,1990,28(3/4): 161-172.
    [90]Koh P T L, Uhlherr P H T, Andrews J R G.The effect of capillary condensation and liquid bridging on the bonding of hydrophobic particles in shear-flocculation[J]. Journal of Colloid and Interface Science,1985,108(1):95-103.
    [91]Koh P T L, Lwin T, Albrecht D.Analysis of weight frequency particle size distributions:With special application to bimodal floc size distributions in shear-flocculation[J].Powder Technology,1989,59(2):87-95.
    [92]Koh P T L, Andrews J R G, Uhlherr P H T.Floc-size distribution of scheelite treated by shear-flocculation[J]. International Journal of Mineral Processing, 1986,17(1/2):45-65.
    [93]Koh P T L, Andrews J R G, Uhlherr P H T.Modelling shear-flocculation by population balances[J].Chemical Engineering Science,1987,42(2):353-362.
    [94]Grasberg M,Mattson K. Novel process at Yxsjoberg, a pointer towards future more sophisticated flotation methods[J]. In:Laskowski J.,eds. Proceedings of 13th International Mineral processing Congress. Warsaw:1979.294-315.
    [95]Berger G S,Kadrzhanov Z B,Evdokimov S I,et al.Possibility of Regeneration of Collectors During Flotation Concentration of Ores[J]. Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metallurgiya,1982,(4):3-6.
    [96]孙伟,胡岳华,覃文庆,等.钨矿浮选药剂研究进展[J].矿产保护与利用,2000,(3):42-46.
    [97]Fukazawa, Koji.Froth flotation process for recovering sheelite[P].Assignee: Nittetsu Mining Company, Ltd. US4040519,1977-08-09.
    [98]Vedova Ronald,Grauerholz, Norman LeRoy.Method for recovering scheelite from tungsten ores by flotation[P].Assignee:Union Carbide Corporation. US4054442,1977-10-18.
    [99]Hanumantha Rao K., Forssberg K.S.E..Mechanism of fatty acid adsorption in salt-type mineral flotation[J].Minerals Engineering,1991,4(7-11):879-890.
    [100]Carson Harry B,Eric J,Ball Brian.Scheelite flotation[P].Assignee:Amax Inc.,US4366050,1982-12-28.
    [101]严川明,代献仁,李树兰.某多金属矿中白钨的综合回收试验[J].中国钨业,2009,24(3):25-27.
    [102]张爱萍,李光祥,王仁东.某白钨矿浮选工艺研究[J].现代矿业,2009,(4):34-35.
    [103]艾光华,叶雪均,任祥君.江西某白钨矿钨的选矿试验研究[J].中国钨 业,2009,24(4):28-31.
    [104]叶雪均,刘军.某低品位白钨矿浮选试验研究[J].中国钨业,2006,(21):20-23.
    [105]温蔚龙.Y-17脂肪酸钠盐对汝城钨矿大山矿区白钨矿的浮选[J].湖南冶金,1983,(5):18-21.
    [106]张忠汉,张先华,叶志平,等.柿竹园多金属矿GY法浮钨新工艺研究[J].矿冶工程,1999,19(4):22-25.
    [107]徐晓萍,梁冬云,喻连香,等.江西某大型白钨矿钨的选矿试验研究[J].中国钨业,2007,22(2):23-26.
    [108]高玉德.黑钨细泥浮选中高效浮选剂的联合使用[J].有色金属(选矿部分),2000,(6):41-43.
    [109]方夕辉,钟常明.组合捕收剂提高钨细泥浮选回收率的试验研究[J].中国钨业,2007,22(4):26-28.
    [110]韩兆元,管则皋,卢毅屏,等.组合捕收剂回收某钨矿的试验研究[J].矿冶工程,2009,29(1):50-54.
    [111]王国生,管则皋,韩兆元.湖南某白钨矿选矿试验研究[J].矿产综合利用,2008,(3):9-12.
    [112]余军,薛玉兰.新型捕收剂CKY浮选黑钨矿、白钨矿的研究[J].矿冶工程,1999,19(2):34-36.
    [113]Aknazarova T V. Use of 4.5.6.7-tetrahydrobenzo thiophene-3-carbohy droxamic acid for flotation of scheelite[J].Dokil Akad Nauk SSR,1990,33(4): 244-246.
    [114]邹霓,高玉德.云南某白钨矿浮选试验研究[J].中国钨业,2008,23(5):17-19.
    [115]杨晓峰,刘全军.云南某白钨矿的选矿试验研究[J].有色金属(选矿部分),2008,(2):6-8.
    [116]高玉德,江庆梅,冯其明,等.某白钨矿选矿试验研究[J].金属矿山,2008,(8):52-54.
    [117]高玉德,邹霓,韩兆元.湖南某白钨矿选矿工艺研究[J].中国钨业,2009,24(4):20-22.
    [118]Charan T.Gouril,Rao G V. Recovery of low grade scheelite by spherical agglomeration[J]. Minerals and Metallurgical Processing,1990,7(2):79-83.
    [119]Nosov I A. Possibility of Using Acylamino Acid Collector in Flotation of Scheelite Ores[J] Journal of Mining Science,1996,32(5):423.
    [120]Ozcan O, Bulutcu A N.Electrokinetic,infrared and flotation studies of scheelite and calcite with oxine, alkyl oxine, oleoyl sarcosine and quebracho [J]. International Journal of Mineral Processing,1993,39(3-4):275-290.
    [121]Ozcan O, Bulutcu A N, Sayan P,et al.Scheelite flotation:a new scheme using oleoyl sarcosine as collector and alkyl oxine as modifier [J]. International Journal of Mineral Processing,1994,42(1-2):111-120.
    [122]周菁,朱一民.新型捕收剂浮选钨钼铋多金属矿中白钨矿试验研究[J].中国矿山工程,2009,38(1):11-15.
    [123]李隆峰,肖庆书,程新朝.钨矿物选矿的现状和进展[J].国外金属矿选矿,1996,(12):23-31.
    [124]Mukai,Shigeru,Wakamatsu, et al.Fundamental study of non-sulfide mineral flotation using dodecylammonium chloride as a collector[J].Nippon Kogyo Kaishi/Journal of the Mining and Metallurgical Institute of Japan, 1975,91(1045):125-129.
    [125]Hicvilmaz C.胺对白钨矿及方解石表面性质的影响[J].国外金属矿选矿,1992,(7):11-14.
    [126]Hicyilmaz C, Ozbayoglu GThe effects of amine and electrolytes on the zeta-potential of scheelite from Uludag,Turkey[J].Minerals Engineering,1992, 5(8):945-951.
    [127]唐仁华.采用胺优先浮选白钨矿[J].国外选矿快报,1993,(14):5-8.
    [128]AtalayU, Hicyilmaz C, Ozbayoglu G.Selective flotation of scheelite using amines[J]. Minerals Engineering,1993,6(3):313-320.
    [129]胡岳华,王淀佐.烷基胺对盐类矿物捕收性能的溶液化学研究[J].中南矿冶学院学报,1990,21(1):31-38.
    [130]程新朝.钨矿物和含钙矿物分离新方法及药剂作用机理研究Ⅰ.钨矿物与含钙脉石矿物浮选分离新方法-CF法研究[J].国外金属矿选矿,2000,37(6):21-25.
    [131]程新朝.钨矿物和含钙矿物分离新方法及药剂作用机理研究Ⅱ.药剂在矿物表面作用机理研究[J].国外金属矿选矿,2000,37(7):16-21
    [132]Hu Yuehua, Yang Fan, Sun Wei.The flotation separation of scheelite from calcite using a quaternary ammonium salt as collector [J].Minerals Engineering,2011,24(1):82-84.
    [133]李仕亮.阳离子捕收剂浮选分离白钨矿与含钙脉石矿物的试验研究[D].长沙:中南大学,2010:29-59.
    [134]王淀佐,胡岳华.新型两性捕收剂的研究[J].化工矿山技术,1989,18(3):26-27.
    [135]Hu Yuehua, Xu Zhenghe. Interactions of amphoteric amino phosphoric acids with calcium-containing minerals and selective flotation[J].International Journal of Mineral Processing.2003,(72):87-94.
    [136]朱建光,赵景云.RO-X系列捕收剂浮选含钙矿物[J].矿产综合利用,1991,(3):1-6.
    [137]朱建光,赵景云.6RO-X系列捕收剂浮选含钙矿物[J].化工矿山技术,1990,19(6):32-34.
    [138]朱建光,赵景云.4RO-X系列捕收剂浮选含钙矿物[J].非金属矿,1991,(4):19-22.
    [139]Von Rybinski W, Schwuger M J, Dobias B.Surfactant mixtures as collectors in flotation[J].Colloids and Surfaces,1987,26:291-304.
    [140]Von Rybinski W, Schwuger M J.Adsorption of Surfactant Mixtures during Flotation[J]. Aufbereitungs-Technik,1985,26(11):632-639.
    [141]爱格列斯.浮选调整剂[M].北京:冶金工业出版社,1982:98-106.
    [142]邓丽红,周晓彤.新型捕收剂R31浮选低品位白钨矿的研究[J].矿产保护和利用,2004,(7):19-22.
    [143]程新朝.白钨常温浮选工艺及药剂研究[J].国外金属矿选矿,2000,38(3):35-38.
    [144]程琼,徐晓萍,曾庆军.江西某白钨粗精矿加温精选试验研究[J].矿产综合利用,2007,28(4):3-6.
    [145]张忠汉,张先华.难选白钨矿选矿新工艺的研究[J].广州有色冶金学报,2000,10(2):84-87.
    [146]粱瑞禄,石大新.浮选药剂的混合使用及其协同效应[J].国外金属矿选矿,1989,(4):18-29.
    [147]林海清.近20年来我国钨选矿技术的进展[J].中国钨业,2001,16(5-6):69-75.
    [148]陈华强.几种无机、有机抑制剂对方解石浮选抑制行为的研究[J].四川有色金属,1998,(2):42-45.
    [149]Hu Yuehua.Solution Chemistry Study of Salttype Mineral Flotation Systems: Role of Inorganic Dispersants[J].Industrial&Engineering Chemistry Research, 2003,42:1641-1647.
    [150]Lii Yongxin, Li Changgen.Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers.Ⅰ. Selective flotation of scheelite [J]. International Journal of Mineral Processing, 1983,10(3):205-218.
    [151]Li Changgen, Lu Yongxin. Selective flotation of scheelite from calcium minerals with sodium oleate as a collector and phosphates as modifiers. Ⅱ. The mechanism of the interaction between phosphate modifiers and minerals[J].International Journal of Mineral Processing,1983,10(3):219-235.
    [152]叶雪均.白钨常温浮选工艺研究[J].中国钨业,1999,14(5/6):113-117.
    [153]李洪帅.多金属共生萤石矿浮选分离试验及机理探讨[D].昆明:昆明理工大学,2011:65-67.
    [154]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1993:201-223.
    [155]胡岳华,孙伟,蒋玉仁,等.柠檬酸在白钨矿萤石浮选分离中的抑制作用及机理研究[J].国外金属矿选矿,1998,(5):27-29.
    [156]刘清高,韩兆元,管则皋.白钨矿浮选研究进展[J].中国钨业,2009,24(4):23-27.
    [157]曹明礼.单宁与含钙矿物类作用机理的模拟研究[J].有色金属(选矿部分),1996,(6):33-35.
    [158]见百熙.浮选药剂[M].北京:冶金工业出版社,1979:317-351.
    [159]张剑峰.新型有机抑制剂的合成及结构与性能关系研究[D].长沙:中南大学,2002:52-68.
    [160]林强.新型浮选药剂合成及结构与性能关系研究[D].长沙:中南工业大学,1989:78-89.
    [161]朱玉霜,朱建光.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1987:2.
    [162]朱建光.浮选药剂[M].北京,冶金工业出版社,1993:110-130.
    [163]谢晶曦.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2001:67-98.
    [164]杨南如.无机非金属材料测试方法(重排本)[M].武汉:武汉理工大学山版社,2006:145-156.
    [165]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000:125-168.
    [166]夏笑虹.聚丙烯酸钠的阻垢、缓蚀机理研究[D].长沙:湖南大学,2001:56-78.
    [167]武成利,李寒旭.低分子量聚丙烯酸钠的合成研究及表征[J].安徽理工大学学报(自然科学版),2004,24(1):71-74.
    [168]Drzymala J,Fuerstenan D W. Selective Flocculation of Hematite in the Hematite-Quartz-Ferric Ion-Polyacrylic Acid System,Part Ⅰ,Activation and Deactivation of Qaartz[J].International Journal of Mineral Processing, 1981,7:258.
    [169]徐光宪,黎乐民.量子化学基本原理和从头计算法(上册)[M].北京:科学出版社,1999:24-50.
    [170]Marzari N, Vanderbilt D, Payne M C. Ensemble density-functional theory for ab-initio molecular dynamicsof metals and finite-temperature insulators[J]. Phy Rev Lett,1997,79(7):1337-1340.
    [171]Segall M D, Lindan P J, Probert M J, et al. First principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys Cond Matt,2002,14(11): 2717-2744.
    [172]Cooper T G, Leeuw N H. A combined ab initio and atomistic simulation study of the surface and interfacial structures and energies of hydrated scheelite: introducing a CaWO4 potential model [J]. Surface Science,2003, (531):159-176。
    [173]Minoru Itoh, Masami Fujita. Optical properties of scheelite and raspite PbWO4 crystals[J]. Phys Rev B,2000,62(19):12825-12830.
    [174]Minoru Itoh, Dmitri L Alov,Masami Fujita.Exciton luminescence of scheelite and raspite structured PbWO4 crystals[J] Journal of Luminescence,2000, (87-89):1243-1245.
    [175]Anisimov V I, Aryasetiawan F, Lichtenstein A I. First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+U method[J]. Journal of Physics:Condensed Matter,1997,9(4): 767-808.
    [176]Andrew J. Skinner,John P. Lafemina.Structure and bonding of calcite:A theoretical study [J]. American Mineralogist,1994,79:204-214.
    [177]顾秉林,王喜坤.固体物理学[M].北京:清华大学出版社,1989:110-111.
    [178]Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions. IV.bonding and antibonding in LCAO and valence-bond theories[J]. J Chem Phys,1955,23(12):2343-2346.
    [179]Segall M D, Shall R, Pickard C J, et al. Population analysis of plane-wave electronic structure calculatons of bulk materials [J]. Phys Rev B,1996, 54(23):16317-16320.
    [180]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics,1990, 92(1):508.
    [181]Delley B. From molecules to solids with the DMol3 approach[J] Journal of Chemical Physics,2000,113(18):7756-7764.
    [182]赵新新,苾一鸣.Cu(110)表面CO吸附单层结构和电子态的第一性原理研究[J].物理化学学报,2008,24(1):127-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700