ECR等离子体中电离和密度均匀性的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着低温等离子体技术的日益发展,具有无电极污染、放电气压低、产生等离子体密度高等突出优点的电子回旋共振等离子体也逐渐成为人们研究的重点之一。在电子回旋共振等离子体中,由于电离会直接影响到等离子体产生的性质,密度均匀性会直接影响到其应用于刻蚀、薄膜沉积等工艺时加工工件的质量。所以,对电离以及密度均匀性的研究是有意义的。另外,亚稳原子对等离子体中的电离、激发过程有着重要的贡献,考虑亚稳原子对电离及密度均匀性的影响也是具有一定意义的。
     本文以ECR等离子体源为研究对象,对ECR等离子体源磁场线圈电流产生的磁场运用麦克斯韦方程建立了数学模型,数值求解了所建立的模型得到了相应的磁场的数值结果。以该磁场为背景,基于磁流体理论,在漂移-扩散近似下,分别在考虑和没有考虑亚稳原子的情况下建立了ECR等离子体的物理模型。采用有限差分法对所建立的模型进行了自洽数值模拟,得到了微波电子回旋共振等离子体特性的数值结果。通过对两种模型下数值结果的分析比较,研究了ECR离子源操作参数(背景气体压强、微波功率和磁场线圈电流)及亚稳原子对电离和等离子体密度均匀性的影响。
     第一章主要介绍了微波电子回旋共振等离子体技术的原理、应用及研究现状。从理论到实践,使得我们对ECR等离子体有一个较全面的认识,并且可以看出,人们对ECR等离子体中电离、密度均匀性的研究相对较少,对ECR等离子体内亚稳原子的研究则更是几乎没有,这就使得我们的工作更加有意义;
     第二章对ECR等离子体源内电离、密度均匀性进行了研究,并主要针对ECR等离子体源操作参数对电离及密度均匀性的影响进行了详细的研究。另外,为了实现这一目的我们在本章前几节中详细给出了不考虑亚稳原子的ECR等离子体的数值模型,包括基本方程、边界条件、初始条件、数值方法等;
     第三章给出了考虑亚稳原子的电子回旋共振等离子体的数值模型,得到数值结果。并通过与第二章模拟所得数值结果进行比较,得出了亚稳原子对电离、密度均匀性的影响,使得我们对亚稳原子在ECR放电中的贡献有了更清楚的认识。
     最后对本文工作进行了总结和展望。
With the development of low-temperature plasma technology, electron cyclotron resonance, which has advantages of no electrode contamination, low pressure operation, high plasma density, gradually becomes one of research topics. In ECR plasma, ionization can affect the characteristics of plasma; uniformity of plasma density can affect the quality of etching and thin film deposition. Thus, it is meaningful to study ionization and uniformity of plasma density. Besides, metastable atoms has important contribution to ionization and excitation. The study of the effect of metastable atoms on ionization and uniformity of plasma density is significant.
     The research object of this paper is microwave electron cyclotron resonance source. Using Maxwell equation, we established mathematical model of the magnetic field produced by the magnetic field coils. Then we got the numerical results of magnetic field by solving the model. On the background of the magnetic field, basing on theory of magnetic fluid, under drift-diffusion approximation, we established two 2-D fluid models, including no metastable atoms and considering metastable atoms, for the plasma in the chamber of electron cyclotron resonance plasma source. A finite difference method is used for self-consistent numerically simulating the models. Numerical results of the characteristics of ECR plasma are obtained. From the analysis and comparison of numerical results from two models, the effects of operational parameters of ECR plasma, including background gas pressure, microwave power and current in magnetic field coil, and metastable atoms on ionization and uniformity of the plasma density are researched.
     In the first chapter, the theory of ECR plasma technique, the applications of ECR plasma, the situation of study on ECR plasma are introduced. From the theory to the practice, our knowledge of ECR plasma is more comprehensive. Besides, we can see from this chapter that the research of ionization and density uniformity in ECR plasma is less, and the study of metastable atoms in ECR plasma is hardly any. Therefore, our work is meaningful.
     In the second chapter, ionization and density uniformity in ECR plasma, especially the effects of operational parameters of ECR plasma on ionization and density uniformity, are discussed as important aspects. The numerical model of ECR plasma, no metastable atoms, is established in detail, including basic equations, boundary conditions, initial conditions and numerical method.
     In the third chapter, the numerical model including metastable atoms is presented briefly. We got some numerical results. Comparing with the results from the second chapter, we mainly analyzed the effects of metastable atoms on ionization and uniformity of plasma density. We have a clearer knowledge of contribution of metastable atoms in ECR discharge by the research of this part.
     Finally, conclusions and the future work are given in the last chapter.
引文
[1]Langmiur I. Oscillations in ionized gases [J]. Proc. Natl. Acad. Sci.1928,14(8):627-637.
    [2]符斯列.ECR等离子体参数空间分布特性研究及在制备GaN薄膜中的应用[D]:(硕士学位论文).广州:华南师范大学,2004.
    [3]Wu H m, Gaves D B, Kilgore M. Two-dimensional simulation of compact ECR plasma sources[J].1997.6:231-239.
    [4]宫本健郎著,金尚宪译.热核聚变等离子体物理学[M].北京:科学出版社,1987.
    [5]F.F陈著,林光海译.等离子体物理学导论[M].北京:人民教育出版社出版.1980.
    [6]Budden K G. Radio waves in the ionospere[M]. England:Gabridge University,1966.
    [7]Ganguli A, Akhtar M K, Tarey R D. Theory of high-frequency guided waves in a plasma-loaded waveguide[J]. Physics of Plasmas.1998,5(4):1178-1189.
    [8]Ganguli A, Akhtar M K, Tarey R D. Absorption of left polarized microwaves in electron cyclotron resonance plasmas [J]. Physics Letters A.1998,250:137-143.
    [9]丁振峰,邹钦崇,任兆杏.电子回旋共振等离子体技术[J].物理.1996,25:608-613.
    [10]Musil J. Deposition of thin films using microwave plasmas:present status and trends [J]. Vacuum.1996,47:145-155.
    [11]张继成,唐永建,关卫东.电子回旋共振微波等离子体技术及应用[J].强激光与粒子束.2002.14(4):566-570.
    [12]Ono T, Oda M, Takahashi C, et al. Reactive ion stream etching utilizing electron cyclotron resonance plasma [J]. J. Vac. Sci. Technol.B 1986,4(3):696-700.
    [13]Ono T, Takahashi C, Matsuo S. Electron cyclotron resonance plasma deposition technique using raw material supply by sputtering [J]. Jpn. J. Appl. Phys.1984, Part 2 23: L534-L536.
    [14]Matsuo S, Kiuchi M. Low temperature chemical vapor deposition method utilizing an electron cyclotron resonance plasma [J]. Jpn. J. Appl. Phys.1983, Part 2 22:L210-L212.
    [15]Sadeghi N, Nakano T, Trevor D J, et al. Ion transport in an electron cyclotron resonance plasma [J]. J. Appl. Phys.1991,70(5):2552-2569.
    [16]King G, Sze F C, Mak P, et al. Ion and neutral energies in a multipolar electron cyclotron resonance plasma source [J]. J. Vac. Sci. Technol. A 1992,10(4):1265-1269.
    [17]Okuno Y, Ohtsu Y, Fujita H, et al. Measurement of ion temperature in electron cyclotron resonance plasma [J]. Jpn. J. Appl. Phys.1993,32:L1698-L1700.
    [18]Okuno Y, Ohtsu Y, Fujita H. Two-dimensional ion velocity distribution functions in electron cyclotron resonance plasma under a divergent magnetic field [J]. J. Appl. Phys. 1993,74 (10):5990-5996.
    [19]Chen J F, Ren Z X. Ion energy distribution in an ECR plasma chamber [J]. Vacuum 1999,52:411-414.
    [20]Itagaki N, Ueda Y, Ishii N, et al. Production of low electron temperature ECR plasma for thin film deposition [J]. Surf. Coat. Technol.2001,142-146:546-550.
    [21]Koga M, Muta H, Yonesu A, et al. Experimental and numerical investigation of ion temperature in an ECR plasma [J]. Vacuum 2006,80(7):771-775.
    [22]Hussein M A, Emmert G A, Hershkowitz N, et al. Effect of collisions on ion dynamics in electron-cyclotron-resonance plasmas [J]. J. Appl. Phys.1992,72:1720-1728.
    [23]Porteous R K, Wu H M, Graves D B. A two-dimensional, axisymmetric model of a magnetized glow discharge plasma [J]. Plasma Sources Sci. Technol.1994,3:25-39.
    [24]Graves D B, Wu H M, Porteous R K. Modeling and simulation of high density plasmas [J]. Jpn. J. Appl.Phys.1993,32:2999-3006.
    [25]Wu H M, Graves D B, Li M, et al. The effects of coil current distribution in a cylindrical electron cyclotron resonance reactor [J]. Chin. Phys. Lett.1994,11(12):747-750.
    [26]刘明海,胡希伟,吴汉明.ECR等离子体源中基本参数的数值模拟[J].核聚变与等离子体物理.1998,18(2):36-40.
    [27]Liu M H, Hu X W, Wu H M. Study on the ions'behavior in an electron cyclotron resonance plasma [J].J.Appl. Phys.1997,81(12):7734-7737.
    [28]Liu M H, Hu X W, Wu H M, et al. Simulation of ion transport in an extended electron cyclotron resonance plasma [J]. J. Appl. Phys.2000,87(3):1070-1075.
    [29]韩俊波,王德真,马腾才.气体放电空心阴极鞘层氩离子的蒙特卡罗模拟研究[J].物理学报.1996,45(3):428-435.
    [30]宫野,宋远红,温晓军等.ECR微波等离子体离子输运的数值模拟[J].计算物理.2001,18(2):152-156.
    [31]Gong Y, Liu J Y, Song Y H, et al. Monte Carlo simulation of ion transport process in ECR microwave plasma with negative bias [J]. Vacuum 2002 65(3-4):353-359.
    [32]Yoon S F, Tan K H, Zhang Q, et al. Effect of microwave power on the electron energy in an electron cyclotron resonance plasma [J].2001,Vacuum 61(1):29-35.
    [33]Vinpin K Y, Sathyanarayana K, Purohit D, et al. A tetrode based fast pulsed microwave source for electron cyclotron resonance breakdown experiments [J]. Rev. Sci. Instrum. 2007,78:023503(1-4).
    [34]Decker J, Ram A K. Relativistic description of electron Bernstein waves [J]. Phys. Plasmas 2006,13(11):112503.
    [35]Tartari U, Grosso G, Granucci G, et al. Critical issues highlighted by collective Thomson scattering below electron cyclotron resonance in FTU [J]. Nucl.Fusion 2006,46(11):928-940.
    [36]Nakagawa T, Higurashi Y, Kidera M, et al. Effect of magnetic-field configuration on the beam intensity from electron cyclotron resonance ion source and RIKEN superconducting electron cyclotron resonance ion source [J]. Rev. Sci. Instrum. 2006,77:03A304.
    [37]Shindo M, Ueda Y, Kawakami S, et al. Measurements of negative ion density in fluorocarbon ECR plasma [J].2000,59(2-3):708-715.
    [38]Holber W M, Forster J J. Ion energetics in electron cyclotron resonance discharges [J]. Vac. Sci. Technol.A 1990,8:3720-3725.
    [39]Gong Z S, Sun J, Xu N et al. Spectroscopic study on the evolution of graphite ablation plume in ECR argon plasma during the deposition of diamond-like carbon films [J]. Diam. Relat. Mater.2007,16(1):124-130.
    [40]Beck A, Hemmers D, Kempkens H, et al. Comparative measurement of electron density and temperature profiles in low-temperature ECR discharges by a lithium atom beam and Thomson scattering [J]. Phys. D:Appl. Phys.2000,33:360-366.
    [41]Emil I T. Experimental electron energy distribution functions in argon, nitrogen and oxygen high-density and low-pressure reflex and microwave plasma sources [J]. Sci. Technol.2004,13:646-653.
    [42]Thang D H, Muta H, Kawai Y. Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H2 mixtures [J]. Thin Solid Films,2008,516(13):4452-4455.
    [43]Singh S B, Chand N, Patil D S. Langmuir probe diagnostics of microwave electron cyclotron resonance (ECR) plasma [J].2009, Vacuum 83(2):372-377.
    [44]Muta H, Itagaki N, Koga M, et al. Generation of a low-electron-temperature ECR plasma using mirror magnetic field [J]. Surface and Coatings Technology.2003,174-175: 152-156.
    [45]Yasaka Y, Uda N. Practical scheme for three-dimensional simulation of electron cyclotron resonance plasma reactors [J]. J. Appl.Phys.2001,89(7):3594-3601.
    [46]Niimura M, Lamoureux M, Goto A, et al. Dynamic simulations of the interchange instability, ion production, and electron heating processes in an electron cyclotron resonace ion source plasma [J]. Rev. Sci. Instrum.2000,71:846-850.
    [47]Koh W H, Choi N H, Choi D I, et al. Electromagnetic particle simulation of electron cyclotron resonance microwave discharge [J].J. Appl.Phys.1993,73(9):4205-4211.
    [48]Jin X L, Yang Z H, Huang T. Simulation of electron distribution features in the ionization process of an electron cyclotron resonance discharge [J]. Phys. Plasmas.2007,14:113505.
    [49]金晓林,黄桃,廖平等.电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟[J].物理学报,2009,58(8):5526-5531.
    [50]杨中海,金晓林.电子回旋共振放电中电子能量分布特性的研究[J].电子科技大学学报.2009:38(5):562-567.
    [51]Fukumasa 0, Naitou H, Sakiyama S. Control of reactive plasmas in a multicusp plasma source equipped with a movable magnetic filter [J]. J. Appl.Phys.1993,74:848-812.
    [52]Kato K, Iizuka S, Sato N. Electron-temperature control for plasmas passing through a negatively biased grid [J]. Appl. Phys. Lett.1994,65:816-818.
    [53]Itagaki N, Fukuda A, Yoshizawa T, et al. Plasma parameter measurements and deposition of a-Si:H thin films in pulsed ECR plasma [J]. Surf. Coat. Technol.2000,131(1-3):54-57.
    [54]Itagaki N, Ueda Y, Ishii N, et al. Production of low electron temperature ECR plasma for plasma processing [J]. Thin Solid Films.2001,390:202-207.
    [55]Itagaki N, Kawakami S, Ishii N, et al. Electron-temperature control in 915 MHz electron cyclotron resonance plasma [J]. J. Vac. Sci. Technol. A 2002,20:1969-1973.
    [56]Itagaki N, Kawakami S, Ishii N, et al. Production of low-electron-temperature electron cyclotron resonance plasma with large area using 915 MHz microwave [J]. Vacuum 2002,66: 323-328.
    [57]Itagaki N, Iwata S, Muta K, et al, Electron-temperature dependence of nitrogen dissociation in 915 MHz ECR plasma [J]. Thin Solid Films.2003,435:259-263.
    [58]Muta H, Koga M, Itagaki N, et al. Numerical investigation of a low-electron-temperature ECR plasma in Ar/N2 mixtures [J]. Surface and Coatings Technology 2003,171:157-161.
    [59]Itagaki N, Muta H, Ishii N, et al. Control of the electron temperature by varying the resonance zone width in ECR plasma [J]. Thin Solid Films.2004,457(1):59-63.
    [60]Koga M, Hishikawa Y, Tsuchiya H, et al. Production of a large diameter ECR plasma with low electron temperature [J]. Thin Solid Films.2006,506-507:499-502.
    [61]Muta H, Thang D H, Kawai Y. Characteristics of the electron temperature in the downstream regions of N2/Ar ECR plasmas [J]. Thin Solid Films.2006,506-507:541-544.
    [62]Koh W H, Choi N H, Choi D I, et al. Electromagnetic particle simulation of electron cyclotron resonance microwave discharge [J]. J. Appl. Phys.1993,73(9):4205-4211.
    [63]Junck K L, Getty W D. Comparison of Ar electron cyclotron resonance plasmas in three magnetic field configurations. I. Electron temperature and plasma density [J]. J. Vac. Sci. Technol. A, Vac. Surf. Films,1994,12(5):2767-2774.
    [64]Yoon S, Nak-Heon C, Hyoung-Bin P, et al. One-dimensional fluid model of ECR discharge with inhomogeneity effects of external magnetic field [J]. IEEE Trans. Plasma Sci.1995, 23(4):609-616.
    [65]Ning Z Y, Guo S Y, Cheng S H. Numerical simulation of plasma flow downstream in an ECR plasma deposition apparatus [J]. Vacuum.1999,52(3):219-223.
    [66]Fu S L, Chen J F, Wu X Q, et al. Spatial distribution of ECR plasma density in ECR-PECVD reaction chamber [J]. Plasma Science & Technology.2006,8(3):300-302.
    [67]Jin X L, Huang T, Yang Z H. Effects of external magnetic field on the Characteristics of electron cyclotron resonance discharge [J]. IEEE Trans. Plasma Sci. 2008,36(4):1574-1580.
    [68]Lymberopoulos D P, Eeonomou D J. Fluid simulations of glow diseharges:Effeet of metastable atoms in argon [J]. J.Appl. Phys.1993,73(8):3668-3679.
    [69]Liu Y, Wang Y X, Cui S Y, et al. The effects of the operational parameters of the reactor on ECR plasma characteristics [J]. Vacuum.2006,80(11-12):1367-1370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700