对—卤代苯乙酮光诱导短时动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用共振拉曼光谱技术研究了对-卤代苯乙酮在乙腈溶液中光诱导电子转移在Franck-Condon区域的短时动力学的特征,并结合密度泛函理论计算方法讨论了苯乙酮、对氟苯乙酮、对氯苯乙酮、对溴苯乙酮、对碘苯乙酮光化学反应在微观反应动力学上的调控因素,在一下几个方面做出了贡献:
     (1)测得苯乙酮、对氟苯乙酮、对氯苯乙酮、对溴苯乙酮、对碘苯乙酮在乙腈溶液中的最大吸收带分别在238nm、241nm、248.4nm、252.4nm、261.8nm左右。最大吸收位置的偏差取决于溶剂与其形成氢键能力的大小。
     (2)获得对-卤代苯乙酮的共振拉曼光谱,进行了强度分析。研究结果表明,对-卤代苯乙酮在乙腈溶液中的共振拉曼光谱具有一定的共同的特征:在乙腈溶液中Franck-Condon区域的短时动力学具有多维性,主要沿着苯环C-C伸缩振动、C=O伸缩振动。有关苯环振动的振动重组能占总振动重组能的50%以上,羰基的振动重组能约占20%,说明在光诱导电子转移的过程中苯环C-C键和羰基的几何结构发生较大程度的调整。
     (3)对-卤代苯乙酮大部分振动模的描述以及拉曼位移量相似。对位H被卤素F,Cl,Br,I取代后,出现了Ph-CO-CH3伸缩振动和苯环变形振动模(苯乙酮中相对应的是苯环的三角振动),这个振动模式在对碘苯乙酮中没有出现;在对氟苯乙酮、对氯苯乙酮、对溴苯乙酮的拉曼位移分别出现了183cm~(-1)、240cm~(-1)、256cm~(-1)的蓝移现象。
     (4)对-卤代苯乙酮的反应坐标和振动重组能明显不同。反应坐标|Δ|最大的是对氟苯乙酮,其次是对溴苯乙酮;总的振动重组能也明显不同,其中,对氟苯乙酮具有最大的振动重组能1780cm~(-1),这说明对氟苯乙酮更容易发生分子间激发,具有更高的势能面。对碘苯乙酮振动重组能相对于其它总振动重组能要小,在Franck-Condon区域和内转换过程中经历了更小的几何结构重组,使得对碘苯乙酮的激发态分子更趋向稳定。而对溴苯乙酮的振动重组能并没有如料的那样比对氯苯乙酮的低。
     (5)苯乙酮、对氟苯乙酮、对氯苯乙酮、对溴苯乙酮、对碘苯乙酮的非均质展宽(G)分别为700 cm~(-1)、700 cm~(-1)、750 cm~(-1)、650 cm~(-1)、1400cm~(-1),均质展宽(Γ)分别为500 cm~(-1)、350cm~(-1)、500 cm~(-1)、500 cm~(-1)、500cm~(-1)。对碘苯乙酮的非均质展宽表现出与其它几个化合物不同的溶剂效应。激发态物种的衰变对均质展开的贡献可以由它的激发态寿命来决定。显然,对氟苯乙酮的具有最小的激发态寿命。
     (6)苯乙酮对位H被卤素F,Cl,Br,I取代后,不仅调整了Franck-Condong区域的短时反应动力学特征,而且引起了各个振动模能量分配发生改变。
In this paper,we have studied the short-time photodissocciation dynamics of photo-induced Charge-Transfer of p-halogenated acetophenone in acetonitrile solution by the Resonance Raman spectra combined with DFT calculation and discussed the influential factors to tune the photochemical reactions.Main contributions of the present work are summarized as follws,
     (1) We obtained the absorption spectrum of acetophenone,p-fluoroacetophenone, p-chloroacetonphone,p-bromoacetophone,p-Iodoacetophenone in acetonitrile solution which has a charge-transfer band near 238nm,241nm,248.4nm,252.4nm,261.8nm,respectively.The hydrogen bonding is one key factor affecting the different charge-transfer band.
     (2) We obtained the Resonance Raman spectras of p-halogenated acetophenone,and Resonance Raman analyses were done,respectively.The results indicate that the Resonance Raman spectras of p-halogenated acetophenone have the similar characters:the Franck-Condon region short-time photodissocciation dynamics of p-halogenated acetophenone have multidmensional characters with motion predominantly along the nominal ring C-C stretch,C=O stretch.The vibrational organizational energy of benzene ring is more than 50%,The vibrational organizational energy is about 20%.This shows during the process of potoinduced charge-transfer,the C-C of benzene ring and C=O have great change.
     (3) Most of the vibrational modes and frequency of p-halogenated acetophenone are similar. Hovever,after the substitution of H_p atom by the F,Cl,Br,I,there is a new mode:Ph-CO-CH3 stretch and ring deformation mode(which in acetophenone is benzene trigonal bend).The mode is 183cm~(-1),240cm~(-1),256cm~(-1) blue shift in p-fluoroacetophenone,p-chloroacetonphone, p-bromoacetophone,respectively.
     (4) The reaction coordinate and vibrational organizational energy of p-substituted acetophenone are different.The largest of reacion coordinate |△| is p-fluoroacetophenone,then is p-bromoacetophone.P-fluoroacetophenone have the largest total vibrational organizational energy,1780 cm~(-1),which shows p-fluoroacetophenone is more easily excited and have higher potential energy surface,The vibrational organizational energy of p-Iodoacetophenone is the smallest.This shows that p-Iodoacetophenone have smaller geometric structure recombination at the Franck-Condon region and during the internal coversion,which made the excited more stable. Moreover the vibrational organizational energy of p-bromoacetophone is not smaller than p-chloroacetonphone.
     (5) The inhomogeneous broadening of acetophenone,p-fluoroacetophenone, p-chloroacetonphone,p-bromoacetophone,p-Iodoacetophenone are 700 cm~(-1),700cm~(-1),750cm~(-1), 650 cm~(-1),1400cm~(-1),respectively.The homogeneous broadening is 500 cm~(-1),350cm~(-1),500 cm~(-1), 500 cm~(-1),500cm~(-1),respectively.The inhomogeneous broadening of p-Iodoacetophenone have different effects of solvation from other compounds.Obviously,the p-fluoroacetophenone's life of excited state is the smallest.
     (6) We have noted that the substirution of the H in acetophenone by F,Cl,Br,I effectively modulates the Franck-Condon region dynamics and the nergy partioning among the varous vibrational degrees.
引文
[1](a)Sanders.D.B,Wiest.O.G.A Model for the Enzyme-Substrate Complex of DNA Photolyase and Photodamaged DNA.[J].J.Am.Chem.Soc,1999,121(22):5127-5134.
    (b)Speetor.T.I,Cheatham.T.E,Kollman.P.A.Unrestrained Molecular Dynamics of Photodamaged DNA in Aqueous Solution.[J].J.Am.Chem.Soe,1997,19(30):7095-7104.
    [2](a)Weber.S.Light-driven enzymatic catalysis of DNA repair:a review of recent biophysical studies on photolyase.[J].Biochim Biophys Acta-Bioenergeties,2005,1707:1-23.
    (b)Kavakli.I.H,Sanear.A.Analysis of the Role of Intraprotein Electron Transfer in Photoreactivation by DNA Photolyase in Vivo.[J].Biochemistry,2004,43(48):15103-15110.
    [3]梁文平,杨俊林,陈拥军,李灿.《新世纪的物理化学——学科前沿与展望》[M],北京:科学出版社,2004.
    [4]Kr(o|¨)hl.O,Malsch.K,Swiderek.P.The electronic states of nitrobenzene:electron-enery-loss spectroscopy and CASPT2 calculations.[J].Phys.Chem.Chem.Phys,2000,2:947-953.
    [5]Andrzej Kapturkiewicz,Jacek Nowacki.Properties of Intramolecular Excited Charge-Transfer States of Carbazol-9-yl Derivatives of Aromatic Ketones.[J].J.Phys.Chem.A,1999,103:8145-8155.
    [6]Rodriguez.A.M,Giannini.F.A,Baldoni.H.A,elat.Conformational potential energy curves of acetophenone and α-substituted acetophenones.[J].J.Mol.Struct.(THEOCHEM),1999,463:271-281.
    [7]Rodriguez.A.M,Giannini.F.A,Baldoni.H.A,elat.Exploratory molecular orbital calculations on the keto and enolforms of selected antifungals and those of side-chain substituted acetophenone model compounds.[J].J.Mol.Struct,463,1999:283-303.
    [8]Sanjay Srivastava,EmilyYourd,John P.Toscano.Strural Differences between(ππ~*) and(nπ~*)Acetophenone Triplet Excited States as Revealed by Time-Resolved IR Spectroscopy.[J].J.Am.Chem.Soc,1998,120:6173-6174.
    [9]Yan Wang,Kiminori Ushida,Yasunori Tominaga,Akira Kira.Molecular dynamics of acetophenone and its derivatives investigated by femtosecond optical Kerr effect Spectroscopy and depolarized low-frequency Raman Scattering.[J].Chem.Phys.Lett.299,1999:576.
    [10]Leland.C.,Mayne,Bruce Hudson.Resonce Raman Spectroscopy of N-Methylanc etamide:Overtones and Comblnations of the C-N Stretch(Amide Ⅱ) and Effect of Solvation on the C=O Stretch(Amide Ⅰ) Intensity.[J].J.Phys.Chem.95,1991,2962.
    [11]Volman.D.H.The Photochemistry of Acetamide in Water Solution[J].J.Am.Chem.Soc.1941,63:2000-2002.
    [12]Folmer.D.E,Wisniewski.E.S,Hurley.S.M,A.W.Castleman.Femtosecond cluster studies of the solvated 7-azaindole excited state double-proton transfer[J].PNAS.1999,96:12980-12986.
    [13]Casades.R,Moreno.M,Lluch.J.M.A theoretical study of the ground and first excited singlet state proton transfer reaction in isolated 7-azaindole-water complexes[J].Chem.Phys.2003,290:319-336.
    [14]胡兴邦,李浩然,梁婉春,韩世钧0水对5-氟嘧啶质子转移影响的规律[J].物理化学学报.2005,21(9):952-956.
    [15]Enchev.V,Markova.N,Angelova.S.Ab.Initio Study of 2,4-Substituted Azolidines.Ⅱ.Amino Imino Tautomerism of 2-Aminothiazolidine-4-one and 4-Aminothiazolidine-2-one in Water Solution.[J].J.Phys.Chem.2005,109:8904-8913.
    [16]Hunter.K.C,Rutledge.L.R,Wetmore.S.D.The Hydrogen Bonding Properties of Cytosine:A Computatuional Study of Cytosine Complexed with Hydrogen Fluoride,Water and Ammirtia [J].J.Phys.Chem.A.2005,109:9554-9562.
    [17]Yi.P.G,Liang.Y.H,Tang.Z.Q.Theoretical stuffy of intermolecular proton transfer reaction in isolated 5-hysroxyisoxazole-water compkexes.[J].Chem.Phys.2006,322:387-391.
    [18]Kenji Sakota,Chie Okabe,Nobuyuki Nishi,Hiroshi Sekiya.Excited-State Double-Proton Transfer in the 7-Azaindole Dimer in the Gas Phase.3.Reaction Mechanism Studied by Picosecond Time-Resolved REMPI Spectroscopy.[J].J.Am.Chem.Soc.2005,109:5245-5247.
    [19]Ahn.D.S,Lee.S,Kim.B.Solvent-mediated tautomerization of pueine:single to quadruple proton transfer.[J].Chem.Phys.Lett.2004,390:384-388.
    [20]Nsangou.M,Jaidane.N,Lakhdar.Z.B.Cooperativity and ground-state proton transfer in 7-hydroxyimidazo[1,2-a]pyridine.ammonia clusters:DFT study.[J].J.Mol.Struct (THEOCHEM).2006,758:87-95.
    [21]Ma.Y.F,Pei.K.M,Zheng.X.M,Theoretical study on the intramolecular proton transfer reactions of 3-methyl-5-hydroxyisoxazole and its water complexes.[J].J.Mol.Struct (THEOCHEM).2007,820:107-111.
    [22]Xuming Zheng,Phillips.D.L.Effect of geometrical conformation on the short-time photodissociation dynamics of 1-iodopropane in the A-band absorption[J].J.Chem.Phys,1998,108:5772-5783.
    [23]Xuming Zheng,Wei-Hai Fang,Phillips.D.L.Transient resonance Raman spectroscopy and density functional theory investigation of iso-polyhalomethanes containing bromine and/or iodine atoms.[J].J.Chem.Phys,2000,113:10934-10946.
    [24]Phillips D L,Wei-Hai Fang,Xuming Zheng.Isodiiodomethane Is the Methylene Transfer Agent in Cyclopropanation Reactions with Olefins Using Ultraviolet Photolysis of Diiodomethane in Solutions:A Density Functional Theory Investigation of the Reactions of Isodiiodomethane,Iodomethyl Radical,and Iodomethyl Cation with Ethylene.[J].J.Am.Chem.Soc.2001,123:4197-4203.
    [25]张树强,王雅琼,郑旭明.硝基烃光异构化反应的密度泛函理论计算,物理化学学报,2006,22:1489-1494.
    [26]X.M.Zheng,C.W.Lee,D.L.Phillips.Resonance Raman observation of the allyl cation produced after ultraviolet photodissociation of cyclopropyl bromide in acetonitdle solution.[J].Chem.Phys.Lett.2002,366:656-663.
    [27]X.M.Zheng,D.L.Phillips Photoisomerization reaction of CH2BrI following A-band and B-band photoexeitation in the solution phase:Transient resonance Raman observation of the iso-CH2IBr photoproduct.[J].J.Chem.Phys.2000,113:3194-3203.
    [28]X.M.Zheng,D.L.Phillips.Investigation of the short-time photodissociation dynamics of trans-1-bromo-2-iodoethane in the A-band absorption.[J].J.Chem.Phys.1999,110:1638-1649.
    [29]李少鹏,吴光明,郑旭明.I2一环己烯复合物的共振拉曼光谱和密度泛函理论计算研究,高等学校化学学报,2005,1495-1498.
    [30]X.M.Zheng,D.L.Phillips.Ab Initio Investigation of XCH2CH2 and XCHCH3 Radicals(X)(F,Cl,Br).[J].J.Phys.Chem.A,2000,104:1030-1038
    [31]X.M.Zheng,D.L.Phillips.Density functional theory and resonance Raman investigation of the ultraviolet electronic excited states of CF_2I_2.[J].Chem.Phy.Lett.2000,316:524-530.
    [32]X.M.Zheng,D.L.Phillips.Effect of geometrical conformation on the short-time photodissociation dynamics of 1-iodopropane in the A-band absorption.[J].J.Chem.Phys.1998,108:5772-5783
    [33]X.M.Zheng,Wai Ming Kwok,D.L.Phillips Solvation Effects on the A-Band Photodissociation of Dibromomethane:Turning a Photodissociation into a Photoisomerization.[J].J.Phys.Chem.A.2000,104:10464-10470.
    [34]Yufang Ma,Kemei Pei,Xuming Zheng,Haiyang Li.Resonance Raman spectroscopy and density functional theory study of the photodissociation dynamics of acetophenone in cyclohexane solution.[J].Chem.Phys.Lett.2007,449:107-114.
    [35]Kemei Pei,Yufang Ma,Xuming Zheng,Haiyang Li.The Franck-Condon region structure dynamics of p-nitrobenzoic acid from resonance Raman spectroscopy.[J].Chem.Phys.Lett.2008,457:323-328
    [36]Kemei Pei,Yufang Ma,Xuming Zheng,Haiyang Li.Resonance Raman spectroscopic and density functional theory study of p-nitroacetophenone(PNAP).[J].Chem.Phys.Lett.2007, 437:153-158.
    [37](a) Mead.C.A,Truhlar.D.G.On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei.[J].J.Chem.Phys,1979,70:2284-2296.
    (b) Keating.S.P,Mead.C.A.Conical intersections in a system of four identical nuclei.[J].J.Chem.Phys,1985,82:5102-5117.
    (c) Keating.S.P,Mead.C.A.Toward a general theory of conical intersections in systems of identical nuclei.[J].J.Chem.Phys,1987,86:2152-2160.
    [38](a) Zimmerman,E.Molecular Orbital Correlation Diagrams,Mobius Systems,and Factors Controlling Ground- and Excited-State Reactions.Ⅱ.[J].J.Am.Chem.Soc,1966,88:1566-1567.
    (b)Desouter-Lecomte M,Lorquet J C.Nonadiabatic interactions in unimolecular decay.Ⅳ.Transition probability as a function of the Massey parameter.[J].J.Chem.Phys,1977,71:4391-4403.
    (c) Celani P,Bernardi F,Olivucci M,Robb M A.Excited-state reaction pathways for s-cis buta-1,3-diene.[J].J.Chem.Phys,1995,102:5733-5743.
    [39](a) Wilsey S,Bearpark M J,Bernardi F,Olivucci M,Robb M A.Mechanism of the Oxadi-π-methane and[1,3]-Acyl Sigmatropic Rearrangements of β,γ-Enones:A Theoretical Study.[J].J.Am.Chem.Soc,1996,118:176-184.
    (b) Reguero M,Olivucci M,Bernardi F,Robb M A.Excited-State Potential Surface Crossings in Acrolein:A Model for Understanding the Photochemistry and Photophysics of alpha,beta.-Enones.[J].J.Am.Chem.Soc,1994,116:2103-2114.
    (c)Palmer I J,Ragazos L N,Bernardi F,Olivucci M,Robb M A.An MC-SCF Study of the(Photochemical) Paterno-Buchi Reaction.[J].J.Am.Chem.Soc,1994,116:2121-2132.
    (d) Palmer L J,Ragazos L N,Bernardi F,Olivucci M,Robb M A.An MC-SCF study of the S_1 and S_2 photochemical reactions of benzene.[J].J.Am.Chem.Soc,1993,115:673-682.
    (e)Celani P,Ottani S,Olivucci M,Bernardi F,Robb M A.What Happens during the Picosecond Lifetime of 2A1 Cyclohexa-1,3-diene:A CAS-SCF Study of the Cyclohexadiene/Hexatriene Photochemical Interconversion.[J].J.Am.Chem.Soc,1994,116:10141-10151.
    (f)Celani P,Garavelli M,Ottani S,Bemardi F,Robb M A,Olivucci M.Molecular "Trigger" for the Radiationless Deactivation of Photoexcited Conjugated Hydrocarbons.[J].J.Am.Chem.Soc,1995,117:11584-11585.
    [40]Jones.R.O,Gunnarsson.O.The density functional formalism,its applications and prospects [J].Rev.Mod.Phys,1989,61:689-746.
    [41]梁文平,杨俊林,陈拥军,李灿.《新世纪的物理化学——学科前沿与展望》[M],北京,科学出版社,2004.
    [42]Onida G,Reining L,Rubio A.Electronic excitations:density-functional versus many-body Green's-function approaches.[J].Rev.Mod.Phys,2002,74:601-659.
    [43]Ismail-Beigi S,Louie S G.Excited-State Forces within a First-Principles Green's Function Formalism.[J].Phys.Rev.Lett,2003,90:076401-076404.
    [44]Becke,A.Density functional calculations of molecular bond energies.[J].J.Chem.Phys,1986,84:4524-4529.
    [45]Lee C,Yang W,Parr R G.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.[J].Phys.Rev.B,1988,37:785-789.
    [46]Frisch M J,et al.Gaussian 03,Revision B.02,Gaussian,Inc.,Pittsburgh PA,2003.
    [47]Peuckert V.A new approximation method for electron systems[J].J.Phys C:Solid States Phys,1978,11:4945-4956.
    [48]Zangwill A,Soven P.Density-functional approach to local-field effects in finite systems:Photoabsorption in the rare gases.[J].Phys.Rev.A,1980,21:1561-1572.
    [49]Runge E,Grass E K U.Density-Functional Theory for Time-Dependent Systems [J].Phys.Rev.Lett,1984,52:997-1000.
    [50]Burke K,Grass.E.K.U.In Density Functionals:Theory and Applications.Eds.:Joubert D.Springer:Berlin,1998.
    [51]Grass E K U,Kohn W,[J].Adv.Quant.Chem,1990,21:255.
    [52]Grass E K U,Dobson F J,Petersilka M.Density Functional Theory,Springer,1996.
    [53]Dobson J,Vignale G,Das M P.Electronic Density Functional Theory:An approach to the Quantum Many-Body Problem,Plenum,1997.
    [54](a)Lee.S.Y,Heller.E.J.Time-dependent theory of Raman scattering[J].J,Chem,Plays,1979,71:4777-4788.
    (b) Heller.E.J,Sundberg.R.L,Tannor.D.J.Simple aspects of Raman scattering[J].J.Phys.Chem,1982,86:1822-1833.
    [55](a)Myers A B,Mathies R A.In Biological Applications of Raman Spectroscopy[M].Spiro,T.G.,Ed.;Wiley:New York,1987;Vol.2.
    (b)Myers A B,Rizzo T R,Eds.In Laser Techniques in Chemistry.[M].Wiley:New York,1995.
    [56]Mark O.Trulson and Richard A.Mathies.Raman cross section measurements in the visible and ultraviolet using an integrating cavity:Application to benzene,cyclohexane,and cacodylate.[J].J.Chem.Phys,1986,84:2068-2074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700