高速铁路无砟轨道路基动力特性及参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速铁路的发展,无砟轨道结构在我国应用越来越普遍。但目前无砟轨道路基结构的设计大多借鉴国外经验以及大型模拟试验结果,在高速列车荷载作用下路基的动力特性及其影响参数的研究还远不够。本文在总结和吸取前人研究的基础上,结合原铁道部专项科研基金项目,采用理论分析、数值模拟和模型试验对无砟轨道路基的动力特性进行了研究,采用大型动三轴试验对高速铁路路基粗粒土B组填料的动弹模和阻尼比进行了研究,主要取得了以下成果:
     (1)将钢轨和无砟轨道结构视为Euler梁,扣件和CA砂浆视为有阻尼的弹簧,路基视为各向同性粘弹性半空间体,建立了无砟轨道-路基系统动力分析模型。通过移动坐标和Fourier积分变换得到了系统的稳态响应在波数域内的积分表达式。利用自适应数值积分算法和IFFT算法对积分表达式进行了数值计算,分析了列车荷载频率、速度以及路基弹性模量对板式无砟轨道路基表面竖向位移的影响,结果表明当速度小于200km/h时,路基表面的竖向动位移主要发生在轨道结构宽度范围内,且位移幅值随频率增加而减小;当速度大于250km/h时,路基的表面的竖向位移振动逐渐扩大至轨道结构范围以外,且位移幅值随频率增加而增大。列车速度接近路基瑞利波速时,路基表面竖向位移急剧增加。
     (2)大型动三轴试验结果表明动应变是影响粗粒土B组填料动弹模和阻尼比的最主要因素。当动应变小于0.075%时,动弹模随动应变的增加而急剧减小;当动应变大于0.075%时,动弹模随动应变的增加而缓慢减小。当动应变小于0.015%时,阻尼比随动应变的增加而急剧增加;当动应变大于0.015%时,阻尼比随动应变的增加而缓慢增加并逐渐趋于稳定。随着固结围压或加载频率的增加,动弹模和阻尼比均增大。随着振动次数的增加,动弹模减小,且应力水平越高衰减越快。
     (3)利用无砟轨道-路基系统的三维有限元模型研究了路基动力特性的时空分布规律,分析了轨道结构型式、材料特性、列车速度、轴重、轨道不平顺等因素对系统动力特性的影响,并在此基础上对这些参数进行了评价。此外,利用有限元模型探讨了路基局部(长宽高约为1.3mm×1.6m×0.6m)填料不密实、不均匀沉降等路基病害对系统动力特性的影响,分析表明局部填料不密实导致无砟轨道-路基系统的动力响应幅值变化率在10%以下;当不均匀沉降导致路基与轨道局部脱空时,路基内的动应力幅值增加达3倍以上。
     (4)建立了无砟轨道路基模型试验系统,该系统由无砟轨道路基实尺模型、反力及动力加载系统、数据测试及采集系统三部分组成。根据试验模型和列车载荷的传递路径,设计了列车荷载的分配体系和加载方案,并在此基础上采用有限元法建立了能考虑转向架荷载叠加效应的加载时程曲线;根据模型路基在填筑阶段和静置期的沉降观测结果,探讨了无砟轨道路基沉降的发展规律,采用开尔文流变模型对路基各结构层在静置期内的变形进行了预测。
With the development of high speed railway, ballastless track is widely applied in our country. But at this moment, the design of ballastless track-subgrade is usually based on experience and model-test result abroad. Research on the dynamic response of subgrade under high-speed train load and its influencing factors are still far from enough. In this thesis, based on the achievements of previous literatures, supported by scientific research fund of the ministry of railways, the dynamic characteristics of ballastless track/subgrade in high-speed railway is investigated by theoretical study, numerical simulation and model test, and large-scale dynamic triaxial tests were used to study the dynamic properties of coarse-grained soil fillings. The main research work and conclusions are listed as below:
     1. A dynamic analytical model of ballastless track-subgrade was established, in which the rail and ballastless track was modeled as Euler beam, fastener and CA layer were simplified to the spring-damping structure and the subgrade was regarded as homogeneous viscoelatic half-space. By mean of moving coordinate and Fourier Transform, the equations of track system and subgrade structure were established respectively and solved in the wave number domain. According to deformation compatibility conditions and IFFT algorithm, the integral expressions were calculated by numerical method. Then the influence of frequency, velocity of train, and the elastic modulus of subgrade on the displacement on the surface of subgrade were analyzed. Results show that, when velocity is less than200km/h, the vertical vibration on the surface of subgrade distributes right below the track structure, and its amplitude decreases with the increment of frequency. When velocity is larger than250km/h, the distribution of vertical vibration is not limited to the region under the track structure, and its amplitude increases with the increment of frequency. Resonance will emerge while the speed of train approaches Rayleigh wave speed.
     2.The results of large-scale dynamic triaxial tests indicate that dynamic strain is the most important factor affecting the dynamic modulus and damping ratio of group-B fillings. With the increase of dynamic strain, dynamic modulus decreases rapidly when dynamic strain is less than0.075%, and damping ratio increases rapidly when dynamic strain is less than0.015%. Both dynamic modulus and damping ratio increase with the enlargement of loading frequency and confining pressure. Dynamic modulus decreases with the increment of vibration number, and the reduction is more obvious under higher stress level.
     3.Three-dimensional dynamic finite element model of ballastless track/subgrade system was developed and validated to discuss spatio-temporal distribution law of the dynamic characteristics of subgrade. Using3D finite element model of ballastless track-subgrade, the time/space distribution of dynamic response in subgrade, and the influence of material parameters, train axle load and speed, irregularity of rail on the dynamic response of the whole system are studied. And an overall evaluation about the parameters was conducted. The influence of filling defects (insufficient compaction) and submergence were also analyzed using this model. Results show that. Filling defects have limited effect on the dynamic response of subgrade. If submergence leads to the separation between track structure and subgrade, the dynamic stress in subgrade will enlarge more than3times.
     4.A ballastless track-subgrade model test system was built. This system contains full scale ballastless track-subgrade model, reaction frames, dynamic loading system and data acquisition system. Depending on the test model and the diffusion path of train load, a load distribution system and corresponding loading scheme were designed. Then finite element method was employed to calculate the load-time curve of actuators which can take the additive effect of adjacent bogies into consideration. Based on the long-term observational data of subgrade settlement during different construction processes, the main rules were analyzed, and then the post-construction deformation of each subgrade layer was predicted using Kelvin model.
引文
[1]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999.
    [2]周镜,叶阳升.基床结构设计的探讨[J].铁道科学与工程学报,2004,1(1):1-6.
    [3]TB10621-2009,高速铁路设计规范[S].北京:中国铁道出版社,2010.
    [4]铁建设涵[2005]754号,客运专线无砟轨道铁路设计指南[S].北京:中国铁道出版社,2005.
    [5]贾革续.粗粒土工程特性的试验研究[D].大连:大连理工大学,2003.
    [6]杨尧.客运专线铁路基床填料动静三轴试验研究[D].成都:西南交通大学,2009.
    [7]张云根.高速铁路基床填料物理力学特性试验分析[D].成都:西南交通大学,2006.
    [8]马最,莫石秀,王秉纲.基于剪切性能的级配碎石关键筛孔合理范围确定[J].交通工程学报.2005,5(4):27-31.
    [9]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [10]Stoke, K. H. Constitutive modeling and material parameter identificat-ion for linearized problem[A]. Proceeding of international worshop on dynamic soil structure interaction:State-of-the-Art and Research Needs,1984.
    [11]Pitilakis K D, Anstassiadis A,Roptakis D.Field and laboratory determination of-dynamic properties of natural soil deposits[A]. Tenth World Conference on Earthquake Engineering[C]. Balkema Rotterdam.1992,1275-1280.
    [12]Toshikazu, Masakatsu, Masaru. Inverse analysis of dynamic soil parameters using acceleration records[A].12th World Conference on Earthquake Engineering[C]. Anckland,New Zealand.2000.
    [13]Satoh T. Fushimi MandTatsumi Y. Inversion of strain-dependent nonlinear characteristics of soils using weak and strong motions observed by borehole sites in Japan[J]. Bulletin of the Seismological Society of America,2001.91(2):365-380.
    [14]徐道远,施善云,费文兴.刘家峡坝体材料动力特性的现场测试[J].振动与冲击,1982,(1):37-42.
    [15]童发明.高速铁路相邻涵洞间过渡段路基动力响应相互影响分析[D].长沙:中南大学,2010.
    [16]胡萍.高速铁路无砟轨道密集过渡段路基动力试验与仿真分析[D].长沙:中南大学,2010
    [17]Hardin B 0, Richart F E. Elastic wave velocities in granular soils [J]. Journal of the Soil Mechanics and Foundations Division. ASCE.1963, Vol.89. No. SMI.33-65.
    [18]Hardin B O, Drnevich V P. Shear modulus and damping in soils:design equations and curves [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(7):667-692.
    [19]Seed H B, Idriss I M.Soil moduli and damping factors for dynamic response analyses. Revort No. EERC70-10, Earthquake Engineering Research Center, University of California, Berkeley,1970.
    [20]Martin P P, H B Seed. One-dimensional dynamic ground response analyses. ASCE. Vol.108, No. GT7, pp.935-954.
    [21]Kagawa T. Module and damping factor of Soft marine clay. ASCE.1992, Vol.118. Vo.GT9:1360-1375.
    [22]Yasuda N, Matsumoto N. Dynamic deformation characteristics of sands and rockfill materials[J]. Canadian Ceotechnical Journal,1993, 30(3):747-757.
    [23]Kokusho T, Tanaka Y. Geotechnical dynamic properties of gravel layers investigated by in-situ freezing sampling[J]. In:Ground Failures Under Seismic Conditions, Geotechnical Special Publication, No.44, ASCE, New York, USA,1993:121-140.
    [24]Yasuda N, Matsumoto N. Comparisons of deformation characteristics of rockfill materials using monotonic and cyclic loading laboratory tests and in situ tests [J]. Canadian Geotechnical Journal,1994,31 (1): 162-174.
    [25]Evans M D, Zhou S. Liquefaction behavior of sand-gravel composites [J]. Journal of Geotechnical Engineering, ASCE,1995,121(3):287-298.
    [26]Rollins K M, Evans M D, et al. Shear modules and damping relationships for gravels[J]. Journal of Ceotechnical and Geoenvironmental Engineering, ASCE,1998,124(5):396-405.
    [27]Hatanaka M, Suzuki Y.Cyclic shear properties of high quality undisturbed Tokyo gravel [J]. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineeing,1988,28(4):57-68.
    [28]架茂田,林皋等.岩土地震工程与土动力学中若干最新进展评述[A].第五届全国土动力学学术会议论文集[C].大连:大连理工大学出版社,1998:20-46.
    [29]祝龙根,吴晓峰.低幅应变条件下砂土的动力特性的研究[J].大坝观测与土工测试,1988,12(1):27-33.
    [30]孔宪京,韩国城,林皋.粒径对动剪切模量的影响[S].东北水利发电学报,1988,4(4):9-15.
    [31]孔宪京,娄树莲,邹德高,等.筑坝堆石料的等效动剪切模量和等效阻尼比[J].水利学报,2001,8:20-25.
    [32]梁永霞.模拟堆石料的动力变形测试及其应用[A].第三届全国土动力学学术会议论文集[C].上海:同济大学出版社,1990,121-124.
    [33]徐存森,吴俊壁.用扭转单剪/共振柱仪测定某核电站饱和原状砂的动剪模量[J].大坝观测与土工测试,1996,20(5):36-39.
    [34]徐刚,杨宗茂,郝鸳.粗粒土动力性试成果整理法探讨[J].人民黄河1994,(3),34-36
    [35]陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84.
    [36]何兆益,黄卫,邓学钧.级配碎石弹性模量的动三轴试验研究[J].东南大学学报,1997,27(3):36-40.
    [37]胡仁伟,王红,赵国堂.道碴动三轴试验研究[J].中国铁道科学,2001,22(2):101-106.
    [38]林秀,丁银萍,卢美玲.级配碎石作路面基层材料的动三轴力学性能试验研究[J].中国市政工程,2004,(3):25-26.
    [39]贺建清,张家生.石灰土填料动力特性试验研究[J].湖南科技大学学报(自然科学版),2005,20(4):58-63.
    [40]王汝恒,贾彬,邓安福,等.砂卵石土动力特性的动三轴试验研究第25卷增2岩石力学与工程学报2006,25(增2):4059-4064.
    [41]蒋关鲁,房立凤,王智猛,等.红层泥岩路基填料动强度和累积变形特性试验研究[J].岩土工程学报,2010,32(1):124-129.
    [42]何兆益,黄卫,邓学钧.级配碎石弹性模量的动三轴试验研究[J].东南大学学报,1997,27(3):36-40.
    [43]何兆益,黄卫,邓学钧.级配碎石动静弹性模量的对比研究[J].中国公路学 报,1998,11(1):15-20
    [44]杨自成.路基填土的动力特试验研究[D].重庆:重庆交通大学,2008.
    [45]王随原,罗志刚.级配碎石动态回弹模量实验研究[J].地下空间与工程学报.2010,6(4):735-746.
    [46]凌华,傅华,蔡正银,米占宽,朱峰.坝料动力变形特性试验研究[J].岩土工程学报,2009,31(12):1920-1924.
    [47]董威信,孙书伟,于玉贞,等.堆石料动力特性大型三轴试验研究[J].岩土力学.2011.32(增2):2731-2734.
    [48]孔祥辉,蒋关鲁,王智猛.循环荷载下红层泥岩土的动态特性[J].水文地质下程地质,2012,39(4):75-79+87.
    [49]郭建湖.高速铁路碎石类A、B组填料的动力特性研究[J].土工基础,2012,26(5):116-120.
    [50]Fryba, L. History of Winkler foundation[J]. Vehicle System Dynamics, 1995,24:7.
    [51]Timoshenko S.Method of Analysis Static and Dynamical Stresses in Rail [J]. Proc. of the 2nd International Congress of Applied Mechanics, Zurich,1927.
    [52]J. T Kenney J, Pasadena, Calif. Steady-State vibration of beam on elastic foundation for moving Load[J]. Journal of Applied Mechanics, 1954, (11):359-364.
    [53]Krylov V, Ferguson C. Generation of low frequency ground vibrations from railway trains[J]. Applled Acoustics,1994,42(3):199-213.
    [54]Krylov V. Generation of ground vibration by superfast trains[J]. Applied Acoustics,1995, (44):149-164.
    [55]Hong Hao, Thien Cheong Ang. Analytical Modeling of Traffi-Induced Ground Vibrations. Journal of Engineering Mechanics,1998,21 (8): 135-148.
    [56]Grundmann H,Lieb M, Trommer E. The response of a layered half-space to traffic loads moving along its surf ace [J]. Archive Appl.Mech.1999, 69:54-67.
    [57]Hung, H. H. Yang, Y. B. Elastic waves in visco-elastic half-space generated by various vehicle loads[J]. Soil Dynamics and Earthquake Engineering,2001,21 (1):1-17.
    [58]Lefeuve-Mesgouez, G. Peplow, A. T. Le Houedec, D. Surface vibration due to a sequence of high speed moving harmonic rectangular loads. Soil Dynamics and Earthquake Engineering,2002,22(6):459-473.
    [59]Kaynia A, Madshus C,Zackrisson P. Ground vibration from high speed trains:prediction and countermeasure[J]. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE,2000, 126(6):531-537.
    [60]Matsuura. Impulsive response of an elastic layered medium in the anti-plane wave field based on a Thin-Layered element and Discrete wave number method. Structural Eng/Earthquake Eng,1993,459(22): 119-128.
    [61]Matsuura, Akio Simulation for analyzing direct derailment limit of running vehicle on oscillating tracks. Structural Engineering/ Earthquake Engineering,1998,15(1):63-72.
    [62]Dieterman, H. A. and A. V. Metrikine. The equivalent stiffness of a half-space interacting with a beam. Critical velocities of a moving load along the beam. European J.Mech. A/Solids,1996,15(1):67-90.
    [63]Sheng, X, C. Jones, M. Petyt. Ground vibration generated by a harmonic load acting on a railway track. Journal of Sound and Vibration, 1999,225 (1):3-28.
    [64]Sheng, X, C. Jones, M. Petyt. Ground vibration generated by a load moving along a railway track. Journal of Sound and Vibration,1999, 228(1):129-156.
    [65]Jones C J C, Thompson, D J, Petyt M. Studies using a combined finite element and boundary element model for vibration propagation from railway tunnels[J]. In Proceedings the Seventh International Congress on Sound and Vibration, Garmish-Partenkirchen,2000, 2703-2710.
    [66]Hirokazu Takemity, Shuhei Satonaka and wei-Ping xie, Train Track-Ground Dynamics Due to High Speed Moving Source and Ground Vibration Transmission[J]. Structural Eng/Earthquake Eng, JSCE, 2001,18 (2):299-309.
    [67]Dinkel J, Bitzenbauer J. Dynamic interaction between a moving vehicle and an infinite structure excited by irregularities-Fourier transforms solution[J]. Archive of Applied Mechanics,2002,72(2): 199-211.
    [68]Vostroukhov, A. V, Metrikine, A. V. Periodically supported beam on a visco-elastic railway track.layer as a model for dynamic analysis of a high-speed International Journal of Solids and Structures, 2003,40(21):5723-5752.
    [69]Kim, Seong-Min. Vibration and stability of axial loaded beams on elastic foundation under moving harmonic loads[J]. Engineering Structures,2004,26(1):94-105.
    [70]杨英豪,王杰贤.列车运行时振波在土中的传递[J].西安建筑科技大学学报,1995,27(3):329-334.
    [71]翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社,2002.
    [72]翟婉明,韩卫军,蔡成标,等.高速铁路板式轨道动力特性研究[J].1999,21(6):65-69.
    [73]谢伟平,于艳丽,李红兵.高速移动荷载下轨道系统振动模拟的数值算法[J].武汉理工大学学报,2001,23(12):57-59.
    [74]谢伟平,王国波.移动荷载作用下轨道系统的动力特性分析[J].郑州大学学报,2003,24(1):23-27.
    [75]谢伟平,王国波,于艳丽.移动荷载作用下基于薄层单元法的土动力分析[J].华中科技大学学报,2004,2:8-11.
    [76]刘维宁,张昀青.轨道结构在移动荷载作用下的周期解析解[J].工程力学,2004,21(5):100-103.
    [77]王常晶,陈云敏.列车荷载在地基中引起的应力响应分析[J].岩石力学与工程学报,2005,24(7):1178-1187.
    [78]聂志红,刘宝琛,李亮,等.移动荷载作用下轨道路基动力响应分析[J].中国铁道科学,2006,27(2):15-19.
    [79]冯青松,雷晓燕,练松良.高速铁路路基-地基系统振动响应分析[J].铁道科学与工程学报,2010,7(1):1-6.
    [80]雷晓燕.高速铁路轨道振动与轨道临界速度的傅里叶变换法[J].中国铁道科学,2007,28(6):30-34.
    [81]和振兴,翟婉明.板式轨道交通引起的地面振动模型[J].交通运输工程学报,2006,6(3):13-17.
    [82]Hanazato, Toshikazu, Ugai, and ect. Three-dimensional analysis of traffic-induced ground vibrations[J]. Journal of Geotechnical Engineering,1991,117(8):1132-1151.
    [83]Cai zhenqi.Modelling of rail track dynamics and wheel/rail interaction PhD thesis Canada Queen's University atKingston,1992.
    [84]Verbic Branisiav, Schmid Guenther, Koepper. Heinz-Dieter, Best, Heinrich. Investigating the dynamicbehaviors of rigid track, Railway Gazette International.1997(9).
    [85]Oscarsson J, Dahlberg T. Dynamic Train/TrackBallast Interaction computer Models and Full-scale Experiments[J].Vehicle System Dynamics,1998,28(Suppl.):72-84.
    [86]Auersch L. Vehicle-track interaction and Soil Dynamics[J]. Vehicle System Dynamics,1998,28(Suppl.):552-558.
    [87]Shanhu J T, Rao N, V. Kameswara, Yudhbir. Parametric study of resilient response of tracks with a sub-ballast layer[J]. Canadian Geotechnical Journal,1999,36(6):1137-1150.
    [88]Wu S F, Zhou Z. Simulation of vehicle pass-by noise radiation Transactions of the ASME. Journal of Vibration and Acoustics,1999, 121 (2):197-203
    [89]Dong, R. G. Sankar, S. Dukkipati, R. V. Finite element model of railway track and its application to the wheel flat problem Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.1994.208(1):61-72.
    [90]Ekevid, Torbjorn Wiberg, Nils Erik. Wave propagation related to high-speed train a scaled boundary FE-approach for unbounded domains[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191(36):3947-3964.
    [91]Takemiya H, Fei G. Sukeyasu Y.2-D Transient Soil-surface foundation interaction and wave propagation by time domain BEM[J]. Earthquake Engineering and Structural Dynamics,1994,23:931-945.
    [92]Takemiya H. Sukeyasu Y. Transient response of rigid strip foundations on a half-space/stratum soil due to impulsive loads[J]. Computer Methods and Advances in Geomechanics。1994,2:992-998.
    [93]Takemiya H. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J]. Soil Dynamics and Earthquake Engineering,2004,24(1):69-87.
    [94]Van Lier S. The vibro-acoustic modeling of slab track with embedded rails[J]. Journal of Sound and Vibration,2000,231(3):804-817.
    [95]Esveld C. Modern Railway Track(Second Edition)[M]. Delft MRT Production,2001.
    [96]Diehl R J, Nowack R, Holzl G. Solutions for acoustical problems with ballastless track[J]. Journal of Sound and Vibration,2002,31(3): 899-906.
    [97]Man A P D E. Dyna track a survey of dynamic railway track properties and their quality[M]. Dissertation TU Delft, DUP-Science,2002.
    [98]Markine V L, Man A P DE, Jovanovic S, Esveld C. Modelling and optimisation of an embedded rail structure[A]. Proceedings of Innovations in the Design and Assessment of Railway Track[C]. Trade Show and Workshops. Delft University of Technology, Delft, The Netherlands.
    [99]Tanable M, Wakui H, et al. Computational model of a Shinkansen train running on the railway structure and the industrial applications [J]. Journal of Materials Processing Technology,2003, (140):704-710.
    [100]Okuda H, Asanuma K, Matsumoto N, et al. Dynamic load, resistance and environmental performance of floating ladder track[J].QR of RTRI, 2004,45 (3):149-155.
    [101]Cui F, Chew C H. The effectiveness of floating slab track system[J]. Receptance methods Applied Acoustics,2000, (61):441-453.
    [102]李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [103]Hanazato, Toshikazu, Ugai, Keizo, ect. Three-dimensional analysis of traffic-induced ground vibrations[J]. Journal of Geotechnical Engineering,1991,117(8):1133-1151.
    [104]雷晓燕.高速列车对道砟的动力响应[J].铁道学报,1997,19(1):113-121.
    [105]雷晓燕,陈水生.高速铁路轨道结构空间动力分析[J].铁道学报,2000,22(5):76-80.
    [106]李成辉.轨道、车辆系统竖向振动模态分析[J].西南交通大学学报,1995,30(3):291-294.
    [107]刘学毅.轮轨空间耦合振动分析模型及其应用[J].铁道学报,1998,20(3):102-108.
    [108]王于.轨道过渡段动力学性能分析及设置条件[D].成都:西南交通大学, 1998.
    [109]刘晶波,吕彦东.结构-地基动力相互作用问题分析的-种直接方法[J].土木工程学报,1998,31(3):54-64.
    [110]张远荣.高速铁路路基面竖向动应力的模拟计算[J].铁道建筑,2000,8:21-23.
    [111]娄平,曾庆元.移动荷载作用下连续粘弹性基础支承无限长梁的有限元分析[J].交通运输工程学报,2003,(2):1-6.
    [112]宣言.客运专线曲线线路车线耦合系统动力学性能及无砟轨道结构振动响应的仿真研究[D].铁道科学研究院博士论文,2005.
    [113]卿启湘.高速铁路无碴轨道-软岩路基系统动力特性研究[D].长沙:中南大学,2005.
    [114]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-70.
    [115]邱延峻,张晓靖,魏永幸.列车速度对无碴轨道路基动力特性的影响[J].交通运输工程学报,2007,7(2):1-5.
    [116]边学成.高速列车运动荷载作用下地基和隧道的动力响应分析[D].杭州:浙江大学,20005.
    [117]陈震.高速铁路路基结构动力有限元分析[J].路基工程,2007,131:14-16.
    [118]肖晓骥.客运专线土质路基无砟轨道动力特性研究[D].北京:北京交通大学,2007.
    [119]何群.客运专线全风化花岗岩改良土隧-隧过渡段动力特性及稳定性研究[D].长沙:中南大学,2007.
    [120]董亮,赵成刚,蔡德均,等.高速铁路无砟轨道路基动力特性数值模拟和试验研究[J].土木工程学报,2008,41(10):81-86.
    [121]孙常新,刘杜香,梁波.基于有限元方法的铁路路基动力响应场分析[J]路基工程,2008,2,137:28-30.
    [122]陶宏亮.高速铁路板式无碴轨道路基的动力响应及参数影响分析[D].吉林大学硕士论文,2009.
    [123]张协崇.客运专线涵-涵过渡段动力特性试验研究及仿真分析[D].长沙:中南大学,2009.
    [124]陈鹏.高速铁路无砟轨道结构力学特性的研究[D].北方交通大学博士论文,2008.
    [125]]胡萍,王永和,卿启湘.过渡段路基刚度变化规律的试验研究[J].石家庄铁道学院学报(自然科学版),2009,22(2):22-26.
    [126]张格明.中高速条件下车线桥动力分析模型与轨道不平顺影响[D].北京:铁道科学研究院,2001.
    [127]周镇勇.武广客运专线路基动力响应特性试验及数值模拟分析[D].长沙:中南大学,2010.
    [128]梁波,孙常新.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报,2006,39(9):117-122.
    [129]陈鹏.高速铁路无砟轨道结构力学特性的研究[D].北京:北京交通大学,2008.
    [130]黄瑛.高速铁路路基动态响应分析及模型实验装置研制[D].长沙:中南大学,2009.
    [131]徐进.高速铁路路基模型试验系统研究与动力分析[D].长沙:中南大学,2011.
    [132]Fujikake T. A prediction method for the propagation of ground vibration from railway trains[J]. Journal of Sound and Vibration, 1986,111 (2):357-360.
    [133]Melke J, Kraemer S. Digital techniques in the measurement of underground railway vibration and the rating of track isolation systems [J]. Proceedings-International Conference on Noise Control Engineering,1981,891-894.
    [134]Okumura Kuno, K. Statistical analysis of field data of railway noise and vibration collected in an urban area[J]. Applled Acoustics,1991, 33(4):262-80.
    [135]Takemiya H.Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics,2005,131(7):699-711.
    [136]Dawn T.M. Stanworth C. G. Ground vibrations from passing trains[J]. Journal of Sound and Vibration,1979,8:354-62.
    [137]Jorgen J. Ground Vibration from Rail Trafic. Journal of Low Frequency. Noise and Vibration,1987,6(3):96-103.
    [138]Madshus C, Bessason B, Harvik L. Prediction model for low frequency vibration from high speed railways on soft ground[J]. Journal of Sound and Vibration,1996,193(1):194-203.
    [139]Madshus, C. Kaynia, A. M. High-speed railway lines on soft ground: dynamic behaviour at critical train speed. Journal of Sound and Vibration,2000,231 (3):689-701.
    [140]Turunen-Rise I. H, Brekke A, Harvik L, etal. Vibration in dwellings from road and rail traffic-Part I:a new Norwegian measurement standard and classification system. Applied Acoustics,2003,64(1):71-87.
    [141]Hendry M, Hughes D, Barbour L, etal. Train induced dynamic response of railway track and embankments over soft peat foundations[C]. Proceedings 59thCanadian Geotechnical Conference, Vancouver: Canadian Geotechnical Society,2006.
    [142]杨燦文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963,(2):49-57.
    [143]周神根.高速铁路路基基床设计[J].路基工程,1997,72(3):1-5.
    [144]茅玉泉.交通运输车辆引起的地面振动特性和衰减[M].兵器工业部第六设计研究院,1987.
    [145]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-28.
    [146]潘昌实,G. N. Pande.黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报,1984,17(4):54-55.
    [147]曾树谷.铁路轨道动力测试技术[M].北京:中国铁道出版社,1988.
    [148]蔡英.大秦重载铁路路基的动力响应及分析重载铁路线路结构与养护[M].北京:中国铁道出版社.1992.
    [149]蔡英,黄时寿.重载铁路的线路动力学测试及分析[J].西南交通大学学报,1993,91(3):92-98.
    [150]孙常新,梁波,杨泉.秦沈客运专线路基动应力响应分析[J].兰州铁道学院学报(自然科学版),2003,22(4):110-112.
    [151]陈雪华,律文田,王永和.高速铁路路桥过渡段路基动响应特性研究[J].振动与冲击,2006, Vol.25 No.3:95-98.
    [152]谢媛媛.基床动力响应研究[J].四川建筑,2006,26(3):49-50.
    [153]聂志红,阮波,李亮.秦沈客运专线路堑段基床结构动态测试分析[J].振动与冲击,2005,24(2):30-32.
    [154]李献民,王永和,杨果林,等.高速下过渡段路华动响应特性研究[J].岩土工程学报,2004,26(1):100-104.
    [155]聂志红.高速铁路轨道路基竖向动力响应研究[D].长沙:中南大学,2005.
    [156]张泉,罗强.遂渝铁路刚性路基动应力测试分析[J].铁道标准设计,2006,(2):18-20.
    [157]田海波,许恺.时速250km客运专线路基动力响应研究试验[J].铁道标准设计,2006,(2):3-6.
    [158]颜胜才.遂渝铁路基床荷载特性及路涵过渡性能试验研究[D].西南交通大学硕士论文,2007.
    [159]陈斌,陈国兴,朱定华,等.城市轨道交通引起的场地振动试验研究[J].防灾减灾工程学报,2007,27(3):312-317.
    [160]肖宏.高速铁路无碴轨道桩网结构路基研究[D].成都:西南交通大学,2007.
    [161]童发明,王永和,何群.改良土填筑过渡段基床底层的动力特性分析[J].中南大学学报(自然科学版),2009,40(6):1704-1711.
    [162]李佳.遂渝铁路无砟轨道路隧过渡段实车测试及路基结构FEM计算[D].成都:西南交通大学,2008.
    [163]范生波.高速铁路无砟轨道路基动响应测试分析[D].成都:西南交通大学,2007.
    [164]吴波.高速铁路不同细粒土基床底层结构动力特性测试分析[J].铁道标准设计,2008,(4):63-65.
    [165]Gobela C H, Weisemanna U C, Kirschner R A. Effectiveness of a reinfo rceing geogrid in a railway subbase under dynamic loads[J]. Geot-exiles and Geomembranes,1994(13):91-99.
    [166]曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,31(1):36-41.
    [167]曹新文,蔡英.客运专线土工格室复合基床的模型试验[J].铁道工程学报,2004,(Z1):40-43.
    [168]路军富.多荷载作用下路基土的力学行为研究[D].成都:西华大学,2007.
    [169]苏谦,蔡英.高速铁路级配碎石基床表层不同厚度动态大模型试验研究[J].2001,21(8):2-4.
    [170]钟辉虹,汤康民,黄茂松.铁路粘土路基动力特性试验研究[J].西南交通大学学报,2002,37(5):488-490.
    [171]林青.水泥稳定级配碎石基床结构的动力特性分析[D].成都:西南交通大学,2006.
    [172]]詹永祥,蒋关鲁,牛国辉,等.高速铁路无碴轨道桩板结构路基模型试验研究[J].西南交通大学学报,2007,42(4):400-403.
    [173]冯立臣,蒋关鲁,王志猛,等.客运专线土质路基无砟轨道基床动态特性的模型试验研究[J].铁道建筑,2008,(08):78-81.
    [174]边学成,蒋红光,金皖锋,等.板式轨道-路基相互作用及荷载传递规律的物 理模型试验研究[J].岩土工程学报,2012,34(8):1488-1495.
    [175]夏伯.高速铁路无昨轨道动力特性及相关应用研究[D].成都:西南交通大学,2009.
    [176]蔡袁强,王玉,曹志刚.移动荷载作用下饱和地基上板式轨道动力分析[J].振动工程学报,2011,24(1):48-54.
    [177]程建春.数学物理方程及其近似方法[M].北京:科学出版社,2005.
    [178]和振兴.板式无砟轨道交通引起的环境振动研究[D].成都:西南交通大学,2008.
    [179]徐芝纶.弹性力学简明教程[M].高等教育出版社,1983.
    [180]周华飞.移动荷载作用下结构与地基动力响应特性研究[D].杭州:浙江大学,2005.
    [181]周华飞,蒋建群.高速移动荷载下黏弹性半空间体的动力响应[J].力学学报.2007,39(4):545-553.
    [182]TB10001-2005,铁路路基设计规范[S].北京:中国铁道出版社,2005.
    [183]詹永祥,蒋关鲁.无碴轨道路基基床动力特性的研究[J].岩土力学.2010,31(2):392-396.
    [184]SL237-1999,土工试验规程[S].北京:中国标准出版社,1999.
    [185]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [186]吴世明,徐攸在.土动力学现状与发展[J].岩土工程学报,1998,20(3):125-130.
    [187]Idriss I M, Dobry R, Singh R D. Nonlinear behavior of soft clays during cyclic loading[J]. Journal of Soil Mechanics and Foundation,1978, 104(12):1427-1447.
    [188]梁波,罗红,孙常新.高速铁路振动荷载模拟研究[J].铁道学报,2006,28(4):89-94.
    [189]孙常新,胡金虎,梁波.准高速铁路路基动力响应数值模拟[J].计算力学学报2010,27(2):173-176.
    [190]董亮,赵成刚,蔡德钩,等.高速铁路路基的动力响应分析方法[J].工程力学,2008,25(11):231-240.
    [191]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社.1998.
    [192]罗震,翟婉明,蔡成标.土路基上无碴轨道结构受力分析[C].铁路客运专线建设技术交流会议论文集,武汉,2005:96-99.
    [193]罗震,翟婉明,颜华,等.土路基上板式轨道结构受力的有限元分析[J].西南交通大学学报,2007,42(6):711-714,725.
    [194]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2007,
    [195]罗震.高速铁路无砟轨道结构受力及轮轨动力作用分析[D].成都:西南交通大学,2008.
    [196]卿启湘,胡萍,王永和,等.高速铁路双块式无砟轨道计算模型约束方程的建立[J].中南大学学报,2010,41(4):1361-1368.
    [197]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [198]刘晶波,杜义欣,闫秋实.粘弹性人工边界及地震动输入在通用有限元软件中的实现[J].防灾减灾工程学报,2007,27(增刊):37-42.
    [199]谢定义.土动力学[M].西安:西安交通大学出版社,1988
    [200]陈果.车辆-轨道耦合系统随机震动分析[D].成都:西南交通大学,2001.
    [201]屈晓辉.客运专线铁路路基设计技术[M].北京:人民交通出版社.2008.
    [202]XU Jin, ZHANG Jiasheng, HUANG Yin. The Analysis of Servo Loading Effect in High-speed Railway [C]. ICRE 2010 International Conference on Railway Engineering,2010,8:350-355.
    [203]曾庆元.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [204]俞展酞.车辆脱轨及其评价[J].铁道学报,1999,21(3):33-38.
    [205]蔡成标.高速铁路列车-线路-桥梁耦合振动理论及应用研究[D].成都:西南交通大学,2004
    [206]95J01-M,高速试验列车客车强度及动力学规范[S].北京:中国铁道出版社,1995
    [207]TB/T2360-1993.铁道机车动力学性能试验鉴定方法及评定标准[S].北京:中国铁道出版社,1993.
    [208]王伟华.土路基上双块式无砟轨道垂向动力特性分析[D].成都:西南交通大学,2009.
    [209]王其昌.道岔过渡段设置条件的动力学性能分析[J].铁道标准设计.1999,(12):24-28.
    [210]王其昌.高速铁路路桥过渡段轨道折角限值的分析[J].铁道学报,1999,20(3):109-113.
    [211]翟婉明.高速铁路轨道刚度与胶垫应用[J].铁道机车车辆,1996,66(4):49-52.
    [212]翟婉明.货物列车动力学性能评定标准的研究与建议方案[J].铁道车辆,2002,40(3):10-13.
    [213]雷晓燕.轨道动力学分析模型参数研究[J].铁道学报,1998,58(2):71-76.
    [214]苏谦,蔡英.高速铁路路基结构变形分析[J].路基工程,2000,1:1-3
    [215]王其昌等.高速铁路路桥过渡段轨道折角限值的分析[J].铁道学报,199820(3):109-113.
    [216]周镜,杨灿文.国外路基技术标准[J].路基工程,1985,(2):6-9.
    [217]铁道部科学研究院铁道建筑研究所.高速铁路路基技术条件的研究[R].国家“八五’计划科技攻关项目(85-402-02-02)研究分报告,1995.
    [218]铁道部工务局.铁路工务技术手册-轨道(修订版)[M].北京:中国铁道出版社,2000.
    [219]日本国有铁道编.陈耀荣译.土工结构物设计标准和解说[M].北京:中国铁道出版社,1982.
    [220]佐藤吉彦.徐涌等译.新轨道力学[M].北京:中国铁道出版社,2001.
    [221]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [222]梁波.高速铁路路基的动力特性及土工合成材料的应用研究[D].成都:西南交通大学,1998.
    [223]叶朝良,于炳炎,李卫国.京九铁路某段路基病害调查[J].路基工程,2005,(6):107-108.
    [224]程博华.铁路路基病害的成因与整治措施[J].铁道建筑技术,2011,198(2):65-67+82.
    [225]袁文忠.相似理论与静力学模型试验[M].西南交通大学出版社,1998.
    [226]客运专线铁路路基质量检测技术要点手册[M].北京:中国铁道出版社,2009.
    [227]TB10102-2004,铁路工程土工试验规程[S].北京:中国铁道出版社,2004.
    [228]铁建设[2005]160号,客运专线铁路路基工程施工质量验收暂行标准[S].北京:中国铁道出版社,2005.
    [229]苏谦.高速铁路路基空间时变藕合系统动力分析模型及其应用研究[D].成都:西南交通大学,2001.
    [230]陈震.高速铁路路基动力响应研究[D].武汉:中国科学院武汉岩土力学研究所,2006.
    [231]袁伟.软岩填料在高速铁路中的适用性分析与沉降研究[D].长沙:中南大学,2009.
    [232]倪俊.高速公路高填方路基沉降智能反分析与预测方法研究[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [233]陈晓斌.高速公路粗粒土路堤填料流变性质研究[D].长沙:中南大学,2007.
    [234]陈善雄,王小刚,姜领发,等.铁路客运专线路基面沉降特征与工程意义[J].岩土力学,2010,31(3):702-706.
    [235]王智猛.红层泥岩及其改良土填筑高速铁路路基适应性及工程技术研究[D].成都:西南交通大学,2008.
    [236]卿三惠.红层软岩地区高速铁路软基路堤沉降控制研究[D].成都:成都理工大学,2007.
    [237]王星运,陈善雄,余飞,等.曲线拟合法对路基小变形情形适用性研究[J].岩土力学,2009,30(9):2763-2769.
    [238]黄国明,黄润秋.岩石弹塑性损伤耦合本构模型[J].西安科技学院学报,1996,vo116(4):328-333.
    [239]孙钧.岩土材料流变模型及其工程应用[M].北京:建筑工业出版社,1999.
    [240]刘世君,徐卫压,邵建富.岩石粘弹性模型辨别及参数反演闭[J].水利学报,2002,(6):101-105.
    [241]许宏发,钱七虎,吴华杰,等.确定软土流变模型参数的回归反演法明[J].岩土工程学报,2003,25(3):365-367.
    [242]陈炳瑞.基于模式搜索的岩石流变模型参数识别明[J].岩石力学与工程学报,2005,124(2):207-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700