土与结构接触面三维静动力变形规律与本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土与结构接触面三维力学特性研究是对土与结构系统进行合理的三维化非线性分析中迫切需要解决的重点和难点问题之一。本文从研制设备入手,在材料试验、机理分析、模型建立、数值实现和工程应用等多个方面,着重对三维加载条件下接触面的静动力变形规律及其本构描述展开了较为系统而深入的探索,取得了如下的主要新成果:
     (1)成功研制了一台可进行三维加载的大型接触面力学特性试验机,并对其功能进行了扩展。该试验机加载能力高,可进行较大尺寸试样的接触面三维直剪和单剪试验,特别适于粗粒土与结构接触面的研究。试验机加载和测量精度高,可进行细观测量,同时还具有土的大型直剪、单剪和压缩试验功能。
     (2)系统地进行了多种加载条件下粗粒土与结构接触面三维静动力特性试验,得到了系列化的试验成果。将接触面的三维加载条件划分为直线型、旋转型和组合型三种不同加载类型,分别进行了单调和往返两类剪切试验,研究了法向边界条件、加载幅值、控制方式等因素对接触面力学特性的定量影响。
     (3)揭示了三维加载条件下粗粒土与结构接触面的基本静动力学规律及主要影响因素。研究发现,三维加载条件下接触面的强度受加载路径影响较小;循环加载引起接触面明显的硬化且在初始加载阶段发展较快;三维加载条件下接触面变形存在明显的非共轴现象;三维加载剪切引起的接触面法向位移可以划分成可逆性和不可逆性两部分;三维加载条件下接触面存在明显的物态演化,其对于接触面的力学特性有重要影响。
     (4)提出了合理的建模思路,在变形规律分析基础上建立了一个新的接触面三维弹塑性循环本构模型。将三维加载产生的塑性变形分为线性加载分量和旋转加载分量两部分,并对旋转加载分量提出了一种有效的描述方法。模型可有效模拟多种复杂加载路径下接触面从小变形到大变形的主要三维力学特性。
     (5)实现了基于新建立的接触面三维本构模型的数值计算方法并应用于边值问题分析。对面板堆石坝这一存在三维接触面问题的典型工程课题进行了三维有限元分析,验证了接触面三维本构模型数值实现的有效性和合理性。
Based on the new experimental observations under three-dimensional loading conditions, a rational approach was explored systematically on the three-dimensional monotonic and cyclic behaviors of soil-structure interfaces from aspects of physical interpretations, constitutive model, and numerical implementation as well as practical application. The main achievements obtained in the thesis are as follows:
     1. A new, large-scale multifunction test apparatus was designed and developed to investigate the three-dimensional monotonic and cyclic behaviors of soil-structure interfaces. The maximum normal loading capacity is 800kN; and the maximum diameter of the circular sample is 500mm. Either direct shear or simple shear interface tests can be conducted using different soil containers. Various loading paths can be applied with an accurate three-dimensional loading device supported by a hydraulic servo system. Many tests on coarse-grained soil can also be conducted with the apparatus, including direct shear, simple shear and confined compression tests.
     2. Series of tests were systematically conducted on the interfaces between a steel plate and gravel under three-dimensional loading conditions. The monotonic and cyclic tests were performed under three kinds of loading paths, i.e., linear loading path, rotational loading path, and their combination. The tests, subjected to an application of displacements or loads, controlled in two perpendicular tangential directions, were conducted under different normal boundary conditions, including constant stress, constant displacement and constant stiffness. The effects of loading conditions were investigated carefully, including magnitude of loading, normal stress and normal stiffness.
     3. The fundamental rules of three-dimensional monotonic and cyclic behaviors of the interface have been studied on the basis of test results. The shear strength is insignificantly affected by the different loading paths. During the loading process, the physical states changed and governed the stress-strain response strongly. Strain-hardening occurs due to cyclic loading. Non-coaxial angle exists when the interface was subjected to a rotational loading. The volumetric strain due to dilatancy is composed of a reversible dilatancy component and an irreversible dilatancy one.
     4. A new three-dimensional cyclic constitutive model of the soil-structure interface was developed using the bounding surface and generalized plasticity theory based on the fundamental rules. The loading mechanism is rationally decomposed into linear and rotational loading, and a new method for evaluating the interface behavior related with the rotational loading was proposed. The present model is confirmed to capture the main features of the interface subjected to three-dimensional loading, from small strain to large strain.
     5. The finite element formulations of the present model was developed and implemented in a three-dimensional nonlinear FEM code. A concrete-faced rockfill dam was analyzed using the present constitutive model of the interface. The results confirmed the effectiveness of the model and the numerical implementation in the analysis of boundary-value problems involving soil-structure interfaces.
引文
1. Clough G W, Duncan J M. Finite Element Analyses of Retaining Wall Behavior. ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(SM12): 1657-73.
    2. Coyle H M, Sulaiman I H. Skin Friction for Steel Piles in Sand. American Society of Civil Engineers Proceedings, Journal of the Soil Mechanics and Foundations Division, 1967, 93(SM6): 261-278.
    3. Uddin N, Gazetas G. Dynamic-Response of Concrete-Faced Rockfill Dams to Strong Seismic Excitation. Journal of Geotechnical Engineering-Asce, 1995, 121(2): 185-197.
    4.张嘎,张建民.接触面弹塑性损伤模型在面板堆石坝应力变形分析中的应用.水力发电学报, 2005, 24(4): 5-10.
    5.胡黎明,濮家骝,王刚.接触面损伤模型应用于三维有限元分析.水利学报, 2002(3): 44-49.
    6. Huo H, Bobet A, Fernandez G, et al. Load Transfer Mechanisms between Underground Structure and Surrounding Ground: Evaluation of the Failure of the Daikai Station. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1522-1533.
    7. Coulomb C A. Essai Sur Une Application Des Regles Des Maximis Et Minimise a Quelue Problemes De Statique. Memoire Academie Royale des Sciences, 1776: 7.
    8. Fakharian K, Evgin E. Cyclic Simple-Shear Behavior of Sand-Steel Interfaces under Constant Normal Stiffness Condition. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1096-1105.
    9.张嘎,张建民.循环荷载作用下粗粒土与结构接触面变形特性的试验研究.岩土工程学报, 2004, 26(2): 254-258.
    10.张嘎,张建民.粗粒土与结构接触面的可逆性与不可逆性剪胀规律.岩土力学, 2005, 26(5): 699-704.
    11. Potyondy J G. Skin Friction between Various Soils and Construction Materials. Geotechnique, 1961, 11(4): 339-353.
    12. Desai C S, Drumm E C, Zaman M M. Cyclic Testing and Modeling of Interfaces. Journal of Geotechnical Engineering, 1985, 111(6): 793-815.
    13. Desai C S. Some Aspects of Constitutive Models for Geologic Media. SAE Preprints, 1979, 1: 299-308.
    14. Clemence S P, Brumund W F. Large-Scale Model Test of Drilled Pier in Sand. American Society of Civil Engineers, Journal of the Geotechnical Engineering Division, 1975, 101(6): 537-550.
    15. Kulhaway F H, Peterson M S. Behavior of Sand and Concrete Interfaces. Proc. 6th Pan American Conf. on Soil Mech. and Foundation Engrg. 1979: 225.
    16. Acar Y B, Durgunoglu H T, Tumay M T. Interface Properties of Sands. Journal of the Geotechnical Engineering Division, 1982, 108(4): 648-654.
    17. BRANDT J R T. Behavior of Soil-Concrete Interfaces[D].Alberta, Canada:University of Alberta, 1985
    18.张振国.垂直受荷桩工作机制渗水力土工模型试验研究[博士学位论文].北京:清华大学,水利水电工程系, 1990
    19. Al-Douri R H, Poulos H G. Static and Cyclic Direct Shear Tests on Carbonate Sands. Geotechnical Testing Journal, 1992, 15(2): 138-157.
    20.殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟.岩土工程学报, 1994, 16(3): 14-22.
    21.胡黎明.土与结构物接触面力学特性研究和工程应用[博士学位论文].北京:清华大学,水利水电工程系, 2000
    22. Hu L M, Pu J L. Testing and Modeling of Soil-Structure Interface. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 851-860.
    23.胡黎明,马杰,张丙印,等.粗粒料与结构物接触面力学特性缩尺效应.清华大学学报(自然科学版), 2007, 47(3): 1-4.
    24. Reddy E S, Chapman D N, Sastry V V R N. Direct Shear Interface Test for Shaft Capacity of Piles in Sand. Geotechnical Testing Journal, 2000, 23(2): 199-205.
    25.张嘎.粗粒土与结构接触面静动力学特性及弹塑性损伤理论研究[博士学位论文].北京:清华大学,水利水电工程系, 2002
    26. Zhang G, Zhang J M. Large-Scale Apparatus for Monotonic and Cyclic Soil-Structure Interface Test. Geotechnical Testing Journal, 2006, 29(5): 401-408.
    27.张嘎,张建民.大型土与结构接触面循环加载剪切仪的研制及应用.岩土工程学报, 2003, 25(2): 149-153.
    28. DeJong J T, Randolph M F, White D J. Interface Load Transfer Degradation During Cyclic Loading : A Microscale Investigation. Journal of the Japanese Geotechnical Society : soils and foundation, 2003, 43(4): 81-93.
    29. Lings M L, Dietz M S. The Peak Strength of Sand-Steel Interfaces and the Role of Dilation. Soils and Foundations, 2005, 45(6): 1-14.
    30. Miller G A, Hamid T B. Interface Direct Shear Testing of Unsaturated Soil. Geotechnical Testing Journal, 2007, 30(3): 182-191.
    31. Mortara G, Mangiola A, Ghionna V N. Cyclic Shear Stress Degradation and Post-Cyclic Behaviour from Sand-Steel Interface Direct Shear Tests. Canadian Geotechnical Journal, 2007, 44(7): 739-752.
    32.张晓锋,袁聚云.土与钢材料接触面性能的试验研究.岩土工程技术, 2007, 21(3): 131-133.
    33. Frost J D, DeJong J T. In Situ Assessment of Role of Surface Roughness on Interface Response. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 498-511.
    34.李志斌,徐超,叶观宝,等.影响hdpe膜与砂土接触面摩擦特性因素的斜板试验研究.岩土力学, 2006, 27(12): 2289-2293.
    35.张嘎,张建民.夹有泥皮粗粒土与结构接触面力学特性试验研究.岩土力学, 2005, 26(9): 1374-1378.
    36.张治军,饶锡保,丁红顺,等.不同含水率泥皮对接触面力学特性影响的试验研究.长江科学院院报, 2007, 24(5): 60-67.
    37. Cho K H, Cho J R, Chin W J, et al. Bond-Slip Model for Coarse Sand Coated Interface between Frp and Concrete from Optimization Technique. Computers & Structures, 2006, 84(7): 439-449.
    38.张嘎,张建民,梁东方.土与结构接触面试验中的土颗粒细观运动测量.岩土工程学报, 2005, 27(8): 903-907.
    39. Uesugi M, Kishida H, Tsubakihara Y. Friction between Sand and Steel under Repeated Loading. Soils and Foundations, 1989, 29(3): 127-137.
    40. Uesugi M, Kishida H, Tsubakihara Y. Behavior of Sand Particles in Sand-Steel Friction. Soils and Foundations, 1988, 28(1): 107-118.
    41. Uesugi M, Kishida H. Influential Factors of Friction between Steel and Dry Sands. Soils and Foundations, 1986, 26(2): 33-46.
    42. Desai C S, Ma Y. Modelling of Joints and Interfaces Using the Disturbed-State Concept. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(9): 623-653.
    43. Desai C S, Rigby D B. Cyclic Interface and Joint Shear Device Including Pore Pressure Effects. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(6): 568-579.
    44. Desai C S, Pradhan S K, Cohen D. Cyclic Testing and Constitutive Modeling of Saturated Sand-Concrete Interfaces Using the Disturbed State Concept. International Journal of Geomechanics, 2005, 5(4): 286-294.
    45. Evgin E, Fakharian K. Effect of Stress Paths on the Behaviour of Sand-Steel Interfaces. Canadian Geotechnical Journal, 1996, 33(6): 853-865.
    46. Fakharian K. Three-Dimensional Monotonic and Cyclic Behavior of Sand-Steel Interfaces: Testing and Modeling[D].Ottawa, Canada:University of Ottawa, 1996
    47. Fakharian K, Evgin E. Three Dimensional Apparatus for Cyclic Testing of Interfaces. Canadian Geotechnical Conference, 1993: 485-493.
    48. Fakharian K, Evgin E. Automated Apparatus for Three-Dimensional Monotonic and Cyclic Testing of Interfaces. Geotechnical Testing Journal, 1996, 19(1): 22-31.
    49.吴军帅,姜朴.土与混凝土接触面的动力剪切特性.岩土工程学报, 1992, 14(2): 61-66.
    50.张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用.岩土工程学报, 1998, 20(6): 62-66.
    51.卢廷浩,鲍伏波.接触面薄层单元耦合本构模型.水利学报, 2000(2): 71-75.
    52.高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟.土木工程学报, 2000, 33(4): 42-46.
    53.张丙印,付建,李全明.散粒体材料间接触面力学特性的单剪试验研究.岩土力学, 2004, 25(10): 1522-1526.
    54.周小文,龚壁卫,丁红顺,等.砾石垫层—混凝土接触面力学特性单剪试验研究.岩土工程学报, 2005, 27(8): 876-880.
    55. Oumarou T A, Evgin E. Cyclic Behaviour of a Sand-Steel Plate Interface. Canadian Geotechnical Journal, 2005, 42(6): 1695-1704.
    56.张治军,饶锡保,龚壁卫,等.砂砾石与沥青混凝土接触面力学特性试验研究.长江科学院院报, 2006, 23(2): 38-41.
    57. Li B. An Experimental Study and Numerical Simulation of Sand-Steel Interface Behaviour[D].Ottawa, Canada:University of Ottawa, 2001
    58. Tsubakihara Y, Kishida H. Frictional Behaviour between Normally Consolidated Clay and Steel by Two Direct Shear Type Apparatuses. Soils and Foundations, 1993, 33(2): 1-13.
    59. Uesugi M, Kishida H. Frictional Resistance at Yield between Dry Sand and Mild Steel. Soils and Foundations, 1986, 26(4): 139-149.
    60. Huck P J, Libert T, Chiapetta R L, et al. Dynamic Response of Soil/Concrete Interface at High Pressure[R]. IITRI(Illinois Institute of Technical Research Institute) for Defense Nuclear Agency, (AIWL-TR-73-264). Washington D.C., USA:1974.
    61. Huck P J, Saxena S K. Response of Soil-Concrete Interface at High Pressure. Proc. of 10th ICSMFE. Sockholm, Sweden. 1981.
    62. Yoshimi Y, Kishida T. Ring Torsion Apparatus for Evaluating Friction between Soiland Metal Surfaces. 1981, 4(4): 145-152.
    63. Brummund W F, Leonards G A. Experimental Study of Static and Dynamic Friction between Sand and Typical Construction Material. Journal of Testing and Evaluation, ASTM, 1973, 1(2): 162-165.
    64.俞培基,秦蔚琴.粗糙接触面上土的动剪模量.水利学报, 1992(11): 37-42.
    65.俞培基,秦蔚琴.在共振柱仪上研究接触面的动力变形特性.水利学报, 1995(1): 81-85.
    66. Tejchman J, Wu W. Experimental and Numerical Study of Sand-Steel Interfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(8): 513-536.
    67. Cundall P A, Strack O D L. Discrete Numerical Model for Granular Assemblies. Geotechnique, 1979, 29(1): 47-65.
    68. Ng T T, Dobry R. Non-Linear Numerical Model for Soil Mechanics. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(4): 247-263.
    69. Rothenburg L, Bathurst R J. Analytical Study of Induced Anisotropy in Idealized Granular Materials. Geotechnique, 1989, 39(4): 601-614.
    70. Lin X, Ng T T. A Three-Dimensional Discrete Element Model Using Arrays of Ellipsoids. Geotechnique, 1997, 47(2): 319-329.
    71. Lin X S, Ng T T. Contact Detection Algorithms for 3-Dimensional Ellipsoids in Discrete Element Modeling. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(9): 653-659.
    72. Fu T. Experimental Study and Discrete Element Simulation of Sand-Steel Interface Behaviour[D].Ottawa, Canada:University of Ottawa, 1998
    73. Zeghal M, Edil T B. Soil Structure Interaction Analysis: Modeling the Interface. Canadian Geotechnical Journal, 2002, 39(3): 620-628.
    74. Zeghal M. Modeling of Sand-Structure Interfaces[D].Madison, WI, USA:University of Wisconsin-Madison, 1993
    75. Tsubakihara Y, Kishida H, Nishiyama T. Friction between Cohesive Soils and Steel. Soils and Foundations, 1993, 33(2): 145-156.
    76.张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究.岩土工程学报, 2004, 26(1): 21-25.
    77. Oda M, Enomoto F, Suzuki T. Effects of Shape and Composition of Particles on Mechanical Characteristics of Sand. Tsuchi-to-Kiso, JSSMFE, 1971, 19(2): 5-12.
    78. Dove J E, Jarrett J B. Behavior of Dilative Sand Interfaces in a Geotribology Framework. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 25-37.
    79. Uesugi M, Kishida H, Uchikawa Y. Friction between Dry Sand and Concrete under Monotonic and Repeated Loading. Soils and Foundations, 1990, 30(1): 115-128.
    80. Fakharian K, Evgin E. Elasto-Plastic Modelling of Stress-Path-Dependent Behaviour of Interfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(2): 183-199.
    81. Fakharian K, Evgin E. A Comprehensive Experimental Study of Sand-Steel Interfaces Subjected to Various Monotonic and Cyclic Stress Paths. Kitakyushu, Japan: International Society of Offshore and Polar Engineers, Cupertino, CA 95015-0189, United States. 2002: 775-784.
    82. Boulon M. Basic Features of Soil Structure Interface Behaviour. Computers and Geotechnics, 1989, 7(1-2): 115-131.
    83. Shahrour I, Rezaie F. An Elastoplastic Constitutive Relation for the Soil-Structure Interface under Cyclic Loading. Computers and Geotechnics, 1997, 21(1): 21-39.
    84.张嘎,张建民.粗粒土与结构接触面受载过程中的损伤.力学学报, 2004, 36(3): 322-327.
    85.张嘎,张建民.粗粒土与结构接触面的静动本构规律.岩土工程学报, 2005, 27(5): 516-520.
    86. Gens A, Carol I, Alonso E E. Constitutive Model for Rock Joints Formulation and Numerical Implementation. Computers and Geotechnics, 1990, 9(1-2): 3-20.
    87. Gens A, Carol I, Alonso E E. Interface Element Formulation for the Analysis of Soil-Reinforcement Interaction. Computers and Geotechnics, 1989, 7(1-2): 133-151.
    88.栾茂田,武亚军.土与结构间接触面的非线性弹性-理想塑性模型及其应用.岩土力学, 2004, 25(4): 507-513.
    89. Ghaboussi J, Wilson E L, Isenberg J. Finite Element for Rock Joints and Interfaces. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(SM10): 833-848.
    90. Navayogarajah N, Desai C S, Kiousis P D. Hierarchical Single-Surface Model for Static and Cyclic Behavior of Interfaces. Journal of Engineering Mechanics, 1992, 118(5): 990-1011.
    91. Boulon M, Ghionna V N, Mortara G. A Strain-Hardening Elastoplastic Model for Sand-Structure Interface under Monotonic and Cyclic Loading. Mathematical and Computer Modelling, 2003, 37(5-6): 623-630.
    92. Gomez J E, Filz G M, Ebeling R M. Extended Hyperbolic Model for Sand-to-Concrete Interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(11): 993-1000.
    93.罗佳,姚仰平.土与结构物接触面的剪胀、剪缩特性及其描述.工业建筑, 2006, 36(8): 36-38.
    94.孙吉主,王勇.钙质砂与结构接触面的本构模型研究.力学季刊, 2006, 27(3): 476-480.
    95.王伟.基于能量耗散原理的土与结构接触面模型研究及应用[博士学位论文].南京:河海大学, 2006
    96. Desai C S, Armaleh S, Katti D, et al. Disturbed State Concept for Modelling Soils and Joints. Proceedings of the International Conference on Computer Methods and Advances in Geomechanics, 1991: 321.
    97. Pradhan S K, Desai C S. Dsc Model for Soil and Interface Including Liquefaction and Prediction of Centrifuge Test. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 214-222.
    98.张嘎,张建民.粗粒土与结构接触面统一本构模型及试验验证.岩土工程学报, 2005, 27(10): 1175-1179.
    99.张嘎,张建民.粗粒土与结构接触面三维本构关系及数值模型.岩土力学, 2007, 28(2): 288-292.
    100.孙吉主,施戈亮.循环荷载作用下接触面的边界面模型研究.岩土力学, 2007, 28(2): 311-314.
    101.杨林德,刘齐建.土-结构物接触面统计损伤本构模型.地下空间与工程学报, 2006, 2(1): 79-82.
    102.刘书,刘晶波,方鄂华.动接触问题及其数值模拟的研究进展.工程力学, 1999, 16(6): 14-28.
    103.孙苏明,钟万勰.摩擦接触弹塑性分析的数学规划法.力学学报, 1991, 23(3): 323-331.
    104.李录贤,沈亚鹏,叶天麟.摩擦接触问题的数学规划法.应用力学学报, 1998, 15(2): 49-55.
    105. Bazzraa M S, Shetty C M. Nonliear Programing Theory and Algorithms. Atlanta, Georgia: John Wiley & Sons, Inc. 1979.
    106.孔祥安,江晓禹,金学松.固体接触力学.北京:中国铁道出版社. 1999.
    107.张丙印,师瑞锋,王刚.高面板堆石坝面板脱空问题的接触力学分析.岩土工程学报, 2003, 25(3): 361-364.
    108. Bathe K-J, Chaudhary A. Solution Method for Planar and Axisymmetric Contact Problems. International Journal for Numerical Methods in Engineering, 1985, 21(1): 65-88.
    109. Chen W-H, Tsai P. Finite Element Analysis of Elastodynamic Sliding Contact Problems with Friction. Computers and Structures, 1986, 22(6): 925-938.
    110. Reddy J N. Penalty - Finite Element Methods in Mechanics. Phoenix, Arizona: ASME. 1982.
    111. Asano N. Penalty Function Type of Virtual Work Principle for Impact Contact Problems of Two Bodies. Bulletin of the JSME, 1986, 29(257): 3701-3709.
    112. Yamazaki K, Mori M. Analysis of an Elastic Contact Problem by the Boundary Element Method. (an Approach by the Penalty Function Method). JSME International Journal, Series 1: Solid Mechanics, Strength of Materials, 1989, 32(4): 508-513.
    113. Yamazaki K, Sakamoto J, Takumi S. Penalty Method for Three-Dimensional Elastic Contact Problems by Boundary Element Method. Computers and Structures, 1994, 52(5): 895-903.
    114. Simo J C, Wriggers P, Taylor R L. Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems. Computer Methods in Applied Mechanics and Engineering, 1985, 50(2): 163-180.
    115. Lei J, Rogers R J. Combined Lagrangian Multiplier and Penalty Function Finite Element Technique for Elastic Impact Analysis. Computers & Structures, 1988, 30(9): 1219-1229.
    116. Simo J C, Laursen T A. An Augmented Lagrangian Treatment of Contact Problems Involving Friction. Computers & Structures, 1992, 42(1): 97-116.
    117. Ngo D, Scordelis A C. Finite Element Analysis of Reinforced Concrete Beams. American Concrete Institute -- Journal, 1967, 64(3): 152-163.
    118. Goodman R E, Taylor R L, Brekke T L. Model for Mechanics of Jointed Rock. American Society of Civil Engineers Proceedings, Journal of the Soil Mechanics and Foundations Division, 1968, 94(SM3): 637-659.
    119.介玉新,许延春,李广信.固结计算中接触面渗流问题的模拟.工程力学, 2007, 24(S1): 104-107.
    120. Zienkiewicz O, Best B, Dullage C, et al. Analysis of Nonlinear Problems in Rock Mechanics with Particular Reference to Jointed Rock Systems. Congress Int. Soc. for Rock Mechanics. Belgrade. 1970: 501-509.
    121. Desai C S, Lightner J G, Siriwardane H J, et al. Thin-Layer Element for Interfaces and Joints. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.
    122.于丙子,陈连礼,叶伟泉.三维空间的节理单元.岩土工程学报, 1983, 5(3): 1-11.
    123.张嘎,张建民.土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析.工程力学, 2006, 23(2): 72-77.
    124.史文清,王建华,陈锦剑.考虑桩土接触面特性的水平受荷单桩数值分析.上海交通大学学报, 2006, 40(8): 1457-1460.
    125.宋和平,张克绪,胡庆立.考虑桩-土接触面及桩底土非线性的单桩q-S曲线分析.哈尔滨建筑大学学报, 2000, 33(1): 41-45.
    126.胡黎明,濮家骝.损伤模型接触面单元在有限元计算分析中的应用.土木工程学报, 2002, 35(3): 73-76.
    127.叶建忠,周健.桩土协同工作的接触面研究现状.西部探矿工程, 2004, 93(2): 9-11.
    128. Maheshwari B K, Watanabe H. Nonlinear Dynamic Behavior of Pile Foundations: Effects of Separation at the Soil-Pile Interface. Soils and Foundations, 2006, 46(4): 437-448.
    129.张嘎,张建民.用接触面弹塑性损伤模型分析群桩基础.清华大学学报(自然科学版), 2005, 45(6): 780-783.
    130.卢廷浩,鲍伏波.接触面模型在高面板堆石坝中的应用研究.红水河, 2000, 19(4): 12-15.
    131.岑威钧,李星.面板坝数值分析中接触面模型与接缝模型述评.水力发电, 2007, 33(2): 38-41.
    132.罗刚,张建民,沈珠江.紫坪铺混凝土面板堆石坝三维应力位移分析.水力发电学报, 2002, 76(1): 13-18.
    133.麦家煊,薛继乐,王津龙.三维接触面单元在堆石坝面板应力位移分析中的应用研究.水力发电学报, 2002, 76(1): 39-45.
    134. Desai C S, Muqtadir A, Scheele F. Interaction Analysis of Anchor-Soil Systems. Journal of Geotechnical Engineering, 1986, 112(5): 537-553.
    135. Desai C S, Siriwardane H J. Numerical Models for Track Support Structures. American Society of Civil Engineers, Journal of the Geotechnical Engineering Division, 1982, 108(GT3): 461-480.
    136. Nam S H, Song H W, Byun K J, et al. Seismic Analysis of Underground Reinforced Concrete Structures Considering Elasto-Plastic Interface Element with Thickness. Engineering Structures, 2006, 28(8): 1122-1131.
    137. Wang Y, Renaud J P, Anderson M G, et al. A Boundary and Soil Interface Conforming Unstructured Local Mesh Refinement for Geological Structures. Finite Elements in Analysis and Design, 2004, 40(11): 1429-1443.
    138.栾茂田,黎勇,杨庆.非连续变形计算力学模型在岩体边坡稳定性分析中的应用.岩石力学与工程学报, 2000, 19(3): 289-294.
    139.栾茂田,黎勇,林皋.非连续变形计算力学模型及其在有缝重力坝静力分析中的应用.水利学报, 2001(4): 41-46.
    140.黎勇,冯夏庭,栾茂田.非连续变形计算力学模型中的接触力元模型.东北大学学报, 2002, 23(11): 1113-1116.
    141.张建民.砂土的可逆性和不可逆性剪胀规律.岩土工程学报, 2000, 22(1): 12-17.
    142. Gutierrez M, Ishihara K, Towhata I. Flow Theory for Sand During Rotation of Principal Stress Direction. Soils and Foundations, 1991, 31(4): 121-132.
    143. Wijewickreme D, Vaid Y P. Behavior of Loose Sand under Simultaneous Increase in Stress Ratio and Principal Stress Rotation. Canadian Geotechnical Journal, 1993, 30(6): 953-964.
    144. Krieg R D. A Practical Two-Surface Plasticity Theory. Journal of Applied Mechanics Transactions, ASME, 1975, 42(3): 641-646.
    145. Dafalias Y F, Popov E P. A Model of Non-Linearly Hardening Materials for Complex Loadings. Acta Mechanics, 1975, 21(3): 173-192.
    146. Dafalias Y F. Bounding Surface Plasticity I: Mathematical Foundation and Hypoplasticity. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
    147. Iwan W D. On Class of Models for the Yielding Behavior of Continuous and Composite Systems. Journal of Applied Mechanics, ASME, 1967, 34: 612-617.
    148. Mroz Z. On the Description of Anisotropic Hardening. Journal of Mechanics and Physics of Solids, 1967, 15: 163-175.
    149. Wang Z L, Dafalias Y F, Shen C K. Bounding Surface Hypoplasticity Model for Sand. Journal of Engineering Mechanics, 1990, 116(5): 983-1001.
    150. Li X S. A Sand Model with State-Dependent Dilatancy. Geotechnique, 2002, 52(3): 173-186.
    151.王刚,张建民.砂土液化大变形的弹塑性循环本构模型.岩土工程学报, 2007, 29(1): 51-59.
    152. Miura K, Toki S, Miura S. Deformation Prediction for Anisotropic Sand During the Rotation of Principal Stress Axes. Soils and Foundations, 1986, 26(3): 42-56.
    153. Matsuoka H, Sakakibara K. A Constitutive Model for Sands and Clays Evaluating Principal Stress Rotation. Soils and Foundations, 1987, 27(4): 73-89.
    154.沈珠江. A Stress-Strain Model for Sands under Complex Loading, In:Advances in Constitutive Laws for Engineering Materials. Edited by Fang J&Sumio M, 1989, I: 303-308.
    155. Matsuoka H, Suzuki Y, Murata T. A Constitutive Model for Soils Evaluating Principal Stress Rotation and Its Application to Some Deformation Problems. Soils and Foundations, 1990, 30(2): 142-154.
    156. Gutierrez M, Ishihara K, Towhata I. Model for the Deformation of Sand During Rotation of Principal Stress Directions. Soils and Foundations, 1993, 33(3): 105-117.
    157. Li X S, Dafalias Y F. A Constitutive Framework for Anisotropic Sand Including Non-Proportional Loading. Geotechnique, 2004, 54(1): 41-55.
    158.沈珠江.土体应力应变分析的一种新模型.第5届土力学及基础工程学会会议论文集.北京:中国建筑工业出版社. 1990: 101-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700