高土石坝粘性土大剪切变形条件下渗透特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高土石坝心墙粘性土中应力状态复杂、存在大剪切变形区,可能对其渗透性和大坝安全产生不利影响。本文通过室内试验、理论分析和数值模拟,对高土石坝粘性土大剪切变形条件下的渗透特性展开研究。主要工作和成果如下:
     (1)研制了三轴渗透试验装置,进行了系列的试验研究了不同条件下粘性土大剪切变形后的渗透性变化规律。结果表明:所研制的三轴渗透试验装置可应用于试样大剪切变形后不同方向的渗透试验;土体渗透性随应力变形状态发生变化;周围压力和剪切变形对土体渗透性的变化特征具有显著的影响;在很大渗透坡降范围内,土体中渗流仍遵循达西定律。
     (2)对粘性土大剪切变形条件下渗透性变化规律进行了机理分析,提出了相应的数学模型,并与试验结果进行了对比分析。结果表明:土体孔隙比和结构变化是导致土体渗透性变化的主要原因;所提出的数学模型可反映土体大剪切变形后孔隙比和结构变化的影响,在等向固结条件下退化为“等向固结k线”;与试验结果的对比分析表明该数学模型是实用有效的。
     (3)研制了剪切接触渗流联合试验装置,进行了系列的粘性土-结构接触面剪切渗流试验,并对试验结果及机理进行了分析。结果表明:研制的剪切接触渗流联合试验装置可有效应用于粘性土-结构接触面大剪切变形后的接触渗流试验;不同的应力变形、水力坡降、接触类型及粗糙程度等条件均会对粘性土的接触渗流特性产生影响;表面缺陷及粗粒土存在时,接触面渗透性增强;对粘性土-结构接触面,当发生大剪切变形时可在临近的粘性土中产生“大剪切变形区”,从而影响粘性土-结构接触面的渗流特性。
     (4)将所提出的数学模型与Biot固结理论相结合,建立了土石坝应力变形及渗流场相互作用的计算方法,并编入有限元计算程序。结合两河口高心墙堆石坝工程,进行了心墙及接触粘性土的应力变形及渗流固结分析,结果表明:所提出的数学模型和计算方法可有效地用于高心墙土石坝应力变形及渗流场相互作用的数值模拟。
The seepage property of clayey soil under complex stress and large shear deformation is one of the key issues of earth-rockfill dams. By combining laboratory tests, theoretical analysis and numerical simulations, the seepage characteristics of the clayey soil with large shear deformations were studied. The main results are as follows.
     1. A new triaxial seepage device was developed and a series of seepage tests on clayey soil with large shear deformation were conducted. The tests results indicate that: (1) The triaxial seepage device can be used effectively to conduct seepage tests on soil in three directions with large shear deformations. (2) The permeability of soil changes with the stress and strain states. (3) The permeabilities in different directions are different slightly and the confining pressure affects the permeability of soil evidently. The seepage follows Darcy’s law in a large range of hydraulic gradients used in the tests.
     2. The mechanism of the change of permeability in the tests was analyzed and a mathematical model for the permeability was proposed to simulate the test results. The results show that: (1) Variations of the void ratio and structure are the main factors to affect the permeability of the soil. (2) The mathematical model for the permeability can reflect the effects of the void ratio and structure of the soil. A boundary of the equation is the isotropic consolidation permeability line. (3) Comparisons with the tests results indicate that the proposed equation is practicable and effective.
     3. Another test device was developed for seepage tests on clayey soil-structure interface. A series of tests were performed and the results were analyzed. Effects of some factors were investigated and the mechanism was discussed. The tests results indicate that: (1) The test device can be effectively used in contact seepage tests on soil interface. (2) The permeability of the soil-structure interface is affected by stress, strain, hydraulic gradient, style of the interface and the roughness of the interface. (3) When there are surface defects or coarse soil in the clayey soil, the permeability of the interface increases. (4) The large shear deformation zone of the soil near the interface is the main factor to affect the permeability of the soil-structure interface, and the geometry of the interface, the physical and mechanical characteristics of the soil can also affect the interface permeability.
     4. The mathematical model for the permeability was combined with Biot’s consolidation theory and a method was proposed to calculate the stress, strain and seepage fields of earth-rockfill dams. The simulating results of Lianghekou core wall rockfill dam indicate that the model can be used effectively and reasonably in calculating the stress, strain and seepage fields of earth-rockfill dams.
引文
[1]潘家铮.土石坝.北京:水利电力出版社, 1992.
    [2]郭诚谦,陈慧远.土石坝. 1992,北京:水利电力出版社.
    [3]顾淦臣.土石坝工程.南京:河海大学出版社, 1998.
    [4]郭诚谦.土石坝的若干发展.水利水电技术, 1998, 29(10): 22-25.
    [5]王柏乐.中国当代土石坝工程.北京:中国水利水电出版社, 2004.
    [6]郦能惠,沈珠江.土石坝工程研究新进展.水利水电科技进展, 1999, 19(4): 6-9.
    [7]顾淦臣,束一鸣,沈长松.土石坝工程经验与创新.北京:中国电力出版社, 2004.
    [8]汝乃华,牛运光.大坝与安全.北京:中国水利水电出版社, 2001.
    [9]汝乃华,姜忠胜.大坝事故与安全.北京:中国水利水电出版社, 1995.
    [10] Seed H.B., K.L. Lee, I.M. Analysis of Sheffield dam failure. Journal of the Soil Mechanics and Foundations Division, ASCE, 1969, 95(6): 1453-1490.
    [11] Thomas, H. The engineering of large dams. New York: John Wiley & Sons, 1976.
    [12]牛运光.几座土石坝渗漏事故的经验教训.北京:中国水利水电出版社, 1997.
    [13]邢林生.我国水电站大坝事故分析与安全对策.水利水电科技进展. 2001,21(2):26-32.
    [14]牛运光.从我国几座土石坝渗流破坏事故中吸取的经验教训.水利水电技术, 1992(7): 50-54.
    [15]付建.糯扎渡高心墙堆石坝接触面特性试验研究与数值模拟[硕士学位论文].清华大学水利水电工程系, 2004.
    [16]黄文熙.土的工程性质.北京:水利电力出版社, 1983.
    [17]刘杰.土的渗透稳定与渗流控制.北京:水利电力出版社,1992.
    [18]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社, 1996.
    [19] Childs, E.C, Collis-George. The permeability of porous materials. Proceedings of the Royal Society of London. Mathematical and Physical Sciences, 1950: 392-405.
    [20] Scheidegger, A.E. The physics of flow through porous media. Soil Science, 1958,86(6): 355-346.
    [21] Leonards, G.A. Engineering properties of soils. Foundation engineering, 1962: 66-75.
    [22] Chilingar, G.V. Relationship between porosity, permeability and grain size distribution of sands and sandstones. Deltaic and shallow marine deposits, 1964, (1): 71–75.
    [23] Pryor, W.A. Permeability-porosity patterns and variations in some Holocene sand bodies. The American Association of Petroleum Geologists Bulletin, 1973,57(1): 162–189.
    [24] Beard, D.C, Wey, P.K. Influence of texture on porosity and permeability of unconsolidated sand. The American Association of Petroleum Geologists Bulletin, 1973, 57(2): 349-369.
    [25] Robards, A.W, Clarkson, D.T. Structure and permeability of the epidermal hypodermal layers of the sand sedge. Protoplasma, 1979, 101(4): 331-347.
    [26] Shepherd, R.G. Correlations of permeability and grain size. Ground Water, 1989,27(5): 633-638.
    [27] Chapuis,R.P. Sand-bentonite liners: predicting permeability from laboratory tests. Canadian Geotechnical Journal, 1990, 27(1).
    [28] Revil, A, L.M. Cathles Permeability of shaly sands. Water Resources Research, 1997:35(3).
    [29]刘杰.无粘性土的孔隙直径及渗流特性.水利水电科学研究论文集第八集,水利出版社,1982.
    [30]张文慧,张福海.堆石料的渗透性与渗透稳定性试验研究.河海大学学报, 2001, 29(12): 143-146.
    [31]孙陶.无粘性粗粒土渗透系数的近似计算.四川水力发电, 2003, 22(002): 29-31.
    [32]邱贤德.堆石体粒径特征对其渗透性的影响.岩土力学, 2004, 25(6): 950-954.
    [33]朱崇辉,刘俊民.无粘性粗粒土的渗透试验研究.人民长江, 2005, 36(11):53-55.
    [34]朱崇辉,刘俊民.粗粒土的颗粒级配对渗透系数的影响规律研究.人民黄河, 2005, 27(12): 79-81.
    [35]崔荣方,陈建生.无粘性土粒径特征对其渗透性的影响.山西建筑, 2006,32(6): 97-98.
    [36]罗林峰.无粘性粗颗粒土的渗透性研究.云南水力发电, 2008,24(1): 22-24.
    [37] Chu, J. Consolidation and permeability properties of Singapore marine clay. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128: 724-732.
    [38] Mesri, G. , Olson, R.E. Mechanisms controlling the permeability of clays. Clay and Clay Mineral, 1971,19(3).
    [39] Michaels, A.S., Lin, C.S. Permeability of Kaolinite in flow through porous media. Industrial and Engineering Chemistry, 1954.
    [40] Hardcastle, S.H., Mitchell, J.K. Electrolyte concentration permeability relationship in Sodium Illite silt mixture . Clay and Clay Minerals, 1974, 22(2).
    [41] Woo, S.M., Moh, Z.C. Effect of soil structure on compressibility of an artificially sedimented clay. Procedding of International Symposium on Soft Clay, 1977.
    [42] Marshall, T.J. A relation between permeability and size distribution of pores. European Journal of Soil Science, 1958, 9(1): 1-8.
    [43] Nishida, Y., Koike, H. Nakagawa, S. Coefficient of permeability of highly plastic clays. Proceedings of the 4th Budapest Conference on Soil Mechanics and Foundation Engineering, 1971.
    [44] Garcia, I., Lovell, C. W., Altschaeffle, A. G. Pore Distribution and Permeability of Silty Clays. Journal of the Geotechnical Engineering Division, 1979, 105(7):839-856.
    [45] Bryant, W.R., Richardson M.D. Permeability and porosity of clayey sediments in seismo acoustics. The Journal of the Acoustical Society of America, 1992, (92): 2308-2321.
    [46]刘杰.制备含水量对饱和的压实粘性土力学性质的影响.水利水电科学研究论文集第20集.北京:水利电力出版社, 1985.
    [47]高凌霞.非饱和重塑黏土渗透性试验研究.岩土力学, 2008, 29(8): 2267-2270.
    [48]谢康和,庄迎春,李西斌.萧山饱和软粘性土的渗透性试验研究.岩土工程学报, 2005, 27(5): 591-594.
    [49] Chan, H.T, Kenney, T.C. Laboratory investigation of permeability ratio of New Liskeard varved soil. Canadian Geotechnical Journal, 1973,10(3): 453-472.
    [50] Carpenter, G.W, Stephenson, R.W. Permeability testing in the triaxial cell. Geotechnical testing journal, 1986, 9(1): 3-9.
    [51]朱建华.土坝心墙原状土的三轴渗透试验.岩土工程学报, 1989, 11(4): 57-63.
    [52]李平,骆亚生.饱和土的三轴渗透试验研究.路基工程, 2006(6): 32-33.
    [53]顾正维,孙炳楠,董邑宁.粘性土的原状土重塑土和固化土渗透性试验研究.岩石力学与工程学报, 2003, 22(3): 505-508.
    [54]李筱艳,王传鹏,柳毅.土体降排水过程中渗透系数非线性特征分析.地下空间, 2004, 24(4): 438-440.
    [55]吴林高,贺章安.考虑含水层参数随应力变化的地下水渗流.同济大学学报, 1995, 23(3): 281-287.
    [56]肖红宇,黄英,孙宏波.土体孔隙分形模型及其与土体渗透性关系的研究.云南水力发电, 2005, 21(6): 21-24.
    [57]杨雅军,刘法贵,谢热.岩土力学中渗透系数的灰色数学模型.华北水利水电学院学报, 2005, 26(2): 52-54.
    [58]朝伦巴根.含水层渗透系数K的空间变异性研究.地质学报, 1994, 68(4): 358-367.
    [59]蔡树英,杨金忠.土壤渗透参数空间变异性的试验研究.中国农村水利水电, 2002, (11): 13-17.
    [60]施小清,吴吉春.渗透系数空间变异性研究.水科学进展, 2005, 16(2): 210-215.
    [61] Potyondy, J.G.. Skin friction between various soils and construction materials. Geotechnique, 1961, 11(4): 339-353.
    [62] Clough, G.W, Duncan, J.M. Finite element analyses of retaining wall behavior. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657-1673.
    [63] Brandt, J.R. Behaviour of soil-concrete interfaces. Edmonton: University of Alberta, 1986.
    [64]殷宗泽,许国华.土与结构材料接触面的变形及其数学模拟.岩土工程学报, 1994,16(3): 14-22.
    [65]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究.岩土工程学报, 2001, 23(4): 431-435.
    [66]胡黎明,濮家骝.土与结构物接触面特性研究.工程力学, 1998, (3): 358-363.
    [67]胡黎明,土与结构物接触面力学特性研究和工程应用[博士学位论文].北京:清华大学, 2000.
    [68]张嘎,张建民.大型土与结构接触面循环加载剪切仪的研制及应用.岩土工程学报, 2003, 25(2): 149-153.
    [69]张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究.岩土工程学报, 2004, 26(1): 21-25.
    [70]张嘎,张建民.循环荷载作用下粗粒土与结构接触面变形特性的试验研究.岩土工程学报, 2004, 26(2): 254-258.
    [71]张嘎,张建民.夹有泥皮粗粒土与结构接触面力学特性试验研究.岩土力学, 2005, 26(9): 1374-1378.
    [72]刘学增,朱合华.上海典型土层与混凝土接触特性的试验研究.同济大学学报, 2004, 32(5): 601-606.
    [73] Eguchi, M. Frictional behavior between dense sand and steel under repeated loading, M.S. Thesis, Tokyo Institute of Technology, 1985.
    [74] Kishida, H, M. Uesugi. Tests of the interface between sand and steel in the simple shear apparatus. Geotechnique, 1987, 37: 45-52.
    [75] Uesugi, M, Kishida, H, Tsubakihara, Y. Behavior of sand particles in sand-steel friction. Soils and Foundations, 1988, 28(1): 107-118.
    [76]高俊合,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟.土木工程学报, 2000, 33(4): 42-46.
    [77]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用.岩土工程学报, 1998, 20(6): 62-66.
    [78] Huck P.J. Dynamic response of soil/concrete interface at high pressure. Report No. AIWL-TR-73-264 by Illinois Institute of Technical Research Institute for Defense Nuclear Agency, Washington D.C., USA, 1974.
    [79] Yoshimi Y., Kishida T. A ring torion apparatus for evalaation friction between soil and metal surface. Geotechnical Testing Joural, 4(4): 831-834.
    [80] Chen Z., Schreyer H.L. Simulation of soil-concrete interface with non-local constitutive methods. Journal of Engineering Mechanics, ASCE, 1987, 113(11): 1665-1677.
    [81]陈俞炯,刘杰,俞培基.土的接触面的抗剪强度.中国土木工程学会第三届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1981:117-123.
    [82]俞培基,秦蔚琴.在共振柱仪上研究接触面的动力变形特性.水利学报,1995, (1): 81-85.
    [83] Ramberg, W., Osgood, W.R. Description of stress-strain curves by three parameters. Technical note, 1943.
    [84] Desai, C.S., Drumm, E.C., Zaman, M.M. Cyclic testing and modeling of interfaces. Journal of Geotechnical Engineering, 1985, 111(6): 793-815.
    [85]卢廷浩,鲍伏波.接触面模型在高面板堆石坝中的应用研究.红水河, 2000, 19(4):12-15.
    [86] Ghaboussi, J, Wilson, E.L., Isenberg, J. Finite element for rock joints and interfaces. Journal of the soil mechanics and foundations division, 1973, 99(10): 849-862.
    [87] Frantziskonis, G., Desai, C.S. Elastoplastic model with damage for strain softening geomaterials. Acta Mechanica, 1987, 68(3): 151-170.
    [88]胡黎明,濮家骝.土与结构物接触面数值模拟.工程力学, 2001, (2): 467-471.
    [89]胡黎明,濮家骝.土与结构物接触面损伤本构模型.岩土力学, 2002, 23(1): 6-11.
    [90]张嘎,张建民.粗粒土与结构接触面的静动本构规律.岩土工程学报, 2005,27(005): 516-520.
    [91]张嘎,张建民.粗粒土与结构接触面的可逆性与不可逆性剪胀规律.岩土力学, 2005, 26(5): 699-704.
    [92]张嘎,张建民.粗粒土与结构接触面受载过程中的损伤.力学学报, 2004, 36(3): 322-327.
    [93]张嘎,张建民.粗粒土与结构接触面三维本构关系及数值模型.岩土力学, 2007, 28(2): 288-292.
    [94] Goodman, R.E., Taylor, R.L., Brekke, T.L. A model for the mechanics of jointed rocks. Journal of Soil Mechanics and Foundation Division, ASCE, 1968, 94: 637-659.
    [95] Zienkiewicz, O.C. Analysis of nonlinear problems in rock mechanics with particular reference to jointed rock systems. Proc. Rock Mechanics, 1970, (3): 1970-1981.
    [96] Zienkiewicz, O.C. Computational geomechanics. New York: John Wiley, 1999.
    [97] Sharma, K.G., Desai, C.S. Analysis and implementation of thin layer element for interfaces and joints. Journal of engineering mechanics, 1992, (118):2442-2442.
    [98] Zaman, M.M., C.S. Desai. Interface model for dynamic soil-structure interaction. Journal of Geotechnical Engineering, 1984, 110(9): 1257-1273.
    [99] Katona M.G. A simple contact friction interface element with applications to buried culverts. Inter. J. Numerical Analysis Methods in Geomech., 1983, 7: 371-384.
    [100]雷晓燕,杜庆华.接触摩擦单元的理论及应用.岩土工程学报, 1994, 16(3): 23-32.
    [101]汪召华.非线性解耦K-G模型矩阵方法与三维接触的研究及其工程应用[博士学位论文].北京:清华大学水利水电工程系, 1998.
    [102] Fakharian, K., Evgin, E. Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition. Journal of Geotechnical and Geoenvironmental Engineering, 1997, (123): 1096.
    [103] Fishman, K.L., Pal, S. Further study of geomembrane-cohesive soil interface shear behavior. Geotextiles and Geomembranes, 1994, 13(9): 571-590.
    [104] Kumar, J. Effect of footing-soil interface friction on bearing capacity factor. Geotechnique, 2004, 54(10): 677-680.
    [105] Gens, A., Carol, I., Alonso, E.E. An interface element formulation for the analysis of soil-reinforcement interaction. Computers and Geotechnics, 1989, 7(1): 133-151.
    [106] Hunt, P.G. Distribution of ammonium in the water-soil interface of a surface-flow constructed wetland for swine wastewater treatment. Water Science and Technology, 2001, 44(11): 157-162.
    [107] Scheidegger, A.M., Sparks, D.L. A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface. Soil Science, 1996, 161(12): 813-821.
    [108] Asta, J. Micromorphological and ultrastructural investigations of the lichen–soil interface. Soil Biology and Biochemistry, 2001. 33(3): 323-337.
    [109] Swan, R.H. Effect of soil compaction conditions on geomembrane-soil interface strength. Geotextiles and Geomembranes, 1991, 10(5): 523-529.
    [110] Hayir, A., Todorovska, M.I., Trifunac, M.D. Antiplane response of a dike with flexible soil-structure interface to incident SH waves. Soil Dynamics and Earthquake Engineering, 2001, 21(7): 603-613.
    [111] Gutierrez, J.A., Chopra, A.K. A substructure method for earthquake analysis of structures including structure-soil interaction. Earthquake Engineering and Structural Dynamics, 1978, 6(2): 31-70.
    [112] Boulon, R. Modelling of soil-structure interface behaviour a comparison between elastoplastic and rate type laws. Computers and Geotechnics, 1990. 9(1): 21-46.
    [113] Gessa, C., Deiana, S. Ca-polygalacturonate as a model for a soil-root interface. Plant and Soil, 1992. 140(1): 1-13.
    [114] Boulon, M. Basic features of soil structure interface behaviour. Computers and Geotechnics, 1989, 7(2): 115-131.
    [115] Mahmood, A.A., Zakaria, N., Ahmad, F. Studies on geotextiles/soil interface shear behavior. Electronic Journal of Geotechnical Engineering, 2002, (13): 1-14.
    [116] Fleming, I.R., Sharma, J.S., Jogi, M.B. Shear strength of geomembrane-soil interface under unsaturated conditions. Geotextiles and Geomembranes, 2006. 24(5): 274-284.
    [117]陈慧远.摩擦接触单元及其分析方法.水利学报, 1985, (4): 44-49.
    [118]杨耀文,刘正兴.三维弹性接触问题的接触面单元法.力学学报, 1996. 28(5): 613-619.
    [119]邵炜,金峰.用于接触面模拟的非线性薄层单元.清华大学学报(自然科学版), 1999, 39(2): 34-38.
    [120]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型.水利学报, 2000. (2):71-75.
    [121]安关峰,高大钊.接触面弹粘塑性本构关系研究.土木工程学报, 2001, 34(1): 88-91.
    [122]杜成斌,任青文.用于接触面模拟的三维非线性接触单元.东南大学学报(自然科学版), 2001. 31(4): 92-96.
    [123]张洪武.微观接触颗粒岩土非线性力学分析模型.岩土工程学报, 2002, 24(1):12-15.
    [124]栾茂田,武亚军.土与结构间接触面的非线性弹性-理想塑性模型及其应用.岩土力学, 2004, 25(4): 507-513.
    [125]张丙印,付建,李全明.散粒体材料间接触面力学特性的单剪试验研究.岩土力学, 2004. 25(10): 1522-1526.
    [126]李守德,俞洪良. Goodman接触面单元的修正与探讨.岩石力学与工程学报, 2004. 23(15): 2628-2631.
    [127] Sterpi, D. Effects of the erosion and transport of fine particles due to seepage flow. International Journal of Geomechanics, 2003,(3): 111-122.
    [128] George W., Annandale, P.E. How does Water-Soil Interaction lead to Erosion. New Peaks in Geotechnics, 2007.
    [129] Fox, G.A. Sediment transport model for seepage erosion of streambank sediment. Journal of Hydrologic Engineering, 2006,(11): 603-612.
    [130] W?rman, A., Seepage-induced mass wasting in coarse soil slopes. Journal of Hydraulic Engineering, 1993. 119: p. 1155-1169.
    [131]洪大林.粘性原状土冲刷特性研究[博士学位论文].南京:河海大学水利水电工程学院, 2005.
    [132]谢德荣.渗透变形研究现状与存在问题初探.长江工程职业技术学院学报, 1991, (2):67-71.
    [133]许仲生.土的渗透变形试验研究中的几个问题.四川水力发电, 1987, (3):55-60.
    [134]赵淑敏.粘性土水平渗透变形初步研究.江西水利科技, 1984, (2):98-107.
    [135]刘杰,缪良娟.一般粘性土抗渗强度影响因素的研究.岩石力学与工程学报, 1984, (4):11-19.
    [136]刘杰,缪良娟.分散性粘性土的抗渗特性.岩土工程学报, 1987, (2): 305—311.
    [137]刘杰,缪良绢.小浪底水库坝基防渗墙与心墙接触渗流控制试验研究.人民黄河, 1993, (5): 19-22.
    [138]刘杰,缪良娟.大坝心墙插有混凝土防渗墙段的应力与渗透稳定性试验研究.水利学报, 1994(12): 47-54.
    [139]刘杰,罗玉再.高土石坝心墙裂缝的自愈机理与反滤层的防护作用.水利学报, 1987, (7):20-29.
    [140]陈建生.堤防管涌产生集中渗漏通道机理与探测方法研究.水利学报, 2000, (9):48-54.
    [141]周晓杰.堤防的渗透变形及其发展的研究[博士学位论文].北京:清华大学水利水电工程系, 2006.
    [142] Biot, M.A. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12(2):155-168.
    [143] Biot, M.A. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955, 26(2): 182.
    [144] Clough, R.W. The finite element method in plane stress analysis. Proceding of the Second ASME Conference on Electronic Computation, Pittsburgh, 1960.
    [145] Duncan, J.M., Chang, C.Y. Nonlinear analysis ofstress and strain in soils. ASCE Journal of the Soil Mechanics and Foundations Division, 1970, 96: 1629-1653.
    [146] Lade, P.V, Duncan, J.M. Elastoplastic stress-strain theory for cohesionless soil. Journal of the geotechnical engineering division, 1975, 101(10): 1037-1053.
    [147]沈珠江.用有限单元法计算软土地基的固结变形.水利水运科技情报, 1977,(1): 7-23.
    [148]谢康和.砂井地基:固结理论、数值分析与优化设计[博士学位论文].杭州:浙江大学, 1987.
    [149]朱百里,沈珠江.计算土力学.上海:上海科学技术出版社, 1990.
    [150]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社, 2002.
    [151]柴军瑞,仵彦卿.均质土坝渗流场与应力场耦合分析的数学模型.陕西水力发电, 1997, 13(3): 4-7.
    [152]平扬,白世伟.深基坑工程渗流-应力耦合分析数值模拟研究.岩土力学, 2001, 22(1): 37-41.
    [153]陈晓平,茜平一,梁志松等.非均质土坝稳定性的渗流场和应力场耦合分析.岩土力学, 2004, 25(6): 860-864.
    [154]柳厚祥.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析.岩石力学与工程学报, 2004, 23(17): 2870-2875.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700