软土地铁车站结构三维地震响应计算理论与方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展,我国城市地铁建设的规模正日益扩大,同时为了合理开发、利用地下空间,地铁车站常要结合周边开发,为了与其他附属结构一起工作,其地下连续墙体可能是不连续的,这对于地下车站结构的抗震提出了新的问题,原来的一些设计和施工方面的抗震措施、方法、手段等可能要做一些调整以满足复杂地下结构的抗震需要。因此,对典型地铁车站结构及侧向连续开孔的地下综合体结构,结合工程实践进行抗震研究,不仅是必要的,而且是紧迫的。
     阪神地震清楚地表明:在地层可能发生较大变形的部位,地铁等地下结构可能会出现严重震害,因此对其抗震问题应给予高度重视。目前,对地下铁道开展建立抗震设计理论和方法的研究正逐渐得到人们的关注,且迄今已提出多种算法,然而由不同的计算方法或模型得出的计算结果之间常有很大的差异,且很难鉴别各自结果的合理性,因此,有必要加强对地下结构抗震理论和计算方法以及地下结构破坏机理的研究。试验研究是解决这类问题的有效手段,计算机和数值模拟计算技术的快速发展,也给解决这类问题提供了有力的工具。
     本文在对上海典型软土地铁车站结振动台模型试验拟合分析的基础上,建立了一种计算软土地铁车站结构三维地震响应的计算方法,并将其应用于工程实践,研究了典型软土地铁车站结构与地下综合体结构的三维地震响应规律。
     论文进行的工作及取得的创新成果主要有:
     1.在对上海软土静、动力特性试验数据进行比较分析的基础上,提出一种多项式拟合公式,用于描述上海软土静、动力特性参数间的关系。在工程初步设计阶段或缺乏土动力特性参数试验资料的场合时,可用于近似确定土的动力特性参数值;
     2.通过对上海典型软土地铁车站结构振动台模型试验取得的数据进行拟合分析,建立一种典型地铁车站结构模型地震响应的三维计算方法;
     3.根据基于典型软土地铁车站结构模型的三维计算方法,通过分析建立一种实际软土地铁车站结构三维地震响应的计算方法;
     4.将建立的计算方法用于工程实践,研究典型软土地铁车站结构及地铁10号线江湾地铁车站连续开孔结构的抗震稳定性。
     最后,对全文的研究工作进行了总结,并讨论了今后进一步的工作。
With the rapid development of economy, the dimension of subway constructionis extended increasingly. And at the same time, in order to work together with theaffiliated structures, some more and more subway station structures often constructedwith the exploitation of underground space, which makes their continuous wall to bediscontinuous. So, it is a challenge to subway station structures of its aseismaticability. Some old aseismatic measures and methods in design and construction needadjust to satisfy the aseismatic demand of complicated subway station structures. It isnecessary and pressing to study the aseismatic ability of typical subway stationstructures and underground syntheses.
     It is showed clearly from Kobe Earthquake and other large earthquake in thehistory that the destructive degree caused by seismic will be enlarged in soft soil areas.The depth of soft soil in Shanghai is about from 250m to 300m. Silty clay, clay andthe liquefiable silt are common in the shallow soil layer, which can magnify the harmto the underground structures during seismic. Much attention should be paid toanalysis theory and design method for subway station structures and tunnels in softsoil in Shanghai. People have begun to attach importance to establish seismic designtheory and calculation method in recent ten years, and several calculation methodshave been proposed. But, there were obvious differences between the calculationresults by different calculation methods or calculation model because of too manyinfluencing factors to the seismic response of underground structures, and it isdifficult to distinguish their rationality too. Experimental study is an effective meansto solve the problem, and the progress of computer and calculation technique is alsoprovides a powerful tool.
     A three-dimensional calculation method, which used to calculatethree-dimensional seismic response of subway station structures in soft soil, will beestablished based on the fitting analysis of the shaking table model test of subwaystation structures. Then, the method will be applied to engineering practice to studythe seismic response rule of typical subway station structures and undergroundsyntheses.
     The main content of the paper including the followings four aspects:
     1. A polynomial fitting formula will be proposed based on the fitting analysis of the data coming from the soil dynamic test. The formula can be used to fitting therelation between static and dynamic parameters of soft soil in Shanghai. The dynamicparameters can be determined approximatively by the formula when the soil dynamictest data is lacking or in the elementary design stage of the engineering;
     2. The typical subway station structures shaking table model tests were fitted andanalyzed, and a three dimensional calculation method on seismic response of subwaystation structures model is established;
     3. A three-dimensional calculation method on seismic response of subway stationstructures is established based on the three dimensional calculation method on seismicresponse of subway station structures model;
     4. The three-dimensional method will be applied to engineering practice. Thethree-dimensional seismic response of typical subway station structures andunderground syntheses with lateral consecutive holes is studied. The worst parts andthe increased ratio caused by seismic load will be determined. And the seismicbehavior of the structures is verified.
     Finally, the research work in the paper is summarized and the problems requiringfurther study are discussed.
引文
1、杨林德,李文艺等.上海市地铁区间隧道和车站的地震灾害防治对策研究.同济大学上海防灾救灾研究所研究报告,1999.
    2、杨林德,等.上海地铁车站抗震设计方法研究项目研究总报告,同济大学上海防灾救灾研究所研究报告,1996.
    3、季倩倩.地铁车站结构振动台模型试验研究.申请同济大学博士学位论文,2002.
    4、杨超.饱和软土地铁结构地震响应计算方法的研究.申请同济大学博士学位论文,2003.
    5、刘齐建.软土地铁建筑结构抗震设计计算理论的研究.申请同济大学博士学位论文,2005.
    6、马险峰.地下结构的震害研究.申请同济大学博士学位论文,2000.
    7、Mow,C.C.,Pao,A.H.,著 弹性波的衍射和动应力集中.刘殿魁、苏先樾译,北京:科学出版社,1993.
    8、Mirske, I. and Herrman, G.H. Nonaxial symmetric motion of cylindrical shells. Journal of Acoustics Society of America, 1957, 29 (7): 1116-1123.
    9、Lee, V. W. and Trifunac, M. D. Response of tunnels to incident SH-waves. Journal of Engineering Mechanics, 1979, 6: 643-659.
    10、Udwadia, F. E. Boundary control, quiet boundaries, super-stability and super-instability. Applied Mathematics and Computation, 2005, 164 (4): 327-349.
    11、Datta, S. K. and Shah, A. H., Wong, K. C., Dynamic stresses and displacements in buried pipe. Journal of Engineering Mechanics, 1985, 10: 1451-1466.
    12、Liu, S. W., et al. Three dimensional dynamics of pipelines buried in backfilled trenches due to oblique incidence of body waves. Soil Dynamics and Earthquake Engineering, 1991, 10 (2): 182-191.
    13、Stamos, A. A. and Beskos, D. E. 3-D seismic response analysis of long lined tunnels in half-space. Soil Dynamics and Earthquake Engineering, 1996, 15 (2): 111-118.
    14、Davis, C. A. and Bardet, J. P. Seismic analysis of large-diameter flexible underground pipes. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124 (10): 1005-1015.
    15、Assimaki, D. et al. Wave propagation and soil-structure interaction on a cliff crest during the 1999 Athens Earthquake. Soil Dynamics and Earthquake Engineering, 2005, 25 (7-10): 513-527.
    16、黎在良,刘殿魁,各向异性介质中圆柱对SH波散射的射线理论.地震工程和工程震动,1987,7:29-37.
    17、刘殿魁,袁迎春,各向异性介质中由SH波引起的圆孔周围的远场位移.地震工程和工程震动,1988,8:50-59.
    18、付鹏程,王刚,张建明.地铁地下结构在轴向传播剪切波作用下反应的简化计算方法,地震工程与工程振动,2004,24(3):44-50.
    19、J.P.瓦尔夫著,吴世明译.土一结构动力相互作用.北京:地震出版社,1989.
    20、Guin, J., et al. Coupled soil-piles-structures interaction analysis under seismic excitation. Journal of Structural Engineering, 1998, 124 (4): 434-444.
    21、Akira, T. A study on seismic analysis methods in the cross section of underground structures using static finite element method. Structural Engineering & Earthquake Engineering, 2005, 122 (1): 41-53.
    22、Wegner, J. L. Dynamic wave-soil-structure interaction analysis in the time domain. Computers and structures, 2005, 83: 2206-2214.
    23、Zhang, X., et al. Three-dimensional dynamic soil-structure interaction analysis in the time domain. Earthquake Engineering and Structural Dynamics, 1999, 28 (7): 1501-1524.
    24、陈国兴,庄海洋,史国龙.地铁车站结构地震反应分析的子结构法.防灾减灾工程学报,2004,24(4):396-401.
    25、李建波,等.结构—地基动力相互作用时域数值计算模型研究.地震工程与工程振动,2005,25(2):169-176.
    26、边学成,陈云敏.列车荷载作用下轨道和地基的动响应分析.力学学报,2005,37(4):477-484.
    27、Fukutake and Kiyoshi. Analysis of saturated dense sand-structure system and comparison with results from shaking table test. Earthquake Engineering & Structural Engineering, 1990, 19 (7): 977-992.
    28、Borja, R.I., and Amies, A. P. Multiaxial cyclic plasticity model for clays. Journal of Geotechnical Engineering, 1999, 120 (6): 1051-1070.
    29、Cai, Y. X., et. Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application. Engineering Structures, 2000, 22: 191-199.
    30、Shahrour, et. Seismic behavior of micropiles used as foundation support elements: Three-dimensional finite element analysis. Transportation Research Record, 2001, 1772: 84-90.
    31、Gil, L. M., et. Simplified transverse seismic analysis of buried structures. Soil Dynamics and Earthquake Engineering, 2001, 21: 735-740.
    32、郑永来,杨林德.地下结构的震害与抗震对策.工程抗震,1999(4):23-28.
    33、马险峰,望月秋刊,杨林德,日本兵库县南部地震给排水管道震害研究.世界隧道,2000,4:14-18.
    34、高峰,关宝树.沉管隧道三维地震反应分析.兰州铁道学院学报(自然科学版),2003,22(1):6-10.
    35、蒋通,邢海灵,苏亮.行波作用下盾构法隧道复杂系统的弹塑性地震反应分析.地震工程与工程振动,2004,24(5):27-32.
    36、张鸿,毕继红,张伟.地铁隧道地震反应非线性分析.地震工程与工程振动,2004,24(6):146-153.
    37、Safak, E. New approach to analyzing soil-building systems. Soil Dynamics and Earthquake Engineering, 1998, 17 (7-8): 509-517.
    38、Kirzhner, F., and Rosenhouse, G. Numerical analysis of tunnel dynamic response to earth motions. Tunneling and Underground Space Technology, 2000, 15 (3): 249-258.
    39、Yamada, K. Seismic wave propagation in elastic-viscoplastic shear layers. Journal of Geotechnical & Geoenvironment Engineering, 2000, 126 (3): 218-226.
    40、Francisco, J. Site effects in Parkway Basin comparison between observations and 3-D modeling. Applied Geophysics, 2003, 154: 633-646.
    41、Pakbaz, M. C., et al. 2-D analysis of circular tunnel against earthquake loading. Tunneling and Underground Space Technology, 2005, 20: 411-417.
    42、王明洋,国肚兵,潘宏.抗震液化的总应力合成分析方法.防灾减灾工程学报,2003, 23(1):1-10.
    43、国胜兵,等.地下结构在竖向和水平地震荷载作用下的动力分析.地下空间,2002,22(4):14-19.
    44、刘春玲,等.利用FLAC~(3D)分析某边坡地震稳定性.岩石力学与工程学报,2004,23(16):2730-2733.
    45、边金,等.浅埋地下结构和土层在动荷载作用下的反应分析.世界地震工程,2005,21(4):49-53.
    46、Schanz, M. Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Engineering Analysis with Boundary Element, 2001, 25: 363-376.
    47、Christos, Z. K., and George, D. M. Dynamic response of tunnels in stochastic soils by the boundary element method. Engineering Analysis with Boundary Element, 2002, 26: 667-680.
    48、Dimitris, L. K. Non-singular time domain BEM with applications to 3D inertial soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2004, 24 (3): 281-293.
    49、张楚汉,刘海笑.层状与各向异性介质波动问题的时域边界元法及工程应用.重庆建筑大学学报,2000,22(6):100-104.
    50、冯仰德,等.强震作用下地埋结构的数值模型.中国安全科学学报,2001,11(6):16-19.
    51、张玉红,等.地震动作用下两相介质饱和土中桩基动力阻抗分析方法.佛山科学技术学院学报(自然科学版),2001,19(1):35-38.
    52、冯仲明,赵鸿铁.高层结构—桩—土共同作用的地震反应分析.世界地震工程,2002,18(2):99-104.
    53、李楠,等.单侧接触埋置结构与瞬态SH波的动力相互作用—时域边界元分析.中国安全科学学报,2003,13(2):64-67.
    54、Esaki, T., et al. Stability analysis and reinforcement system design in a progressively failed steep rock slope by the distinct element method. International Journal of Rock Mechanics and Mining Sciences, 1998, 35 (4-5): 664-666.
    55、Bhasin, R. Parametric study for a large cavern in jointed rock using a distinct element model (UDEC-BB). International Journal of Rock Mechanics and Mining Sciences, 1998, 35 (1): 17-29.
    56、Corkum, A. G., and Martin, C. D. Analysis of a rock slide stabilized with a toe-berm a case study in British Columbia, Canada. International Journal of Rock Mechanics and Mining Sciences, 2000, 41 (7): 1109-1121.
    57、陶连金,张倬元.在地震载荷作用下的节理岩体地下洞室围岩稳定性分析.中国地质灾害与防治学报,1998,19(1):32-40.
    58、张丽华,等.节理岩体地下沿室群的地震动力响应分析.世界地震工程,2002,18(2):158-162.
    59、王贵君.节理裂隙岩体中不同理深无支护暗挖隧洞稳定性的离散元法数值分析.岩石力学与工程学报,2004,23(7):1154-1157.
    60、陈伟,李世海.允许变形及断裂的三维离散元计算方法.岩石力学与工程学报,2004,23(4):545-549.
    61、王卫华,李夕兵.离散元法及其在岩土工程中的应用综述.岩土工程技术,2005,19(4):177-181
    62、Harald, H. Numerical study of the performance of tunnel plugs. Engineering Geology, 1998, 49: 327-335.
    63、Kim, M. K., et. Seismic analysis of base-isolated liquid storage tanks using the BE-FE-BE coupling technique. Soil Dynamics and Earthquake Engineering, 2002, 22: 1151-158.
    64、Kim, K. D., et. Time domain earthquake response analysis method for 2-D soil-structure interaction system. Structural Engineering and Mechanics, 2003, 15 (6): 717-733.
    65、Spyrakos, C. C. and Xu, C. J. Seismic soil-structure interaction of massive flexible strip-foundations embedded in layered soils by hybrid BEM-FEM. Soil Dynamics and Earthquake Engineering, 2003, 23: 383-389.
    66、杨小礼,李亮.层状地基中交通隧道地震反应分析.长沙铁道学院学报,2000,18(4):15-19.
    67、金峰,王光纶.离散元—边界元动力耦合模型在地下结构动力分析中的应用,水利学报,2001,(2):24-28.
    68、吴健,等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响.岩土工程学报,2002,124(6):716-719.
    69、张琪伟,等.高层建筑地基、基础与上部结构动力共同工作的BEM/FEM耦合分析.长安大学学报(建筑与环境科学版),2003,20(1):16-20.
    70、姜忻良,谭丁,姜南.交义隧道地震反应三维有限元和无限元分析.天津大学学报,2004,37(4):307-311.
    71、Hardin, B. O., and Drnevich, V. P. Shear modulus and damping in soils: design equations and curves. Journal of the Soil Mechanics and Foundation Division, ASCE, 1972, 98 (7): 667-692.
    72、Hardin, B. O., and Dmevich, V. P. Shear modulus and damping in soils: measurement and parameter effects. Journal of the Soil Mechanics and Foundation Division, ASCE, 1972, 98 (7): 603-624.
    73、刘汉龙.土动力学与岩土地震工程.中国土木工程学会第九届土力学及岩土工程学术会议,北京,2003,56-68.
    74、Puzrin, A. M. and Shiran, A. Effects of the constitutive relationship on seismic response of soils. Part Ⅰ. Constitutive modeling of cyclic behavior of soils. Soil Dynamics and Earthquake Engineering, 2000, 19 (5-8): 305-318.
    75、Dominic, A. and Eduardo, K. An equivalent linear algorithm with frequency- and pressure-dependent moduli and damping for the seismic analysis of deep sites. Soil Dynamics and Earthquake Engineering, 2002, 22 (9-12): 959-965.
    76、Schofield, A. N. and Wroth, C. P. Critical State Soil Mechanics. 1968, McGraw Hill, London.
    77、Mroz Z. On the description of anisotropic working hardening, Journal of Mechanics and Physics of Soils, 1967, 15: 823-856.
    78、Dafalias Y. E. and Popov E. P. A model of nonlinearly hardening materials for complex loading. Acta Mechanic, 1975, 21: 905-916.
    79、Zerfa, F. Z., and Loret, B. Coupled dynamic elastic-plastic analysis of earth structures. Soil Dynamics and Earthquake Engineering, 2003, 23 (6): 435-454.
    80、Mroz Z., Norris V. A. and Zienkiewicz O. C. Application of an anisotropic hardening model in the analysis of elast-plastic deformation of soils. Geotechnique, 1979, 29 (1): 15-23.
    81、Dafalias, Y. F., and Herrmannl, L. R. A bounding surface soil plasticity model. Inter. Symposium on Soils under Cyclic and Transient Loading, Swansea, January, 1980, 335-345.
    82、Poorooshab H. B., and Stolle, D.F. E. Modeling of sand behavior under earthquake excitation. Int. J. for Num, and Analytical Methods in Geomechanics, 1987, 11 (1): 25-36.
    83、Dafalias, Y. F., and Herrmann, L.R. Bounding surface formulation of soil plasticity. Soil Mechanic Transient and Cyclic Loads. Wiley, New York, 1982, 253-282.
    84、Borja, R. I., and Amies, A. P. Multiaxial cyclic plasticity model for clays. Journal of Geotechnical. Engineering, 1994, 120 (6): 1051-1070.
    85、费涵昌,吴一伟.黄浦江大桥桥址土层的动力特性研究.第三届全国土动力学学术会议,上海:同济大学出版社,1990:303-308.
    86、蒋寿田,李幸辛.郑州地区地基原状土动模量和阻尼比.第三届全国土动力学学术会议,上海:同济大学出版社,1990:151-155.
    87、徐存森,吴俊壁.用扭转单剪/共振柱仪测定某核电站饱和原状砂的动剪切模量.大坝观测与土工测试,1996,20(5):36-39.
    88、祝龙根,徐存森.共振柱仪及其在工程中的应用.大坝观测与土工测试,1993,17(2):32-37.
    89、陈国兴,谢君斐,张克绪.士的动模量和阻尼比的经验估计.地震工程与工程振动,1995,15(1):73-84.
    90、顾尧章.海底粘土的剪切模量.岩士工程学报,1995,17(2):29-35.
    91、袁晓铭,等.常规土类动剪切模量比和阻尼比试验研究.地震工程与工程振动,2000,20(4):133-139.
    92、Seed, H. B., and Idriss, I. M. Soil modulus and damping factors for dynamic response analysis. EERC, Report NO. 70—10, U. C. Berkeley, Calif., 1970.
    93、Kagawa, T. Moduli and damping factors of soft marine clays. ASCE, 1992, 118 (GT9): 1360-1375.
    94、阮永芬,巫志辉.饱和粉土的若干动力特性研究.岩土工程学报,1995,17(4):100-106.
    95、何荣昌.周期荷载作用下的模量阻尼特性.应用基础与工程科学学报,1995,3(2):113-119.
    96、Yang, L. D., et al. A study on the dynamic properties of soft soil in Shanghai. Geotechnical Special Publication, NO: 150, Soil and Rock Behavior and Modeling, 2006, 466-473.
    97、Lysmer, J. and Kuhlemeyer, R. L. Finite dynamic model for infinite media, ASCE, 1969, 195 (EM4) 741-752.
    98、Smith, W. D. A nonreflecting plane boundary for wave propagating problems, Journal of Computation Physics, 1974, 15 (5): 492-503.
    99、Cundall, P. A. et al. Solution of infinite dynamic problems by finite modeling in the time domain. Proc. 2nd Inter. Conf. Appl. Num. Modeling, Madrid, 1978, 582-591.
    100、Kunar, R. R., et, al. A model with non-reflecting boundaries for use in explicit soil-structure interaction analyses. Earthquake engineering and structural dynamics, 1980, 18: 361-374.
    101、Engquist, B. and Majda, A. Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 1977, 31 (139): 851-863.
    102、Clayton, R., and Engquist, B. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Tokyo Institute of Technology, 1977, 167 (13): 1529-1540.
    103、Akiyoshi, T. et al. General absorbing boundary conditions for dynamic analysis of fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 1998, 17 (6): 397-406.
    104、廖振鹏,等.暂态波透射边界.中国科学(A辑)1984,27(6):212-219.
    105、Zhu, J. L. A transparent boundary technique for numerical modeling of elastic waves. Geophysics, 1999, 64 (3): 936-966.
    106、Gajo, A., et al. Silent boundary conditions for wave propagation in saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20 (4): 253-273.
    107、Sarma, G. S., et al. Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics, 1998, 63 (3): 1006-1016.
    108、Kellezi, L. Local transmitting boundaries for transient elastic analysis. Soil Dynamics and Earthquake Engineering, 2000, 19 (7): 533-547.
    109、Naimi, M., et al. New inclined boundary conditions in seismic soil-structure interaction problems. Engineering Structures, 2001, 23 (8): 966-978.
    110、刘汉龙,等.边界条件对土层粘弹性地震反应的影响.岩土力学,2001,22(4):408-412.
    111、楼梦麟,潘旦光,范立础.土层地震反应分析中侧向人工边界的影响.同济大学学报,2003,31(7):757-781.
    112、高峰,关宝树.隧道地震反应分析中几种边界条件的比较.甘肃科学学报,2004,16(1):109-112.
    113、栾茂田,武亚军.土与结构间接触面的非线性弹性—理想塑性模型及其应用.岩士力学,2004,25(4):507-513.
    114、殷宗泽,朱泓,许国平.土与结构材料接触面的变形及其数学模拟.岩土工程学报,1994,16(3):14-22.
    115、Clough, G. H. and Duncan, J. M. Finite element analysis of retaining wall behavior. Journal of Soil Mechanics & Foundation Division ASCE, 1971, 97 (SM12): 1657-1674.
    116、Brandt, S. C. Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mine Science and Geomechanics Abstract, 1983, 20 (6): 249-268.
    117、Boulon, M. and Nova, R. Modeling of soil structure interface behavior: A comparison between elastoplastic and rate-type law. Computers and Geotechnics, 1990, 17 (9): 21-46.
    118、Naresh, C. S. et al. An interface model to describe elastoplastic behavior. International Journal for Numerical and analytical Methods in Geomechanics, 1996, 20 (2): 231-252.
    119、Ng, K. L. A. and Small, J. C. Behavior of joints and interfaces subjected to water pressure. Computers and Geotechnics, 1997, 20 (1): 71-93.
    120、Desia, C. S., et al. Cyclic testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept. International Journal of Geomechanics, 2005, 5 (4): 286-295.
    121、Nam, S. H., et al. Seismic analysis of underground reinforced concrete structures considering elasto-plastic interface element with thickness. Engineering Structures, 2006, 28 (9): 1122-1131.
    122、陈慧远.摩擦接触单元及其分析方法.水利学报,1985,(4):44-50.
    123、张冬霁,卢延浩.土与结构接触面模型的建立与应用.岩土工程学报,1998,20(6):62-66.
    124、卢延浩、鲍伏波.接触面薄层单元耦合本构模型.水利学报,2000,(2):71-75.
    125、胡黎明,濮家骝.土与结构物接触面损伤本构模刑.岩土力学,2002,23(1):6-11.
    126、张嘎,张建民.粗粒土与结构接触面统一本构模型及试验验证.岩土工程学报,2005, 27(10):1175-1179.
    127、杨林德,刘齐建.土—结构物接触面统计损伤本构模型.地下空间与工程学报,2006,2(1):79-83.
    128、Goodman, R. F. and Taylor, R. L. A model for the mechanics of jointed rock. Journal of Soil Mechanics & Foundation Division ASCE, 1968, 94 (SM3): 637-660.
    129、Desia, C. S. and Zaman, M. M. Thin layer element for interfaces and joints. International Journal for Numerical and analytical Methods in Geomechanies, 1984, 8 (1): 19-43.
    130、Desia, C. S., et al. Cyclic interface and joint shear device including pore pressure effects. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123 (6): 568-579.
    131、Lee, J. S. and Pande, G. N. A new joint element for the analysis of media having discrete discontinuities. Mechanics of Cohesive-Frictional Materials, 1999, (4): 487-504.
    132、Zeghal, M. and Tuncer, B. E. Soil structure interaction analysis: modeling the interface. Canadian Geotechnical Journal, 2002, 39 (3): 620-628.
    133、Shakib, H. and Fuladgar, A. Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings. Soil Dynamics and Earthquake Engineering, 2004, 24(5): 379-388.
    134、胡黎明,濮家骝.损伤模型接触面单元在有限元计算分析中的应用.土木工程学报,2002,35(3):73-77.
    135、李守德,俞洪良.Goodman接触面单元的修正与探讨.岩石力学与工程学报,2004,23(15):2628-2631.
    136、李梅.结构与基础间接触面考虑切向滑动的数值模拟.福州大学学报(自然科学版),2004,32(1):69-73.
    137、娄奕红,刘喜元,彭俊生.地下结构与周围介质相互作用的计算分析.中南公路工程,2005,30(3):99-102.
    138、袁凡凡,栾茂田,闫澍旺.筏板-桩-土相互作用的三维弹塑性有限元分析.岩石力学与工程学报,2005,24(18):3332-3336.
    139、孙钧.岩土力学与地下工程结构分析计算的若干进展.力学季刊,2005,26(3):329~338.
    140、孙钧,侯学渊主编.地下结构(上册).北京:科学出版社,1987.
    141、谢康和,周健,编著.岩士工程有限元分析理论与应用.北京:科学出版社,2002.
    142、周健,徐冰,徐建平,编著.土动力学理论与计算.北京:中国建筑工业出版社,2001.
    143、Itasca Consulting Group. Fast lagrangian analysis of continua in 3 dimensions. Minneapolis: Itasca Consulting Group, Inc., 2002.
    144、王伟.综放采场顺槽锚网支护技术及参数优化研究.申请山东科技大学硕士学位论文,2005.
    145、塞尔瓦杜雷著,范文田译.土与基础相互作用的弹性分析.北京:中国铁道出版社,1984.
    146、科列涅夫等主编,沈聚敏等译.地震动下工程结构物的动力计算.北京:地震出版社,1994.
    147、刘鸿文,主编.板板壳理论.杭州:浙江大学出版社,1987.
    148、梁青槐.土-结构动力相互作用数值分析方法的评述.北方交通大学学报,1997,21(6):690-694.
    149、周健,董鹏,池永.软土地下结构的地震土压力分析研究.岩土力学,2004,25(4):554-559
    150、谭丁,姜忻良.不同接触面模型对评估地下结构震害的影响.岩土工程技术,2003,(2):77-81.
    151、胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究.岩土工程学报,2001,23(4):431-443.
    152、廖雄华,李锡夔.关于土-结相互作用界面力学行为的数值模拟.计算力学学报,2002,19(4).450-455
    153、Cundall, P. A. Formulation of a three-dimensional distinct element model-Part Ⅰ:A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, 1988, 125 (3): 107-116.
    154、褚卫江,徐卫亚,杨圣奇,等.基于FLAC~(3D)的岩石粘弹塑性流变模型二次开发研究.岩土力学,2006,25(3):433-447.
    155、陈育民,陈汉龙.邓肯-张模型在FLAC~(3D)中开发与实现.岩土力学,2007.(已录用)
    156、屈智炯,编著.土的塑性力学.成都:成都科技大学出版社,1987.
    157、章根德,编著.土的本构模型及其工程应用.北京:科学出版社,1995.
    158、钱家欢,殷宗泽,主编.土工原理与计算.北京:中国水利水电出版社,1996.
    159、杨林德,杨超,季倩倩,郑永来.地铁车站的振动台试验与地震响应的计算方法.同济大学学报,2003,31(10):1135-1140.
    160、车爱兰,岩楣敞广,葛修润.关于地铁地震响应的模型振动试验及数值分析.岩土力学,2006,27(8):1293-1298.
    161、陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验.北京工业大学学报,2006,32(9):798-801.
    162、陈跃庆.结构-地基动力相互作用体系振动台实验研究.申请同济大学博士学位论文,2001
    163、Guin, J., et. Coupled soil-piles-structures interaction analysis under seismic excitation. Journal of Structural Engineering, 1998, 124 (4): 434-444.
    164、边金,陶连金,郭军.浅埋地下结构和土层在动荷载作用下的反应分析,世界地震工程,2005,21(4):49-53.
    165、郑永来,周橙,黄炜,夏颂佑.动态弹性模量的实验研究.河海大学学报,1998,26(2):31-35.
    166、Wegner, J. L. Dynamic wave-soil-structure interaction analysis in the time domain. Computers and structures, 2005, 83 (27): 2206-2214.
    167、李建波,等.结构—地基动力相互作用时域数值计算模型研究.地震工程与工程振动,2005,25(2):169-176.
    168、陈国兴,庄海洋,史国龙.地铁车站结构地震反应分析的子结构法.防火减灾工程学报,2004,24(4):396-401.
    169、张鸿,毕继红,张伟.地铁隧道地震反应非线性分析.地震工程与工程振动,2004,24(6):146-153.
    170、祝彦知,冯紫良,方志.地震动下考虑各向异性土体-盾构隧道数值模拟.岩土力学,2005,26(5):710-716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700