多酸纳米粒子在药物及蛋白质检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多酸化合物作为一种独特的金属氧化物具有很多特殊性质。基于这些性质,多酸化合物在催化剂,抗肿瘤药物以及作为分析检测探针等生化研究领都拥有优良的表现,也因此吸引了众多研究者的关注。随着纳米技术的发展,多酸化合物的合成和应用也进入纳米领域。目前,已经被报道的多酸化合物的纳米微粒涵盖了多种形态,包括纳米粒子,纳米棒,纳米线,纳米管,纳米多孔材料等;而合成方法也是多种多样的,已有的方法包括模版合成,气-液-固多相合成,电化学加工,液相合成等。其中,液相合成是研究较多的一种方法。这些多酸的纳米材料被用于催化剂及药物研究,都表现出了更优异的特质。已有的报道表明,多酸化合物除了可以用来检测微量痕量金属离子之外,还可以直接用作分析试剂来检测药物及蛋白质等大分子。而这些研究都是直接使用了多酸化合物分子,利用多酸的纳米粒子作为分析探针的研究极少。本文将两种不同的多酸纳米材料作为分析检测探针,应用到药物和蛋白质的检测中去。首先,以四氯化碘钼酸盐与结晶紫的复合纳米颗粒为探针,发展了一种用紫外可见吸收光度法检测多巴胺的快捷灵敏的方法;其次,探讨了一种Keggin型多酸纳米粒子Ag_3PW_(l2)O_4的液相合成方法,并以其为探针用光散射的方法测定了朊蛋白、溶菌酶以及多巴胺。具体研究内容包括以下两个大方面:1.以四氯化碘钼酸盐与结晶紫的复合纳米颗粒为探针,发展了一种用紫外可见吸收光度法检测多巴胺的快捷灵敏的方法。在酸性条件下,随着多巴胺浓度的增加,富含纳米粒子溶液的颜色也随之加深,可以建立一种可视化半定量检测方法。在紫外可见分光光度计下得到多巴胺的线性关系在5.0x10~(-7)-1.4×10~(-5) mol·L-~浓度范围内,检出限(3σ)为9.0x10~(-8) mol·L~(-1)。该方法被成功应用于盐酸多巴胺注射液的测定。2.研究了一种Ag_3PW_(l2)O_4纳米立方体的可控合成路线。并且近一步以该纳米粒子为分析探针,利用光散射信号检测了蛋白质及药物小分子。(1).研究发现,在有机小分子二甲基甲酰胺(DMF)的调控作用下Keggin型多酸化合物Ag_3PW_(l2)O_4在水溶液中形成规则的纳米立方体,随温度改变该纳米立方体转变为空心立方结构。且基于该多酸纳米粒子,我们建立了一种以光散射信号为表征手段的检测朊蛋白的新方法。该多酸纳米立方体可以与朊蛋白(PrP~C)相互作用,产生显著的光散射信号增强,其增强程度与36-840 ng·mL~(-1)浓度范围的朊蛋白呈线性关系。并且在相同实验条件下,与其它多种蛋白相比,与朊蛋白的相互作用表现出较好的选择性。(2).实验发现,多酸纳米粒子Ag_3PW_(l2)O_(40)可以与溶菌酶相互作用引起光散射信号的增强,建立了一种溶菌酶的光散射测定方法。在磷酸缓冲溶液pH 6.8的条件下,光散射信号在溶菌酶浓度为0.5-140μg·mL~(-1)。的范围内呈线性增强,检出限(3σ)为0.04μg·mL~(-1)。这个方法成功用于合成样中溶菌酶的测定。(3).研究表明,在醋酸一醋酸钠缓冲溶液pH 5.0的条件下,多酸纳米粒子Ag_3PW_(l2)O_(40)可以与多巴胺相互作用。以光散射信号为表征手段,可以得出在多巴胺浓度为3.0xl0~(-8)-1.2x10~(-5)mol·L~(-1)的范围内光散射信号随着多巴胺浓度的增加呈线性增强,检出限(3σ)为1.4x10~(-8)mol·L~(-1)。这种多巴胺的光散射测定方法被成功应用于盐酸多巴胺注射液的测定。
Polyoxometalates (POM) have a lot of unique properties as a kind of special metallic oxides. Because of these properties, they played an important role in a variety of field, such as catalysis, anticancer drugs and analytical reagents, all of these have attracted much attention by researchers. With the development of nanotechnology, the synthesis and application of POM has come into nanometer field. At present, many kinds of POM nanoparticles have already been reported, including nanoball, nanorod, nanowire, nanotube and the nanohollow on the film. And all these POM nanoparticles prepared by using a lot of different ways, such as template-assisted, electrochemical processes, vapor-liquid-solids-assisted and liquid-assisted. As a sort of analytical reagent, the POM could be used to determine the metal ion, some medicament and protein molecule. But most of these have been determined by using POM molecule not the POM nanoparticles. In this paper, two kinds of POM nanoparticles have been prepared and applied to analyse medicament and protein by UV and light scattering signals. The main content is as follows:
     1. A spectrophotometric method for the determination of dopamine is described based on a type of ployoxometalates-dye complex nanoparticles which are composed by crystal violet with molybdate-iodine tetrachloride. By the reaction between dopamine and molybdate-iodine tetrachloride reagent in acidic medium, the color of the solution has changed, and an analysis method of dopamine could be constructed. By spectrophotometric signal, a linear relationship has been obtained when the concentration of dopamine is in the range of 5.0×10~(-7)~1.4×l0~(-5) mol·L~(-1), and the detection limit is 9.0×l0~(-8) mol·L~(-1) (3σ). This method has been used for analysis of the injection containing dopamine hydrochloride.
     2. A controllable synthetic route of the Ag_3PW_(12)O_(40) nanocubes was investigated on our work, and these prepared nanocubes were used as an analysis probe to detect the protein and medicament.(1). It was found in this contribution that Keggin-type of polyoxometalates nanocubes could be formed in aqueous medium under the adjustment of dimethylformamide (DMF), which could be changed from solid nanocubes to hollow ones with the increasing of temperature. Further investigations showed that this Keggin-type of polyoxometalates nanocubes can specifically interact with prion protein, and the light scattering signals were enhanced in proportional to the content of prion in the range of 3.36-840 ng·mL~(-1).(2). The interaction of Ag_3PW_(12)O_(40) nanocubes and lysozyme was studied with light scattering (LS) spectral. Ag_3PW_(12)O_(40) nanocubes can be linked with lysozyme, and strongly enhanced their LS intensity. In the PB buffer solution with pH value of 6.8, the enhancing LS intensity was in proportion to the concentration of lysozyme in a range of 0.5-140μg·mL~(-1). The effects of reaction time, pH of solution, coexisted ions and organic regents were studied in this work. Under optimum conditions, the detection limit of lysozyme (3σ) is 0.04μg·mL~(-1) with nanoparticles as a probe. This method was successfully used to the detection of trace lysozyme.(3). A light scattering (LS) method for the determination of dopamine is described based on Ag_3PW_(12)O_(40) nanocubes. The dopamine can interact with Ag_3PW_(12)O_(40) nanocubes, and their LS signal was strongly enhanced. In the CH_3COOH-CH_3COONa buffer solution with pH value of 5.0, we can determine dopamine in a range of 3.0×10~(-8)-1.2×l0~(-5) mol·L~(-1), and the limit of determination (3σ) is 1.4×10~(-8) mol·L~(-1). The recommended method has been used for analysis of the injection containing dopamine hydrochloride.
引文
[1] 王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998
    [2] 郑汝骊,王恩波.钼钨的多酸化学,化学通报,1984,9:12-18
    [3] Keggin J F. Structure and Formula of 12-phosphotungstic Acid. Proc Roy Soc, 1934, 144A: 75-100
    [4] Keggin J F. Structure of the Molecule of 12-phosphotungstic Acid. Nature, 1933, 131: 908-909
    [5] 曹小华,黎先财,柳闽生.杂多酸型化合物及其研究展望.化工中间体,2005,2:8-12
    [6] 廖子君,南克俊,韩军.现代肿瘤治疗药物学.世界图书出版社,2002.
    [7] Xu L, Sun Y Q, Wang E B, et al. A nickel molybdenum phosphate with tunnel: hydrothermal synthesis and Strucyure of (NH_3CH_2CH_2NH_3)_4(NH_3CH_2CH_2NH_3) NA[Ni_2Mo_(12)O_(30)PO_4]_4(H_2PO_4)·6H_2O. J Solid State Chem, 1999, 146(2): 533-537.
    [8] Han Z B, Wang E B, Luan G Y, et al. Synthesis properties and structure characterization of intermolecular photosensitive complex (Hgly-Gly)_3[PMo_(12)O_(40)]·4H_2O. J Mater Chem, 2002, 12: 1169-1173.
    [9] Caruso F, Kurth D G, Volkmer D, et al. Ultrathinmlybdenum PM-polyelectrolyte multiplanyer films. Langmuir, 1998, 14: 3462-3466.
    [10] Kurth D G, Volkmer D, Ruttorf M, et al. Ultrathin composite films incorporating the nanoporous isopolyoxomolyb-date"Keplerate"(NH_4)_42[MO1_(32)O_(372)(CH_3COO)_(30)(H_2O)_(72)]. Chem Mater, 2000, 12: 2829-2831.
    [11] Bi L H, Wang E B. Crystal structure and replacement reaction of coordinated water molecules of theheteropoly compounds of sandwich-type tungstoarsenates. Inorg Chem , 2000,39:671-677.
    [12] You W S, Wang E B, Xu L. Chains of (4, 4-bipyridyl) copper(l)bridged by dimolybdate units, Acta Cryst, 2000, 56: 289-290.
    [13] Hu C W, Zhang Y F, Xu L. Continuous syntheses of octylphenol or nonane phenol on supported heteropoly acidcataysts. Appl Catal A: General, 1999, 177: 237-244.
    [14] Xu L, Sun Y Q, Wang E B. A manganese molybdenum phosphate with a tunnel: Hydrothemal synthesis, structure and catalytic properties of (NH_3CH_2CH_2NH_3)_(10) (H_3O)_3(H_5O)_2Na_2-[MnMo_(12)O_(24)(OH)_6(PO)4][MnMo_(12)O_(24)(OH)_6(PO_4)_6(PO_3OH)_2]·9H_2O. New J Chem, 1999,23: 1041-1044.
    [15] Bi L H, Wang E B. Synthesis properties and crystal structure of some polyoxometalates containing the tris(hydroxymethyl) aminomethane cation. Inorg Chem Acta, 2000, 305: 163-171
    [16] 王敬平,吴强,牛景扬.[Zn(DMF)_6]H_2SiW_(l2)O_(40)·(CH_3)_2NH的合成,晶体结构及性质.无机化学学报,2002,18(9):957-960
    [17] 王敬平,段显英,吴强等.[(CH_3)_2NH_2]_3[HSiMo_(12)O_(40)]·2DMF·4H_2O的合成和晶体结构.应用化学,2003,20(7):672-675
    [18] Wang J P, Du X D, Duan X Y, et al. Synthesis and crystal structure of an organic-inorganic complex [Cu(DMF)_3(H_O)_2MSiMo_(12)O_(40)]·2H_2O. Rare Metals, 2007, 26(4):377-384
    [19] 白春礼.纳米科学与技术.昆明:云南科技出版社,1995.
    [20] Sattler K, Miihlbach J, Recknagel E. Generation of metal clusters containing from 2 to500 atoms. Phys. Rev. Lett. 1980, 45(10):821-824
    [21] Birringer R, Gleiter H, Klein H P, et al. Nanocrystalline materials-an approach to a novelsolid structure with gas-like disorder. Phys Lett, 1984, 102A:365-369
    [22] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298:2178-2179.
    [23] Daniel M C, Astruc D. Gold nanoparticles: assembly, superamolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004,104(1): 293-346.
    [24] Boutonnet M, Kizling J, Stenius P, et al. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf, 1982, 5: 209-225.
    [25] Qiu S Q, Dong J X, Chen G X. Preparation of Cu nanoparticles from water-in-oil microemulsion. J Colloid Interface Sci, 1999, 216: 230-234.
    [26] Masui T, Fujiwara K, Maehida K I, et al. Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles. Chem Mater, 1997, 9: 2197-2204.
    [27] Steigerwald M L, Alivisatos A P, Gibson J M, et al. Surface derivatization and isolation of semiconductor cluster molecules. J Am Chem Soc, 1988, 110: 3046-3050.
    [28] Rataboul F, Nayral C, Casanove M J, et al. Synthesis and characterization of monodisperse zinc and zinc oxide nanopartieles from the organometallic precursor [Zn(C6Hn)2]. J Org Chem, 2002, 643-644:307-312
    [29] Iijima S. Helical microtubules of graphitic carbon . Nature, 1991, 345: 56-58
    [30] Iijima S, Ichihashi T. Single-shell carbon nanotubes of l-nm diameter. Nature, 1993, 363: 603-605
    [31] Valcarcel M, Cardenas S, Simonet B M. Role of carbon nanotubes in analytical science. Anal Chem, 2007, 79: 4788-4797.
    [32] G Li, Linda B McGown. Molecular nanotube aggregates of β- and y-cyclodextrins linked by diphenylhexatrienes. Science, 1994, 264: 249-251.
    [33] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269: 966-967.
    [34] Golberg D, Bando Y, Eremets M, et al. BN nanotube glt~ths defects and their annealing-out under electron irradiation. Chem Phys Lett, 1997,279: 191-196.
    [35] Tenne R, Margulis, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature, 1992, 360: 444-447.
    [36] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate, gas-phase growth of MoS_2 nested inorganic fullerenes and nanotubes. Science, 1995, 267: 222-225.
    [37] Archibald D D, Mann S. Template mineralization of self- assembled anisotropic lipid microstructures. Nature, 1993, 364: 430-433.
    [38] Ghadari M R, Granja J R, Buehler L K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 1994, 369: 301-304.
    [39] 杨慧娴,苏朝晖.液滴蒸发形成单根分散的合成Imogolite纳米管.科学通报,2007,52(14):1719-1721
    [40] Hacohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiCl_2 Nature, 1998, 395: 336-337.
    [41] 日刊,工业材料,2006,54(1),40
    [42] Sung S L, Tsai S H, Tseng C H, et al. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl Phys Lett, 1999, 74(2): 197-199.
    [43] Hiruma M, Katsuyama T, Ogawa K, et al. Quantum size microcrystals grown using organometallic vapor phase epitaxy. Appl Phys Lett, 1991, 59: 431-433
    [44] Trentler T J, Hickman K M, Buhro W E, et al. Solution-liquid-solid growth of crystalline I1I-V semiconductors: an analogy to vapor-liquid-solid growth. Science, 1995, 270: 1791-1794.
    [45] Yu D P, Lee C S, Bello I, et al. Synthesis of Nano-scale silicon wires by excimer laser ablation at high temperature. Sol Stat Commun, 1998, 105(6): 403-409.
    [46] Buhro W E, Buhro K M, Trentler T J. Turning down the heat on semiconductor growth : solution-chemical syntheses and the solution-liquid-solid mechanism. Adv Mater, 1996, 8: 685-688.
    [47] Fasol G. Nanowires: Small is Beautiful. Science, 1998, 280: 545.
    [48] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279: 208-211.
    [49] Wang N, Tang Y H, Yu D P, et al. Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation. Chem Phys Lett, 1998, 283: 368-372
    [50] Yu D P, Hang Q L, Ding Y, et al. Applied silica nanowires: Intensive blue light emitters. Appl Phys Lett, 1998, 73: 3076-3078
    [51] Zhou G W, Zhang Z, Yu D P, et al. Transmission electron microscopy study of Si nanowires. Appl Phys Lett, 1998, 73: 677-679
    [52] Zhang H Z, Yu D P, Ding Y, et al. Dependence of the silicon nanowires diameter on the ambient pressure. Appl Phys Lett, 1998, 73: 3396-3398
    [53] Yu D P, Bai Z G, Ding Y, et al. Nanoscale silicon wires synthesized using simple physical evaporation. Appl Phys Lett, 1998,72: 3458-3460.
    [54] Cheng G S, Zhang L D, Zhu Y, et al. Large-scale synthesis of single crystalline gallium nitride nanowires. Appl Phys Lett, 1999, 75: 2455-2457.
    [55] Ashoori R C. Electrons in artificial atoms. Nature, 1996, 379: 413-419.
    [56] Mceuen P L. Artificial Atoms: New Boxes for Electrons. Science, 1997, 278: 1729.
    [57] Spanhel L, Haase M, Henglein A. Photochemistry of colloidal semiconductors surfaee modification and stability of strong luminescing CdS particles. J Am Chem Soe, 1987, 109: 5649-5655.
    [58] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS capped CdSe nanocrystals. J Phys Chem, 1996, 100: 468-471
    [59] Weitzmann M N, Woodford K J, Usdin K. The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J Biol Chem, 1996, 271:20958-26964.
    [60] Phan A T, Kuryavyi V, Ma J B, et al. An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-lintegrase. Proc Natl Acad Sci U.S.A., 2005, 102: 634-639.
    [61] Scaria P V, Shire S J, Shafer R H. Quadruplex structure of d(G3T4G3)stabilized by K~+ or Na~+ is an asymmetric hairpin dimmer. Proe Natl Acad Sci U.S.A., 1992, 59: 10336-10340.
    [62] Yguerabide J, Yguerabide E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. AnalBioehem, 1998,262: 137-156.
    [63] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size,shape,and dielectric environment.J Phys Chem B,2003,107:668-677.
    [64]Lin S Y,Liu S W,Lin C M,et al.Recognition of potassium in water byl5-crown-5 functionalized gold nanoparticles.Anal Chem,2002,74:330-335.
    [65]Mayya K S,Patil V,Sastry M.On the stability of carboxylic acid derivatized gold colloidal partieles:the role of colloidal solution pH studied by optical absorption spectroscopy.Langmuir,1997,13:3944-3847.
    [66]Reynolds R A,Mirkin C A,Letsinger R L.Homogeneous,nanoparticle based quantitative colorimetric detection of oligonucleotides.J Am Chem Soc,2000,122:3795-3796.
    [67]Thanh N T K,Rosenzweig Z.Development of an aggregation based immunoassay for anti protein a using gold nanoparticles.Anal Chem,2002,74:1624-1628.
    [68]Asian K,Holley P,Davies L,et al.Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing.J Am Chem Soc,2005,127:12115-12121.
    [69]Asian K,Lakowicz J R,Geddes C D.Nanogold plasmon resonance-based glucose sensing wavelength-ratiometric resonance light scattering.Anal Chem,2005,77:2007-2014.
    [70]Kelly K L,Coronado E,Zhao L L,et al.The optical properties of metal nanoparticles:the influence of size,shape and dielectric environment.J Phys Chem B,2003,107:668-677.
    [71]Wu L P,LI Y F,Huang C Z,et al.Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles.Anal Chem,2006,78:5570-5577.
    [72]Storhoff J J,Elghanian R,Mirkin C A,et al.Sequence-dependent stability of DNA-modified gold nanoparticles.Langmuir,2002,18:6666-6670.
    [73]Parak W J,Pellegrino T,Mieheel C M,et al.Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis.Nano Lett,2003,3:33-36.
    [74]Kurth D G,Volkmer D,Ruttorf M,et al.Ultra-thin composite films incorporating the nanoporous keplerate polyoxomolybdate(NH_4)_(42)[Mo_(132)O_(372)(CH_3COO)_(30)(H_2O)_(72)].Chem.Mater.,2000,12:2829-2831.
    [75]Liu S Q,Kurth D G,Bredenkotter B,et al.The structure of self-assembled multilayers with polyoxometalate nanoclusters.J Am Chem Soc,2002,124:12279-12287.
    [76]Kang Z H,Wang E B,Jiang M,et al.Convenient controllable synthesis of inorganic ID nanocrystals and 3D high-ordered microtubes.J Inorg Chem,2003,2:370-376.
    [77] Clemente-Leo'n M, Agricole B, Mingotand C, et al. Application of the Langmuir-Blodgett technique to polyoxometalates: Towards new magnetic films. Angew Chem Int Ed Engl, 1997,36,1114-1116.
    [78] Coronado E, Mingotaud C. Hybrid organic/inorganic Langmuir-Blodgett films. A supramolecular approach to ultrathin magnetic films. Adv Mater, 1999, 11(10): 869-872.
    [79] Jiang M, Wang E B, Kang Z H, et al. In situ controllable synthesis of polyoxometalatenanoparticles in polyelectrolyte multilayers. J Mater Chem, 2003, 13: 647-649
    [80] 王秀红,康振辉,王恩波.硅钨酸银纳米晶:形貌可控合成与表征.无机化学学报,2006,22(12):2186-2192
    [81] Maayan G, Popovitz-Biro R, Neumann R. Micelle directed synthesis of polyoxometalate nanoparticles and their improved catalytic activity for the aerobic oxidation of sulfides. J Am Chem Soc, 2006,128: 4968-4969
    [82] Kang Z H, Wang E B, Jiang M, et al. Synthesis and characterization of polyoxometalate nanowires based on a novel microemulsion process. Nanotechnology, 2004, 15(1): 55-58
    [83] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident product of crystal growth and species transformation. Inorg Chem, 2006,45(22): 8856-8858
    [84] Gong J, Li X D, Ding B, et al. Preparation and characterization of fiber mats of H_4SiMo_(12)O_(40)/PVA via Electrospinning. J App1 Poly Sci, 2003, 89(6):1573-1578.
    [85] Gong J, Shao C L, Pan Y, et al. Preparation, characterization and swelling behavior of poly(vinylaleohol)/ H_3PW_(12)O_(40) fiber aggregate produced by an electrospinning method, Mat Chem Phys, 2004, 86: 156-160.
    [86] Yang G C, Gong J, Pan Y, et al. Preparation and photochromic property of an ultra-fine H_3PW_(11)MoO_(40)/PVA fiber mats. J Phys D; Appl Phys, 2004, 37.
    [87] Gong J, Shao C L, Yang G C, et al. Preparation of PVA/H_3PW_(12)O_(40) fiber mats. Chin Chem Lett, 2004, 153: 330-332.
    [88] 杨国程.硕士学位论文,东北师范大学化学学院,2003年6月.
    [89] Roy S, Mourad M C D, Rijneveld-Ockers M T. Synthesis and characterization of large surface hexagonal polyoxometalate platelets. Langmuir, 2007, 23(2): 399-401
    [90] Wu P, Volkmer D, Bredenko"tter B, et al. Isolated and linear arrays of surfactant-encapsulated polyoxometalate clusters on graphite. Langmuir 2008, 24(6): 2767-2771
    [91] Ma Z, Liu Q, Cui Z M, et al. Parallel array of Pt/polyoxometalates composite nanotubes with stepwise inside diameter control and its application in catalysis. J Phys Chem C, 2008,112(24): 8875-8880
    [92] Bu W F, Li H L, Sun H, et al. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces.J Am Chem Soc,2005,127(22):8016-8017
    [93]Polleux J,Pinna N,Antonietti M,et al.Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation.J Am Chem Soc,2005,127(44):15595-15601
    [94]Inouye Y,Tokutake-Y,Kunihara J.Suppressive effect of polyoxxometalates on the cytopathogenicity of human immunodeficiency virus type l(HIV-l) in vitro activity and their inhibitory activity against HIV-lreverse transcriptase.Chem Pharm Bull,1992,40:805-807
    [95]Yamase T,Fukuda N,Tajma Y.Synergistic effect of polyoxotungstates in combination with β-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus.Biol Pharm Bull,1996,19:459-465.
    [96]Berry J P,Galle P.Subcellular-location of HPA-23 in different rat organs:electron microprobe study.Exp Mol Pathol,1990,53:255-264.
    [97]Chermann J C,Sinoussi F C.Inhibition of RNA-dependent DNA polymerase of murine oncornaviruses by ammonium-5-tungsto-2-antimoniate.Biochem Biophys Res commun,1975,65:1229-1236.
    [98]Tsiang H,Atanasiu P,chermann J C.Inhibition of rabies virus in vitro by the ammonium-5-tungsto-2-antimoniate.J Gen Virol,1978,40:665-668.
    [99]Moskovitz B L.Clinical-trial of tolerance of HPA-23 in patients with acquired immunodeficiency syndrome.Antimicrob Agents Chemother,1988,32:1300-1303.
    [100]Raynaud M,Chermann J G,Plata F,et al.Viral inhibitors of murine leukemia sarcoma group tungstosilicate.C R Acad Sci.1971,272:347-348
    [101]Ficher J,Rchard L,Weiss R.The structure of the heteropoly tungatate(NH_4)_(17)Na[NaSb_9W_(21)O_(86)]·14H_2O an inorganic cryptate.J Am Chem Soc,1976,98:3050-3052.
    [102]Balzarini J,Mitsuya H,Broder S.Comparative inhibitory effects of suramin and other selected compounds on the infectivity and replication of human T-cell lymphotropic virus(HTLV-Ⅲ)/lymphadenopathy-associated virus(LAV).Int J Cancer,1986,37:451-457.
    [103]Vittecoq D,Woerle R,Barre-Sinoussi F,et al.Reverse transcriptase activity(RTA) in lymphocyte cultures of HIV-infected patients receiving short treatments of HPA 23.Bio Phar,1988,42:35-39.
    [104]Burgard M,Sansonetti P,Vittecoq D.Lack of HPA-23 antiviral activity in HIV-infected patients without AIDS.AIDS,1989,3:665-668.
    [105]Bussereau F,Ermine A.Effects of heteroplyanions and nucleoside analogues on rabies virus: in vitro study of syntheses and viral production. Ann Virol, 1983, 134E:487-506.
    [106] Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates Part 1 Potent Antitumor Activity of Polyoxomolybdates on Animal Transplantable tumors and Polyoxomolybdates on Animal Transplantable tumors and human cancer xenograft. Inorg.Chem.Acta. 1988, 151: 15-18.
    [107] Yamase T. Polyoxometalates for molecular devices: Antitumor activity and luminescence. Mol Eng, 1993,3:241-262.
    [108] Field H J, Darby G, Wildy P. Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus. J Gen Virol, 1980,49: 115-124.
    [109] 山濑利博.金属酸物(?)生理活性化学.化学工业。1990,41(10):848.
    [110] Haapala, Jasmin C, Sinoussi F. Inhibition of tumour virus RNA-dependent DNA polymerase by the heteropolyan ion, silicotungstate. Biomedicine, 1973, 19: 7-11.
    [111] Jasmin C, Raybaud N, Chermann J C. In vitro effects of silicotungstate on some RNA viruses. Biomedicine, 1973, 18: 319-327.
    [112] Moskovitz B L. Clinical trial of tolerance of HPA-23 in patients with acquired immune deficiency syndrome. Antimicrob Agents Chemother, 1988, 32(9): 1300-1303.
    [113] Weeks M S, Hill C L, Schinazi R F. Synthesis, characterization and anti-human immunodeficiency virus of water-soluble salts of polyoxometalate anions with covalently attached organic groups. J. Med. Chem.1992, 35:1216.
    [114] Pepin M, Blancou J. Ammonium-5-tungsto-2-antimoniate (HPA23) can prevent fox rabies. Arch Virol, 1985, 83: 327-329.
    [115] Inouye Y, Take Y, Tokutake Y. Inhibition of replication of human immunodeficiency virus by a heteropolyoxotungstate (PM-19). Chem Pharm Bull, 1990, 38(1): 285-287.
    [116] Inouye Y, Tokutake Y, Kunihara J. Suppressive effect of polyoxometalates on the cytopathogenicity of human immunodeficiency virus type l (HIV-l) in vitro and their inhibitory activity against HIV-1 reverse transcriptase. Chem Pharm Bull, 1992, 40(3): 805-807.
    [117] Yamase T, Fukuda N, Tajma Y. Synergistic effect of polyoxotungstates in combination with beta-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus Biol Pharm Bull, 1996, 19(3): 459-465
    [118] Larnicol N, Augery Y, L Bousse-Kerdies C, et al. In vivo effect of a new mineral condensed ion (HPA 39) on murine Friend leukaemia. J Gen Virol, 1981, 55: 17-23.
    [119] Kimberlin R H, Walker C A. Pathogenesis of mouse scrapie: evidence for neural spread of infection to the CNS. J Gen Virol, 1980, 51: 183-187.
    [120] Samson M K, Rivkin S E, Jones S E, et al. Dose-response and dose-survival advantage for high versus low-dose cisplatin combined with vinblastine and bleomycin in disseminated testicular cancer. Cancer, 1984, 53: 1029-1035
    [121] Take Y, ToKutate Y., Inouye Y Inhibition of proliferation of human immunodeficiency virus type 1 by novel heteropolyoxometalates in vitro. Antiviral Res, 1991, 15: 113.
    [122] Kim G S, Judd A, Hill C L. Synthesis, characterization andbiological activity of a new potentclass of anti-HIV agents, the peroxoniobium-substitutedheterop J Med Chem, 1994,37:816.
    [123] Inouye Y, Tokutake Y, Yoshya T, Antiviral of polyoxometalate PM-104 against human immunodeficiency virus type 1. Chem Pharm Bull 1991, 39(6):1638.
    [124] Klemperer W G, Wall C G. Polyoxoanion chemistry moves toward the future from solids and solutions to surfaces. Chem Rev, 1998, 9877-9886.
    [125] Yadav J S, Reddy B V S, Sridhar P, et al. Green protocol for the biginelli three-component reaction: Ag_3PW_(12)O_(40) as a novel, water-tolerant heteropolyacid for the synthesis of 3,4-dihydropyrimidinones. Eur J Org Chem, 2004, 3: 552-557.
    [126] Kang Z H, Tsang C H A, Zhang Z D, et al. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. J Am Chem Soc, 2007, 129: 5326-5327.
    [127] Kim W B, Voitl T, Rodriguez-Rivera G J, et al. Preferential oxidation of CO in H_2 by aqueous polyoxometalates over metal catalysts. Angew Chem Int Ed, 2005,44: 778 -782.
    [128] Sloboda-Rozner D, Witte P, Alsters P L, et al. Aqueous Biphasic Oxidation: A water-soluble polyoxometalate catalyst for selective oxidation of various functional groups with hydrogen peroxide. Adv Synth Catal, 2004, 346: 339 -345.
    [129] 石晓波,石淑华,李苑.纳米钼钒砷杂多酸盐催化苯羟化合成苯酚的研究.化学研究与应用,2005,17(6):783-785.
    [130] Plault L, Hauseler A, Nlate S, et al. Synthesis of dendritic polyoxometalate complexes assembled by ionic bonding and their function as recoverable and reusable oxidation catalysts. Angew Chem Int Ed, 2004, 43: 2924 -2928.
    [131] Pope M T, Muller A. Polyoxometalate chemistry an old field with new dimensions in several disciplines. Angew chem. Intedengl, 1991, 30(34): 34-48.
    [132] Papaconstantinou E. Photochemistry of polyoxometalates of molybdenum and tungsten and/or vanadium. Chem Soe Rev, 1989, 18: 1-13.
    [133] Li D F, Guo Y H, Hu C W, et al. Photocatalytic degradation of aqueous formic acid over the silica composite films based on lacunary Keggin-type Polyoxometalates. Appl Catal A:General,2002,235:11-20.
    [134] 杨曦,余刚,孔令仁等.酸性红3B的杂多酸光催化降解动力学.环境科学,2002,23(3):40-43.
    [135] Saeid F, Mozhgan A, Mansoureh M, et al. Photoeatalytic oxidation of primary and secondary Benzylic alcohols to carbonyl compounds catalyzed by H_3PW_(12)O_(40)/SiO_2 under an O_2 atmosphere. Tetrahedro Lett, 2005,46: 8483-8486
    [136] Jiang C J, Guo Y H, Hu C W, et al. Photoeatalytic degradation of dye naphthol blue black in the presence of zirconia-supported Ti-substituted Kiggen-type Polyoxometalates. Mater Res Bull, 2004, 39: 251-261.
    [137] Bai B, Zhao J L, Feng X, et al. Preparation and characterization of supported photocatalysts: HPAs/TiO_2/SiO_2 composite. Mater Lett, 2003, 57: 3914-3918.
    [138] Arslan-Alaton I, Ferry J L. Near-UV-VIS light induced acid orange 7bleaching in the presence of SiW_(12)O_(40)~(4-) catalyst. Photochem and Photobio A: Chemistry, 2002, 152: 175-181.
    [139] Aristidis T, Anastasia H, Elias P. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed, 2002, 41(11): 1911-1914.
    [140] Saikat M, P R. Selvakannan, Renu P, et al. Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles. J Am Chem Soc, 2003, 125: 8440-8441.
    [14l] 牛彩红,吴莹,王振平等.过渡金属杂多酸PW_(11)M光催化还原制备金纳米粒子及其形貌.应用化学,2007,24(7):786-789.
    [142] 王振平,吴莹,牛彩红等.磷钼酸作为光催化还原剂制备纳米金溶胶.光谱实验室,2007,24(3):334-337.
    [143] T Yamase.日本专利,JP62230620 A2,1987.Chem Abstr,1987,108,173535.
    [144] 余建中,李娟,赫澎等.Keggin结构钼磷杂多酸/三聚苯胺掺杂材料的制备、表征及性质研究.东北师范大学学报(自然科学版),1999,3,37-41.
    [145] Ricard F, Maria R E. Limit of discrimination, limit of detection and sensitivity in analytical systems, Anal Chim Acta, 1994, 287: 119-145
    [146] 李山,刘丹.磷钼蓝分光光度法测定环境水样中无机磷,冶金分析,2006,26(3):82-83.
    [147] 王爱萍,刘立君,梁秀丽等.钒钼黄分光光度法测定有机化合物中的微量磷.化学分析计量,2007,16(2):49-50.
    [148] 贺晓唯,毕诗文.硅钼黄光度法快速测定赤泥中硅.冶金分析,2006,26(1):92
    [149] 黄诚,尹红.锗锑钼杂多蓝光度法测定蔬菜中微量锗,理化检验.化学分册,2004,40(12):735-736
    [150] 侯曼玲,邓飞跃,鲁统娟,王丽苹.硼氢化钾还原-硅钼蓝分光光度法测定钢铁中硅.冶金分析,2004,24(1):39-41.
    [151] Dmitrienko S G, Goncharova L V, Zhigulev A V, et al. Sorption-photometric determination of ascorbic acid using molybdosilicic heteropolyacid and polyurethane foam after microwave irradiation. Anal Chim Acta, 1998, 373:131-138
    [152] 卞海燕.磷钼钨杂多酸作显色剂快速测定水果蔬菜中V c的含量.计量与测试技术,1996.4:28-29.
    [153] 王美兰,吕建刚,周志才.磷钼杂多酸光度法测定水果、蔬菜V c.食品科学,2003,24(8):129·131.
    [154] 罗登柏,詹国庆,杨尘.同多钼酸分光光度法测定抗坏血酸.中南民族学院学报(自然科学版),2001,20(4):10-12.
    [155] 蓝金贵,罗登柏,李密密,曹巍.磷钼杂多酸光度法测定半胱氨酸.中南民族大学学报(自然科学版),2004,23(2):5-7.
    [156] 陈艳军,王升富.磷钼杂多酸光度法测定吲哚乙酸.分析试验室,2000,19(3):22-23
    [157] 詹国庆,罗登柏,张健.钼蓝光度法测定头孢氨苄.中南民族大学学报(自然科学版),2002,21(3):8-10.
    [158] 詹国庆,罗登柏,艾伟莉.水解还原铜磷钼酸光度法间接测定丙酮肟,分析试验室,2004,23(8):45-47.
    [159] 詹国庆,罗登柏,张永波.铜磷钼酸分光光度法间接测定盐酸羟胺.分析测试学报,2004,23(5):128-129.
    [160] 吴晓园.多酸化合物及其与碱性染料形成的超分子化合物的合成与结构化学.硕士毕业论文,福州大学,2003.
    [161] 贺晓唯,刘勇进,吴玉红.硅钼杂多酸一乙基罗丹明B光度法测定合金中的硅.冶金分析,1996,16(3):47-48.
    [162] 贺晓唯,李光明.碱性染料杂多酸多元络合物形成机理的研究.沈阳化工学院学报,1994,8(4):283-288.
    [163] 李祖碧,徐其亨.耐尔蓝-12-钼锗酸-聚乙烯醇体系测定锗.分析化学,1993,2l(8):927-930.
    [164] 李祖碧,王加林,徐其享.聚乙烯醇存在下钼酸盐和罗丹明 B 光度法测定钪.分析科学学报,1997,l:38-41.
    [165] 李祖碧,王加林,徐其享.丁基罗丹明 B-铜钨杂多酸光度法测定微量铜.分析试验室.1997.6:6-9.
    [166] 李祖碧,王加林,徐其享.锇钼酸-丁基罗丹明 B 缔合显色反应的研究.化学研究与应用,1996,1:42-46.
    [167] 李祖碧,曹秋娥,徐其享.碲钨杂多酸-丁基罗丹明 B 超高灵敏显色反应的研究.分析试验室,1998,3:1-4.
    [168] 程光祥,李祖碧,王加林等.丁基罗丹明 B-钇钼杂多酸缔合显色反应体系的研究.分析科学学报,1998,l:55-58.
    [169] 李崇宁,李祖碧,杜超.金钨杂多酸-罗丹明B缔合显色反应的研究.冶金分析,1998,3:45-48.
    [170] 王镇棣,郑用熙.乳化剂OP存在下,结晶紫-锗钼杂多酸光度法测定锗.化学通报,1993,(7):9-14.
    [171] 刘长松.在非离子表面活性剂存在下,硅钒钼蓝、磷钒钼蓝-罗丹明B缔合物分光光度法测定痕量磷的研究.分析化学,1998,16(3):2ll-215.
    [172] 傅志伟.硅钼蓝-罗丹明 B 离子缔合络合物分光光度法测定纯钼中痕量硅.上海有色金属,1997,1:40-43.
    [173] 彭晓春,黄诚.硅锑钼杂多酸-罗丹明B四元络合体系光度法测定痕量硅.广东工业大学学报,1997,11:104-105.
    [174] 杨万龙,李一峻,何锡文.光度分析.分析试验室,1999,2:89-110.
    [175] 陈莉华,赵凤林,李克安.丁基罗丹明 B铋钼杂多酸光度法测定铋.分析试验室,2000,4:47-49.
    [176] 刘淑萍.硼钼杂多酸-罗丹明B缔合显色反应的研究与应用.分析试验室,2001,20(3):43-45.
    [177] Keisuke M, Emiko K. Spectrophotometric determination of trace arsenic in water samples using a nanoparticle of ethyl violet with a molybdate-iodine tetrachloride complex as a probe for molybdoarsenate. Anal Chem, 2006, 78: 7682-7688.
    [178] 陈国和,张新申,龚正君等.砷钼杂多酸-乙基罗丹明B流动注射分光光度法测定地表水中砷(V).冶金分析,2006,26(3):44-46.
    [179] 蒋治良,李芳,王盛锦等,磷钼杂多酸.罗丹明 B 荧光体系研究及分析应用;分析测试技术与仪器,1999,3:157-160.
    [180] 高甲友,赵岚.砷钼杂多酸-罗丹明6G荧光萃灭法测定痕量砷.环境监测管理与技术,1995,2:44-46.
    [181] 瞿鹏,许春丽,田穗康等.流动注射化学发光法测定痕量钒(V).陕西师范大学学报(自然科学版),2003,31(1):8385.
    [182] Li B X, He Y Z, Xu C L. Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta, 2007, 72: 223-230.
    [183] 蒋治良,李芳,梁宏.磷钼杂多酸.罗丹明 S 体系的共振散射光谱研究.化学学报,2000,58(8):1059-1062.
    [184] 蒋治良,王盛棉,黄中强等.硅锑钼杂多酸-罗丹明B缔合物的二级散射光谱研究.广西师范大学学报(自然科学版),2000,1 8(2):50-53.
    [185] 邓晔,曾建强,李芳等.硅锑钼杂多酸-罗丹明B缔合物的共振散射光谱研究及其应用.分析测试技术与仪器,2000,6(2):86-89.
    [186] 蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明S体系的共振散射光谱研究.化学学报,2000,58(8):1059-1062.
    [187] 李怡,曹秋娥,丁中涛.铑-钨酸盐-罗丹明B缔合体系的共振光散射现象及其应用.分析试验室,2004,23(11):49-51.
    [188] 李正平,郝龙腾,成永强.磷钼杂多酸-奎宁体系共振光散射测定微量磷.河北大学学报(自然科学版),2008,28(2):158-161.
    [189] Xu D P, Liu S P, Liu Z F, et al. Determination of verapamil hydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering method coupled to flow injection system. Anal Chim Acta, 2007, 588: 10-15.
    [190] 王升富,杜丹,邹其超.磷钼杂多酸-L-半胱氨酸自组装超分子膜电极对亚硝酸根电催化还原的研究.分析化学,2002,30(2):178-182.
    [191] 黄坚,龚竹青,陈鹏.硅钼蓝杂多酸极谱法测定氧化铁中二氧化硅.冶金分析,2005,25(4):68-70.
    [192] 张江.硼钼杂多酸-单扫描示波极谱法测定水中微量硼.冶金分析,2006,26(5):56-57.
    [193] 黄瑾,袁余洲,梁宏.紫外光谱、荧光光谱及平衡透析研究磷钨杂多酸与HSA或BSA的结合平衡.中国科学B,200l,31(6):530-535.
    [194] 梁爱惠,邹节明,蒋治良.磷钼杂多酸与蛋白质相互作用的共振散射光谱研究.应用化学,2002,19(8):768-771.
    [195] 袁伟恩,蒋治良,潘宏程.HSA-磷钼杂多酸缔合纳米微粒体系荧光猝灭机理研究.光谱学与光谱分析,2004,24(8):970-974.
    [196] 罗杨合,蒋治良,袁伟恩.HSA-硅钨杂多酸缔合纳米微粒体系的荧光猝灭.应用化学,2003,20(9):833-836.
    [197] 王彦卿,张红梅,张根成.硅钨杂多酸与牛血红蛋白相互作用的研究.无机化学学报,2006,22(5):895-899.
    [198] 胡艳军,刘义,侯安新.稀土杂多酸盐EuHSiMo_(10)W_(20)O_(40)·25H_2O与BSA相互作用的研究.化学学报,2004,62(16):1519.1523.
    [199] 梁彦秋,邓斌,刘婷婷.杂多酸盐K_7[PTi_2W_(l0)O_(40)]·6H_2O与牛血清白蛋白相互作用的研 究.无机化学学报,2007,23(4):688-692.
    [200] Zhang G J, Keita B, Brochon J-C, et al. Molecular Interaction and Energy Transfer between Human Serum Albumin and Polyoxometalates. J Phys Chem B, 2007, 111: 1809-1814.
    [201] Zhang G J, Keita B, Craescu C T, et al. Polyoxometalate binding to human serum albumin: a thermodynamic and spectroscopic approach. J Phys Chem B, 2007, 111: 11253-11259.
    [202] 龙秀芬,刘绍璞.磷锑钼蓝共振瑞利散射法测定蛋白质.西南师范大学学报(自然科学版),2009,25(2):155-159.
    [203] Safar J G, Geschwind M D, Deering C, et al. Diagnosis of human prion disease. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(9): 3501-3506
    [204] Lee I S, Long J R, Prusiner S B, et al. Selective precipitation of prions by polyoxometalate complexes. J Am Chem Soc, 2005, 127(40): 13802-13803
    [1] Wen X L, Jia Y H, Liu Z. Micellar effects on the electrochemistry of dopamine and its selective detection in the presence of ascorbic acid .Talanta, 1999, 50: 1027-1033.
    [2] Wu K B, Fei J J, Hu S S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem, 2003, 318: 100-106.
    [3] Mo J W, Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological level using voltammetfic microprobe based on overoxidized poly ( 1,2-phenylenediamine )-coated carbon fiber.Anal Chem, 2001,73:1196-1202.
    [4] Wightman R M, May L J, Michael A C. Detection of dopamine dynamics in the brain. Anal Chem, 1988,60(13): 769A-779A.
    [5] 陈新谦,金有豫.新编药物学.人民卫生出版社,北京,2000,293.
    [6] 国家药典委员会.中华人民共和国药典,2005年版二部.化学工业出版社,北京,2005,500.
    [7] Nohat H, Mitsui A, Ohkura Y. Japanese J. Anal. Chem, 1984, 33: E263-269
    [8] Hu Y G, Li X X, Pao Z T. Indirect chemiluminescence detection for cap illary zone electrophoresis of monoamines and catechol using luminal-K_3 [Fe (CN)_6] system. J Chromatogr, A, 2005, 1091 (2): 194-198.
    [9] Nevado J J B, Gallego JM L, Laguna P B. Spectrophotometric determination of catecholamines with metaperiodate by flow injection analysis. Anal Chim Acta, 1995, 300: 293 - 297.
    [10] 中华人民共和国卫生部药典委员会.中华人民共和国药典(二部).北京:化学工业出版社。2005:500-501.
    [11] 王怀友,孙悦,唐波.分光光度法测定多巴胺.分析试验室,2003,22(1):45-47.
    [12] 吴霞,童裳伦,苏本玉等.荧光光度法测定多巴胺.分析化学,1999,27(9):1069-1071.
    [13] 王(?),龙云飞,黄承志等.邻苯二甲醛-β-巯基乙醇组合试剂可视化荧光检测多巴胺.分析化学,2007,35(12):1741-1744.
    [14] 杜凌云,王术皓,林世蕾.流动注射协同化学发光法测定盐酸多巴胺.分析试验室,2005,24(7):88-90.
    [15] 王术皓,杜凌云,魏新庭等.反相流动注射化学发光法测定盐酸多巴胺.光谱学与光谱分析,2005,25(5):678-680.
    [16] Su R G, Lin J M, Qu F, et al. Cap illary electrophoresis microchip coup led with on-line chemiluminescence detection. Anal Chim Acta, 2004, 508 (1): 11-15.
    [17] 李利军,钟招亨,冯军.流动注射化学发光法测定盐酸多巴胺.分析测试学报,2007, 26(1):125-127.
    [18] 徐静娟,汪云.多巴胺在硫堇衍生化自由组装饰电极上的伏安行为及其测定.分析化学,1998,26(4):428-430.
    [19] Wang P, Li Y X, Huang X, et al. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta, 2007, 73: 431-437.
    [20] Gopalan A I, Lee K-P, Manesha K M, et al. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 2007, 71: 1774-1781.
    [21] 孙登明,马伟,吴云.聚L-异白氨酸修饰电极的制备及对多巴胺的测定.应用化学,2006,23(11):1214-1217.
    [22] 王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998
    [23] Keisuke M, Emiko K. Spectrophotometric determination of trace arsenic in water samples using a nanoparticle of ethyl violet with a molybdate-iodine tetrachloride complex as a probe for molybdoarsenate. Anal Chem, 2006,78: 7682-7688.
    [1] Yadav J S, Reddy B V S, Sridhar P, et al. Green protocol for the biginelli three-component reaction: Ag_3PW_(12)O_(40) as a novel, water-tolerant heteropolyacid for the synthesis of 3, 4-dihydropyrimidinones. Eur J Org Chem, 2004, 3: 552-557
    [2] 王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998.147-168
    [3] Li B X, He Y Z, Xu C L. Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-fl(?)w chemiluminescence with artificial neural network calibration. Talanta, 2007,72(1): 223-230
    [4] Pinna N, Niederberger M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed, 2008,47(29): 5292-5304
    [5] 王秀红,康振辉,王恩波.硅钨酸银纳米晶:形貌可控合成与表征.无机化学学报,2006,22(12):2186-2192
    [6] Kang Z H, Wang E B, Jiang M, et al. Synthesis and characterization of polyoxometalate nanowires based on a novel microemulsion process. Nanotechnology, 2004, 15(1): 55-58
    [7] Kang Z H, Wang E B, Jiang M, et al. Convenient controllable synthesis of inorganic ID nanocrystals and 3D high-ordered microtubes. Eur J Inorg Chem. 2003, 2: 370-376
    [8] Jiang M, Wang E B, Kang Z H, et al. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers. J Mater Chem, 2003, 13: 647-649
    [9] Polleux J, Pinna N, Antonietti M, et al. Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J Am Chem Soc, 2005, 127(44): 15595 - 15601
    [10] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident product of crystal growth and species transformation. Inorg Chem, 2006, 45(22): 8856-8858
    [11] Ma Z, Liu Q, Cui Z M, et al. Parallel array of Pt/polyoxometalates composite nanotubes with stepwise inside diameter control and its application in catalysis. J Phys Chem C, 2008,112(24): 8875-8880
    [12] Bu W F, Li H L, Sun H, et al. Polyoxometalate-based vesicle and its honeycomb architectures on solid surfaces. J Am Chem Soc, 2005, 127(22): 8016-8017
    [13] Wu P, Volkmer D, Bredenk(?)tter B, et al. Isolated and linear arrays of surfactant-encapsulated polyoxometalate clusters on graphite. Langmuir, 2008, 24(6): 2767-2771
    [14] 王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社,1998.14-36
    [15] Ghaemmaghami S, Phuan P-W, Perkins B, et al. Cell division modulates prion accumulation in cultured cells. Proc Natl Acad Sci, 2007,104(46): 17971-17976
    [16] Safar J G, Geschwind M D, Deering C, et al. Diagnosis of human prion disease. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(9): 3501-3506
    [17] Lee I S, Long J R, Prusiner S B, et al. Selective precipitation of prions by polyoxometalate complexes. J Am Chem Soc, 2005, 127(40): 13802-13803
    [18] Rocchiccioli-Deltcheff C, Founoer M, Franck R, et al. Vibrational investigations of polyoxometalates. 2. evidence for anion-anion interactions in molybdenum(Ⅵ) and tungsten(Ⅵ) compounds related to the Keggin structure. Inorg. Chem. 1983, 22(2): 207-216
    [19] Cavani F, Mezzogori R, Pigamo A, et al. Improved catalytic performance of Keggin-type polyoxometalates in the oxidation of isobutane to methacrylic acid under hydrocarbon-lean conditions using antimony-doped catalysts. Chem Eng J, 2001, 82(123):33242
    [20] 朱思三,岳斌,万国江等。DMF和DMSO配位的金属十聚物酸盐在废水溶剂中光至变色性质的研究.应用化学,1992,9(3):9-10.
    [21] Li W, Yi S Y, Wu Y Q, et al. Thermotropic mesomorphic behavior of surfactant-encapsulated polyoxometalate hybrids. J Phys Chem B 2006, 110(34): 16961-16966
    [22] 朱奇,陈彦.溶菌酶及其应用.生物学通报,1998,33(10):9-10.
    [23] Myasoedova M S, Semenova M G, Belyakova L E, et al. Surface activity at the planar interface in relation to the thermodynamics of intermolecular interactions in the ternary system: maltodextrin-small-molecule surfactant-legumin. Colloids Surf B Biointerfaces, 2001,21 (1-3):179-189.
    [24] Husoy T, Loberg E M, Cruciani V, et al. Decreased connexin32 level and increased lysozyme secretion from paneth cells of ApcMin/+ mouse, and its implication to cancer development. Int J Cancer, 2002, 100: 145-146.
    [25] Lee-Huang S, Huang P L, Sun Y T, et al. Lysozyme and RNases as anti-HIV components in P-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci U. S. A., 1999,96:2678-2681.
    [26] Sexton C, Buss D, Powell B, et al. Usefulness and limitations of serum and urine lysozyme levels in the classification of acute myeloid leukemia : An analysis of 208 cases. Leuk Res, 1996, 20, 467-472.
    [27] 祁静.溶菌酶的紫外分光光度法检测.仪器仪表与分析监测,2006,2:34-36.
    [28] 俞英,周震涛.核壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶.分析化学,2005,33(5):650-652.
    [29] Wang J, Liu B. Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem. Commun., 2009, 17: 2284-2286.
    [30] 王欢,顾玲.电化学法研究橙黄Ⅳ和溶菌酶的相互作用.分析试验室,2008,27(11):115-117.
    [31] Huang C Z, Liao Q G, Gan L H, et al.Telomere DNA conformation change induced aggregation of gold nanopalticles as deteeted by plasmon resonance light scattering technique. Anal Chim Aeta, 2007, 604:165-169.
    [32] Wu L P, Li Y F, Huang C Z, et al.Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal Chem, 2006, 78: 5570-5577.
    [33] Wang H Y, Li Y F, Huang C Z. Detection of ferulic acid based on the plasmon resonance light seattering of silver nanoparicles.Talanta, 2007, 72: 1698-1703.
    [34] Liu Z D, Huang C Z, Li Y F, et al. Enhanced plasmon resonance light scattering signals of eolloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal Chim Aeta, 2006, 577: 244-249.
    [35] 贺薇,李原芳,谭克俊等.金纳米棒与肝素相互作用的表征及肝素的等离子共振光散射分析法.2007,52:2840-2845.
    [36] Wen X L, Jia Y H, Liu Z. Micellar effects on the electrochemistry of dopamine and its selective detection in the presence of ascorbic acid .Talanta, 1999, 50: 1027-1033.
    [37] Wu K B, Fei J J, Hu S S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem, 2003, 318: 100-106.
    [38] Mo J W, Ogorevc B. Simultaneous measurement of dopamine and ascorbate at their physiological level using voltammetfic microprobe based on overoxidized poly (1,2-phenylenediamine )-coated carbon fiber.Anal Chem, 2001,73:1196-1202.
    [39] Wightman R M, May L J, Michael A C. Detection of dopamine dynamics in the brain. Anal Chem, 1988, 60(13): 769A-779A.
    [40] 陈新谦,金有豫.新编药物学.人民卫生出版社,北京,2000,293.
    [41] 国家药典委员会.中华人民共和国药典,2005年版二部.化学工业出版社,北京,2005,5l 500.
    [42] Nohat H, Mitsui A, Ohkura Y. Japanese J. Anal. Chem, 1984, 33: E263-269
    [43] Hu Y G, Li X X, Pao Z T. Indirect chemiluminescence detection for cap illary zone electrophoresis of monoamines and catechol using luminal-K_3[Fe(CN)_6] system. J Chromatogr, A, 2005, 1091 (2): 194-198.
    [44] Nevado J J B, Gallego JM L, Laguna P B. Spectrophotometric determination of catecholamines with metaperiodate by flow injection analysis. Anal Chim Acta, 1995, 300: 293 - 297.
    [45] 中华人民共和国卫生部药典委员会.中华人民共和国药典(二部).北京:化学工业出版社,2005:500-501.
    [46] 王(?),龙云飞,黄承志等.邻苯二甲醛-β-巯基乙醇组合试剂可视化荧光检测多巴胺.分析化学,2007,35(12):174l-1744.
    [47] Wang P, Li Y X, Huang X, et al. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta, 2007, 73: 431-437.
    [48] Jiang M, Wang E B, Kang Z H, et al. In situ controllable synthesis of polyoxometalate nanoparticles in polyelectrolyte multilayers. J Mater Chem, 2003, 13: 647-649
    [49] 邓谦,周文辉,彭振山等.纳米磷钨酸银光催化剂的微波固相合成.湖南科技大学学报(自然科学版),2005,20(3):67-70.
    [50] Yadav J S, Reddy B V S, Sridhar P, et al. Green protocol for the biginelli three-component reaction: Ag_3PW_(12)O_(40) as a novel, water-tolerant heteropolyacid for the synthesis of 3, 4-dihydropyrimidinones. Eur J Org Chem, 2004, 3: 552-557

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700