共振瑞利散射技术测定多糖大分子的新方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:共振瑞利散射(Resonance Rayleigh Scattering,RRS)是二十世纪90年代发展起来的新分析技术,它以灵敏度高(检出限可达ng/mL级)、仪器廉价易得、操作简便以及分析快速等优点引起了人们越来越多的关注。目前,这一技术已用于蛋白质、核酸、痕量金属、非金属、纳米微粒和药物分析中。多糖物质不仅是自然界中全部生命体的组成部分,还是一种重要的信息分子,在生命科学、化学、医学等学科研究中都具有举足轻重的地位。因此建立一种快速、准确、灵敏的测定方法具有重要的现实意义。
     本文主要包括以下内容:
     1、中性红与透明质酸钠相互作用的共振瑞利散射光谱及其分析应用在Britton-Robinson (pH 4.3~5.2)缓冲介质中,碱性吩嗪染料中性红与透明质酸钠作用形成结合产物时将导致溶液共振瑞利散射(RRS)大大增强并产生新的RRS光谱,其最大散射峰位于328 nm,另在605 nm处有一个较弱的散射峰。透明质酸钠浓度在0.08~2.5 mg/L范围内,与RRS强度有良好的线性关系。据此,建立了一种新的测定透明质酸钠的分析方法。该法具有高灵敏度,对透明质酸钠的检出限(3σ)为25.9 ng/mL,选择性也良好。应用于滴眼液和化妆水中透明质酸钠的测定,结果满意。
     二、透明质酸钠-溴化十六烷基吡啶缔合物体系的共振瑞利散射光谱研究及其分析应用
     在pH 4.3的Britton-Robinson缓冲溶液中,单独的透明质酸钠与溴化十六烷基吡啶的共振瑞利散射(RRS)均较弱,但当两者反应形成离子缔合物时,RRS大大增强并产生新的RRS光谱,最大RRS峰位于335 nm,另在546 nm处有一个强度较低的RRS峰。线性范围是0.09~3.0 mg/L,检出限(3σ)为29.0 ng/mL。实验表明该方法有较高的灵敏度和较好的选择性。应用于眼药水和化妆水中透明质酸钠的测定,结果满意。
     三、三氨基三苯甲烷染料共振瑞利散射法测定硫酸皮肤素
     在pH 5.5~6.5的Britton-Robinson缓冲溶液中,硫酸皮肤素(DS)可以与某些三氨基三苯甲烷染料如乙基紫(EV)、龙胆紫(CV)和甲基紫(MV)相互作用形成新产物,使共振瑞利散射(RRS)增强并产生新的RRS光谱。其中以最灵敏的EV-DS体系为例,其最大散射峰位于498 nm处,另在327和650 nm处有两个较弱的散射峰。硫酸皮肤素浓度在0.02~1.6 mg/L范围内,与RRS强度有良好的线性关系,检出限(3σ)为5.1 ng/mL。据此,建立了一种新的测定硫酸皮肤素的分析方法。应用于血清和尿样中硫酸皮肤素的测定,结果令人满意。
     四、健那绿与硫酸软骨素相互作用的共振瑞利散射光谱及其分析应用健那绿与硫酸软骨素在pH 9.0的Britton-Robinson缓冲溶液中作用形成结合产物时将导致溶液共振瑞利散射(RRS)大大增强并产生新的RRS光谱,其最大散射峰位于326 nm处,另在407和560 nm处有两个较弱的散射峰。硫酸软骨素浓度在0.2~5.0 mg/L范围内,与RRS强度有良好的线性关系,检出限(3σ)为25.3 ng/mL。据此,建立了一种新的测定硫酸软骨素的分析方法。可用于注射液样品和片剂样品中硫酸软骨素的测定。
     五、肝素-氯化十六烷基吡啶体系的共振瑞利散射光谱研究及分析应用
     在pH 5.5的Britton-Robinson缓冲溶液中,肝素与阳离子表面活性剂氯化十六烷基吡啶反应形成离子缔合物时,共振瑞利散射(RRS)大大增强并产生新的RRS光谱,最大RRS峰位于293 nm,另在542 nm处有一个强度较低的RRS峰。线性范围是0.04~1.2 mg/L,检出限(3σ)为10.6 ng/mL。据此,建立了一种灵敏度高,选择性好的测定肝素的新方法。应用于肝素钠注射液的测定,结果满意。
     六、十六烷基三甲基溴化铵共振瑞利散射法测定肝素及分析应用
     在pH 6.0的Britton-Robinson缓冲溶液中,肝素与十六烷基三甲基溴化铵反应形成离子缔合物,使溶液共振瑞利散射(RRS)急剧增强并产生新的RRS光谱,最大RRS峰位于310 nm,并在548 nm处有一个较弱的RRS峰。肝素浓度在0.06~2.5 mg/L范围内,与RRS强度有良好的线性关系,对肝素的检出限(3σ)为19.4 ng/mL。该方法有较好的选择性,应用于肝素钠注射液的测定,结果满意。
Resonance Rayleigh Scattering (RRS) as a new technology has attracted more and more attention for its high sensitivity (detection limit of ng·mL-1 level), cheap instrument, simple operation and rapid analysis speed. At present, RRS method has been applied to the study and the determination of nucleic acids, proteins, trace metal ions, nonmetal ions, nanoparticles and some pharmaceuticals. Polysaccharides are very important component in all lives of the world, which play significant roles in the research fields of life science, chemistry and medicine as information molecular. Therefore, it is necessary to develop a speedy, accurate, highly sensitive way of analyzing polysaccharides.
     The paper can be summarized as follows:
     1、Resonance Rayleigh Scattering Spectra of interaction of Sodium Hyaluronate with Neutral Red and Its Analytical Application
     In the Britton-Robinson buffer medium(pH 4.3~5.2), a compound complex was formed between neutral red (NR) and sodium hyaluornate (SH), leading to a great enhancement of the intensity of resonance rayleigh scattering (RRS) and giving a new RRS spectrum. The maximum scattering peak is located at 328 nm and a relatively weaker peak is located at 605 nm. It was also found that the intensity of RRS was directly proportional to the concentration of SH in the range of 0.08~2.5 mg/L. Based on these facts, a sensitive method for the determination of SH was proposed. The detection limit (3σ) of this method was found to be 25.9 ng/mL. Good selectivity of the method was shown by the results of interference test. The proposed method has been used for the determination of total amounts of sodium hyaluronate in samples with satisfactory results.
     2、Resonance Rayleigh Scattering Spectral Study of Sodium Hyaluranate -Cetylpyridinium Bromide System and Its Analytical Application
     In a pH 4.3 Britton-Robinson, either sodium hyaluornate (SH) or cetylpyridinium bromide (CPB) shows very faint resonance rayleigh scattering (RRS) spectra. However, when SH and CPB were mixed together, which greatly enhanced the RRS intensity and appeared a new RRS spectrum. The maximum scattering peak is at 335 nm and a relatively weaker peak is located at 546 nm. The intensity of RRS was directly proportional to the concentration of SH in the range of 0.09~3.0 mg/L, and the detection limit(3σ) was 29.0 ng/mL. The method was sensitive and selective, and has been used for the determination of total amounts of sodium hyaluronate in samples with satisfactory results.
     3、Determination of Dermatan Sulfate with Some Triaminotriphenyl-methane Dyes by Resonance Rayleigh Scattering Technique
     In a buffer medium of pH 5.5~6.5, dermatan sulfate (DS) can associate with some triaminotriphenyl-methane dyes such as ethyl violet (EV), crystal violet (CV) and methyl violet (MV) to form new products, resulting in a significant enhancement of the intensity of resonance rayleigh scattering (RRS) and giving new RRS spectrums. Take the most sensitive DS-EV system as an example, the maximum scattering peak is located at 498 nm and two relatively weaker peaks are located at 327 nm and 650 nm. It was also found that the intensity of RRS was directly proportional to the concentration of DS in the range of 0.02~1.6 mg/L, and the detection limit (3σ) was 5.1 ng/mL. A new method for the determination of DS was proposed. The method has achieved satisfactory results in the determination of dermatan sulfate in blood and urine.
     4、Resonance Rayleigh Scattering Spectra of interaction of Chondroitin Sulfate with Janus Green and Its Analytical Application
     In a pH 9.0 buffer medium, a compound complex was formed between chondroitin sulfate (CS) and janus green (JG), leading to a great enhancement of the intensity of resonance rayleigh scattering (RRS) and giving a new RRS spectrum. The maximum peak is located at 326 nm and two relatively weaker peaks are located at 407 nm and 560 nm. It was also found that the intensity of RRS was directly proportional to the concentration of CS in the range of 0.2~5.0mg/L. Based on these facts, a sensitive method for the determination of CS was proposed. The detection limit (3σ) of this method was 25.3 ng/mL. The proposed method has been used for the determination of total amounts of chondroitin sulfate in samples with satisfactory results.
     5、Resonance Rayleigh Scattering Spectral Study of Heparin-Cetyl Pyridinium Chloride Monohydrate System and Its Analytical Application
     In a buffer medium of pH 5.5, an ion association complex was formed between heparin (Hep) and cetyl pyridinium chloride monohydrate (CPCM), resulting in a great enhancement of the intensity of resonance rayleigh scattering (RRS) and giving a new RRS spectrum. The maximum peak is located at 293 nm and a weaker peak is located at 542 nm. It was also found that the intensity of RRS was directly proportional to the concentration of Hep in the range of 0.04~1.2 mg/L. Based on these facts, a sensitive method for the determination of Hep was proposed. The detection limit (3σ) of this method was found to be 10.6 ng/mL. The method also has good selectivity, and can be applied to determine heparin injections with satisfactory results.
     6、Determination of Heparin by Resonance Rayleigh Scattering Method with Cetyl Trimethyl Ammonium Bromide and Its Analytical Application
     In pH 6.0 B-R buffer solution,heparin (Hep) can react with cetyl trimethyl ammonium bromide (CTAB) to form a new product, resulting in a significant enhancement of resonance rayleigh scattering (RRS) and the appearance of a new RRS spectrum. The maximum peak is located at 310 nm and a weaker peak is located at 548 nm. The intensities of RRS are proportional to the concentration of Hep in the range of 0.06~2.5 mg/L, and the detection limit (3σ) is 19.4 ng/mL. The method also has good selectivity, and can be applied to determine heparin injections with satisfactory results.
引文
1. R. A. Dwek. Glycobiology: more functions for oligosaccharides[J]. Science, 1995, 269 (5228):1234-1235.
    2. J. Hirabayashi, Y. Arata, K. Kasai. Glycome project: Concept, strategy and preliminary application to Caenorhabditis elegans[J]. Proteomics, 2001, 1 (2):295-303
    3. J. Hirabayashi, K. Kasai. Separation technologies for glycomics[J]. J. Chromatogr B. Analyt Technol Biomed Life Sci., 2002, 771 (1-2): 67-87
    4.丁雅勤,孙伟,高瑞芳,等.吖啶橙分光光度法测定硫酸软骨素含量[J].中国生化药物杂志,2006, 27 (2): 68-70.
    5.官杰,王宗花,孙锡泉,等.碳纳米管与PVA协同加强光谱探针并应用于灵敏测定肝素钠[J].材料工程, 2008, 10: 257-260.
    6. Q. Chen, X.L. Li, Q. Liu, et al. Investigating the binding interaction of azur A with hyaluronic acid via spectrophotometry and its analytical application[J]. Anal. Bioanal. Chem., 2005, 382 (7): 1513-1519.
    7.王祥洪,张世娜,刘江涛,等.溴代十六烷基吡啶光谱探针RRS法测定硫酸皮肤素[J].化学研究与应用, 2009, 21 (3): 312-315.
    8.王祥洪.硫酸皮肤素的共振瑞利散射法测定[J].分析试验室, 2009, 28 (1): 53-55.
    9.陈莲惠,刘绍璞,罗红群,等.夜蓝共振瑞利散射光谱法测定透明质酸钠[J].分析科学学报, 2005, 21 (3): 304-306.
    10.陈莲惠,罗红群,刘绍璞,等.维多利亚蓝B共振瑞利散射光谱法测定透明质酸钠[J].光谱实验室, 2005, 22 (3): 547-550.
    11.闫曙光,何佑秋,彭娟娟,等. CdTe量子点作探针共振瑞利散射法测定肝素钠[J].西南大学学报(自然科学版), 2010, 32 (3): 67-71.
    12. Y. Egawa, R. Hayashida, T. Seki, et al. Fluorometric determination of heparin based on self-quenching of fluorescein—labeled protamine[J]. Talanta, 2008, 76 (4): 736-741.
    13. W. Wei, H.J. Wang, C.Q. Jiang. Spectrofluorimetric determination of trace heparin using lomefloxacin-terbium probe[J]. Spectrochimica Acta Part A, 2006, 63 (2): 241-246.
    14. X.J. Zhu, X.L. Wang, C.Q. Jiang. Spectrofluorimetric determination of heparin using atetracycline–europium probe[J]. Anal. Biochem., 2005, 341 (2): 299-307.
    15.肖英,贺艳丽.液相色谱法在糖胺聚糖及其衍生物寡糖研究中的应用[J].中国生化药物杂志, 2004, 25 (4): 250-254.
    16.牛增元,张小吐,刘钢,等.反相离子对高效液相色谱法测定硫酸软骨素[J].化学分析计量2002,11 (4): 7-8.
    17.鲍伦军,杨建成,何振华,等.软骨素酶ABC酶解-高效液相色谱法测定鱼翅中的透明质酸[J].色谱, 2002, 20 (6):557-559.
    18. T.J. Cheng, T.M. Lin, T. H. Wu, et al. Determination of heparin levels in blood with activated partial thromboplastin time by a piezoelectric quartz crystal sensor[J]. Anal. Chim. Acta., 2001, 432 (1): 101-111.
    19. K. Gaus, E.A.H. Hall. Surface plasmon resonance sensor for heparin measurements in blood plasma[J]. Biosens. Bioelectron., 1998, 13 (12): 1307-1315.
    20. K. Gaus, E.A.H. Hall. Evalution of surface plasmon resonance (SPR) for heparin assay[J]. J. Colloid. Interf. Sci., 1997, 194 (2): 364-372.
    21. S.C. Ma, V.C. Yang, B. Fu, et a1. Electrochemical sensor for heparin: further characterization and bioanalytical applications[J]. Anal. Chem., 1993, 65 (15): 2078-2084.
    22. J.A. Wahr, J.H. Yun, V.C. Yang, et al. A new method of measuring heparin levels in whole blood by protamine titration using a heparin-responsive electrochemical sensor[J]. J. Cardiothorac. Vasc.Anesth., 1996, 10 (4): 447-450.
    23.张伟丽,惠妮,窦烨,等.镉(Ⅱ)-邻菲啰啉二元配合物与透明质酸相互作用的电化学性能及应用研究[J].青岛农业大学学报(自然科学版), 2009, 26 (1): 66-69.
    24. S. Honda, S. Iwase, A. Makino, et a1. Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines[J]. Anal. Biochem., 1989, 176 (1): 72-77.
    25. H. Okamoto, T. Nakajima, Y. Ito, et al. Development of a novel analytical method for determination of chondroitin sulfate using an in-capillary enzyme reaction[J]. J. Chromatogr. A , 2004, 1035: 137-144.
    26. V. Nieola, M. Franeesca, J.L. Robert. Quantitative capillary electrophoresis determination ofoversulfated chondroitin sulfate as a contaminant in heparin preparations[J]. Anal. Bioehem., 2009, 388: 140-145.
    27. R.F. Pasternack, C. Bustamante, P.J. Collings, et al. Porphrin assemblies on DNA as studied by a resonace light-scattering technique[J]. J. Am. Chem. Soc., 1993, 115: 5393.
    28.秦芳,蒋玲玲,刘维舟,等. Ru(phen)2dpp x2+-SDBS -DNA体系共振瑞利散射光谱及其分析应用研究[J].分析科学学报, 2009, 25 (1): 63-66.
    29.达毛拉·杰力里,黄承志.酚藏花红与DNA作用的共振光散射特征及微量DNA的光散射测定[J].分析化学, 1999, 27 (10): 1204-1207.
    30.李珊,刘忠芳,刘绍璞.胰蛋白酶与DNA相互作用的共振瑞利散射光谱及其分析应用研究[J].高等学校化学学报, 2006, 27 (3): 423-427.
    31.刘绍璞,胡小莉,范莉,等.用新洁尔灭测定核酸的共振瑞利散射方法研究[J].西南师范大学学报(自然科学版), 2002, 27 (2): 188-192.
    32.向海艳,陈小明,周迪武.副品红共振光散射法测定脱氧核糖核酸[J].光谱学与光谱分析, 2002, 22 (6): 1051-1053.
    33.李韧韬,龙云飞,程曦,等.十六烷基三甲基溴化铵增敏砂罗铬花青R共振光散射法检测DNA[J].化学分析计量, 2004, 13 (1): 24-26.
    34.肖忠柏,蔡朝霞,李玲. La-phen-邻苯二甲酸混配化合物与DNA作用的共振光散射光谱及分析应用[J].分析科学学报,2003,19 (4): 317-320.
    35.任丽萍,江树人,饶震红,等.阿特拉津与DNA作用共振光散射光谱的研究及其应用[J].分析测试学报, 2004, 23 (6): 57-60.
    36.欧阳振中,白珊,杜正华.二甲苯兰FF-溴化十六烷基三甲基铵-核酸共振光散射光谱研究及分析应用[J].光谱实验室, 2010, 27 (2): 645-647.
    37.苏布道,牛娟妮,龚国权.丁香酚与DNA相互作用的共振散射光谱研究[J].兰州大学学报(医学版), 2006, 32 (3): 58-62.
    38.葛从辛,胡福陶,干宁.苯胺红T共振瑞利散射法测定生物样品中核酸[J].宁波大学学报(理工版), 2006, 19 (1): 90-94.
    39. Y.K. Zhao, W.B. Chang, Y.X. Ci. Rapid and sensitive determination of protein by light-scattering technique with Eriochrome Blue Black R[J]. Talanta, 2003, 59 (3):477-484.
    40.范莉,刘绍璞,龙秀芬,等.某些变色双偶氮染料-蛋白质体系的共振瑞利散射及其分析应用[J].分析化学, 2002, 30 (1): 81-85.
    41.李永新,张德兴,赵丹华,等.四磺基锰酞菁-蛋白质体系的共振瑞利散射行为及其分析应用[J].分析化学, 2003, 31 (11): 1372-1375.
    42.刘妮娜,张爱梅,李林尉.茜素绿-蛋白质体系的共振瑞利散射光谱及其分析应用[J].分析试验室, 2006, 25 (11): 86-89.
    43.张爱梅,李林尉,臧运波.考马斯亮蓝-SLS体系共振光散射光谱法测定蛋白质[J].分析科学学报, 2006, 22 (1): 80-83.
    44.冯宁川,龚国权.亮黄-曲通X-100体系共振瑞利散射法测定蛋白质[J].分析化学, 2002, 30 (4): 425-427.
    45.冯宁川,龚国权.钍试剂Ⅱ与蛋白质作用的共振光散射特征及微量蛋白质的光散射测定[J].分析实验室, 2002, 21 (1): 58-60.
    46. C.Z. Huang, Y.F. Li, P. Feng. Determination of proteins by their enhancement of resonance light scattering by fuchsine acid [J]. Fresnius J. Anal. Chem., 2001, 371: 1034-1036.
    47.陈粤华,刘忠芳,胡小莉,等.铬(Ⅵ)与蛋白质相互作用的共振瑞利散射光谱及其分析应用[J].分析化学, 2005, 33 (6): 802-804.
    48.蒋治良,邹节明,王力生,等.蛋白质与三氯乙酸相互作用的共振散射光谱研究及分析应用[J].分析化学, 2003, 31 (1): 70-73.
    49.龙秀芬,刘绍璞.磷锑钼蓝共振瑞利散射法测定蛋白质[J].西南师范大学学报(自然科学版), 2000, 25 (2): 155-159.
    50.衷明华.银(Ⅰ)-碘化物-十六烷基三甲基溴化铵体系共振光散射光谱法测定废水中微量银[J].冶金分析, 2006, 26 (3): 50-52.
    51.翟好英,蒋治良.金(Ⅲ)-卤化物-吖啶红的光谱特性及应用[J].广西师范大学学报(自然科学版), 2005, 23 (3): 61-65.
    52.韩志辉,吕昌银,杨胜圆. Cd2+-PAN-聚乙烯醇共振瑞利散射法测定水中痕量镉[J].分析科学学报, 2006, 22 (1): 77-79.
    53.申金山,李献锐.罗丹明B-I3-离子缔合物共振散射测定环境水样中的铬(Ⅵ)和铬(Ⅲ)[J].分析化学, 2001, 29 (8): 944-946.
    54.李贵荣,王永生,贺冬秀.催化共振光散射法测定痕量亚硝酸根[J].分析化学, 2005, 33 (9): 1304-1306.
    55.贺冬秀,李贵荣,吕昌银.共振光散射法测定环境水样中痕量亚硝酸根[J].南华大学学报(理工版), 2003, 17 (4): 42-44.
    56.蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明S体系的共振散射光谱研究[J].化学学报, 2000, 58 (8): 1059-1062.
    57.王丹,罗红群,李念兵.碘化物-罗丹明6G体系共振瑞利散射法测定痕量铅[J].环境化学, 2005, 24 (1) :97-100.
    58.衷明华,温红丽,吕虎,等.微晶蜡相反射散射光度测定镍的研究[J].冶金分析, 2003, 23 (1): 17-19.
    59. J. B. Xiao, J. W. Chen, F.L. Ren, et al. Highly sensitive determination of trace potassium ion in serum using the resonance light scattering technique with sodium tetraphenylboron[J]. Microchimica. Acta., 2007, 159: 287-292.
    60.蒋治良,梁爱惠,邹明静,等. IO3- -I3- -吖啶红体系共振散射光谱研究及应用[J].广西师范大学学报(自然科学版), 2006, 24 (1): 68-71.
    61.衷明华.碘化物-CTMAB体系共振散射法测定电镀废水中的钯[J].化学分析计量, 2006, 15 (1): 18-20.
    62.刘绍璞,刘忠芳,罗红群.硒(Ⅳ)-碘化物-维多利亚蓝4R体系共振瑞利散射、二级散射和倍频散射法测定痕量硒(Ⅳ)[J].西南师范大学学报(自然科学版), 2000, 25 (4): 408-412.
    63.范莉,刘绍璞,杨大成.测定新药雷洛昔芬的曲利本红共振瑞利散射法[J].分析测试学报, 2003, 22 (1): 27-30.
    64.王明霞,刘忠芳,胡小莉,等.达旦黄与氨基糖苷类抗生素相互作用的共振瑞利散射光谱研究及其应用[J].理化检测-化学分册, 2006, 42 (1): 16-21.
    65.刘绍璞,胡小莉,刘忠芳.刚果红-阿米卡星体系的共振Rayleigh散射和共振非线性散射光谱及其分析应用[J].中国科学B辑(化学), 2006, 36 (4): 317-325.
    66.周芸,杨国生,刘永明.依文思蓝与硫酸依替米星和硫酸奈替米星相互作用的共振瑞利散射光谱及其分析应用[J].鲁东大学学报(自然科学版), 2006, 22 (4): 321-325.
    67.王芬,刘忠芳,刘绍璞,等.用钼酸盐高灵敏共振瑞利散射法测定米托蒽醌[J].高等学校化学学报, 2006, 27 (8): 1459-1461.
    68.魏小琴,刘忠芳,刘绍璞.四环素类抗生素-钨酸钠-乙基紫体系的共振瑞利散射光谱及其分析应用[J].化学学报, 2006, 64 (6): 521-526.
    69.彭敬东,刘绍璞,刘忠芳,等.氯金酸-小檗碱离子缔合物体系的共振瑞利散射光谱研究及其分析应用[J].化学学报, 2005, 63 (8):745-751.
    70.范莉,李丹,孙阳,等.甲基红共振瑞利散射法测定多肽药物奥曲肽[J].应用化学, 2010, 27 (5): 585-589.
    71.蒋治良,江洪流,刘凤志,等.染料分子对硫纳米微粒共振散射光谱的影响[J].应用化学, 2003, 20 (4): 351-354.
    72.白燕,李维嘉,吴雅琴,等.液相纳米硒微粒的性质及其共振瑞利散射光谱研究[J].光谱学与光谱分析, 2006, 26 (2): 313-316.
    73.刘绍璞,蒋治良,孔玲,等. [HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱[J].中国科学(B辑), 2002, 32 (6): 554-560.
    74.李永丽.共振瑞利散射光谱在食品添加剂分析中的应用[D]. 2007.
    75.曾铭.共振光散射光谱法机理研究及其在农药分析中的应用[D]. 2006.
    76. N.B. Li, H.Q. Luo, S.P. Liu. Resonance Rayleigh scattering technology as a new method for the determination of the inclusion constant ofβ-cyclodextrin[J]. Spectrochim. Acta., Part A, 2002, 58: 501-507.
    77. N.B. Li, H.Q. Luo, S.P. Liu. A new method for the determination of the critical micelle concentration of Triton X-100 in the absence and presence ofβ-cyclodextrin by resonance Rayleigh scattering technology [J]. Spectrochim. Acta., Part A, 2004, 60: 1811-1815.
    78.罗红群.共振瑞利散射及共振非线性散射测定肝素和某些物理化学参数的新方法[D]. 2002.
    79. L. Qi, Z.Q. Han, Y. Chen. Incorporation of flow injection analysis or capillary electrophoresis with resonance Rayleigh scattering detection for inorganic ion analysis[J]. Journal of Chromatography A, 2006, 1110: 235-239.
    80. Y. Li, L.J. Dong, W.P. Wang, et al. Flow injection analysis-Rayleigh light scattering detection for online determination of protein in human serum sample[J]. Anal. Biochem. 2006, 354: 64-69.
    81. E. Vidal, M.E. Palomeque, A.G. Lista, et al. Flow injection analysis: Rayleigh Light scatteringtechnique for total protein determination[J]. Anal. Bioanal. Chem., 2003, 376: 38-41.
    82. X.L. Hu, S.P. Liu, Z.F. Liu. Determination of kanamycin using flow injection Analysis coupled with resonance Rayleigh scattering detection. Bull[J]. Chem. Soc. Jpn, 2006, 79 (2): 247-51.
    83.代小霞,李原芳,黄承志.流动注射-共振光散射联用技术测定注射液中肝素的含量[J].分析化学, 2005, 33 (11):1535-1538.
    84.罗志辉.高效液相色谱-共振瑞利散射检测技术及其应用研究[D]. 2008.
    85.凌沛学.透明质酸[M].北京:中国轻工业出版社, 2000, 216-222.
    86. D.C. West, S. Kumar. Hyaluronan and angiogenesis[J]. Ciba. Found. Symp., 1989, 143: 187-201.
    87. D.E. Boyce, A. Thomas, J. Hart, et al. Hyaluronic acid induces tumour necrosis factor-αproduction by human macrophages in vitro[J]. British J. Plastic Surg., 1997, 50 (5): 362-368
    88. O.O. Olutoye, E.J. Barone, D.R. Yager, et a1. Hyaluronic acid inhibits fetal platelet function: Implications in scarloss healing[J]. J. Pediatric Surg., 1997, 32 (7): 1037-1040.
    89. K. K. Wang, I.R. Nemeth, B.R. Seckel, et a1. Hyaluronic acid enhances peripheral nerve regeneration in vivo[J]. Microsurgery., 1998, 18 (4): 270-275.
    90.鲁念慈,谭天伟.透明质酸的制备及其应用[J].功能高分子学报, 2001, 14 (3): 370-376.
    91.张延坤,金京顺.一种功能性化妆品原料-透明质酸[J].日用化学工业, 2004, 34 (2):111-114
    92. Onok., H. Nakahara, K. Yonenobn, et al. A study of the effect of intra-articular inject of high molecular weight sodium hyaluronate (SLM-10) on osteroarthitics of knee[J]. Jpn. Pharmacal. Ther., 1993, 21(Suppl 2): 333-354.
    93.杨晓红,凌沛学,王凤山.透明质酸预防外科手术后粘连的研究进展[J].中国生化药物杂志, 1998, 19 (4): 370-376.
    94.张伟,闫翠娥.透明质酸及其衍生物药物载体[J].化学进展, 2006, 18 (12): 1684-1690.
    95.王平,赵红卫.放射免疫分析法测定佐剂性关节炎大鼠血清透明质酸水平[J].山西医药杂志, 2004, 31 (5): 397-398.
    96.周荣清,郭祀远,李琳,等.发酵液中HA含量的分析方法的研究[J].华南理工大学学报(自然科学版), 2001, 29 (11): 55-58.
    97.陈莲惠,刘绍璞,罗红群,等.碱性二苯基萘基甲烷染料褪色光度法测定透明质酸钠[J].分析化学, 2004, 32 (8): 1086-1089.
    98. K. Kakehi, M. Ueda, S. Suzuki, et al. Determination of hyaluronic acid by high-performance liquid chromatography of the oligosaccharides derived there from as 1-(4-methoxy)phenyl-3-methyl-5-pyrazolone derivatives[J]. Journal of chromatography, 1993, 630 (1-2): 141-146.
    99. H. Shozo, O. Yasuo, H. Susumu, et al. High-performance capillary electrophoresis of hyaluronic acid: determination of its amount and molecular mass[J]. Journal of Chromatography A, 1997, 768 (2): 295-305.
    100. K. Gu, J. Liu, A. Pervin, et al. Comparison of the activity of two chondroitin AC lyases on dermatan sulfate[J]. Carbohyd. Res., 1993, 244: 369-377.
    101.林洪,姬胜利.硫酸软骨素的药理作用及应用研究进展[J].食品与药品, 2006, 8 (12): 4-7.
    102.郭亭,赵建宁.氨基葡聚糖和硫酸软骨素在治疗骨性关节炎中的应用[J].中国骨伤, 2004, 17 (9): 574-575.
    103.荣晓花.硫酸软骨素在药品和保健品中的应用[J].山东食品科技, 2004, 1: 18-19.
    104.黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发, 1999, 11 (5): 90-98.
    105.赵锐,张源潮,李华,等.硫酸软骨素的研究近况[J].药物生物技术, 1998, 5 (2):116-120.
    106.中国药典委员会.中国药典2000年版二部[S].北京:化学工业出版社, 2000, 191-193.
    107. L.A. Elson, W.T.J. Morgan. A colorimetric method for the determination of glueosamine and chondrosamine[J]. Bioehem., 1933, 27 (6): 1824-1828.
    108.于兹东,杨桂明,高华,等.咔唑分光光度法测定硫酸软骨素[J].青岛大学学报(自然科学版), 2005, 18 (3): 41-44.
    109.高华,刘坤,于兹东.间苯三酚分光光度法测定硫酸软骨素的研究[J].中国生化药物杂志, 2000, 21 (5): 247-245.
    110.施文健,祝信贤.碱性艳蓝BO分光光度法测定硫酸软骨素[J].中国生化药物杂志, 2004, 25 (l): 28-30.
    111.陈媛媛,蒋治良,李振中,等.维多利亚蓝B分光光度法测定硫酸软骨素[J].光谱学与光谱分析, 2006, 26 (6): 1148-150.
    112.杜美菊,凌翠霞,丁秀云.中性红光度法测定硫酸软骨素含量[J].理化检验-化学分册, 2006,42 (8): 662-663.
    113. K.A. Homer, L. Denbow, D. Beighton. Spectrophotometric method for the assay of glycosaminoglycans and glyeosaminoglycan-depolymerizing enzymes [J]. Anal. Bioehem.1993, 214 (2): 435-441.
    114.蒋治良,邹明静,梁爱惠,等.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用[J].化学学报, 2006, 64 (2): 111-116.
    115.姬胜利,张天民.肝素与低分子肝素的研究进展[J].中国生化药物杂志, 1996, 5 (17): 216-219.
    116.宋愿智,赵威,李波.肝素测定方法及研究近况[J].中国新医药, 2003, 2 (8): 39-40.
    117. J. Hirsch, T. Wendt, P. Kuhly, et al. Point-of-care testing apparatus.Measurement of coagulation[J]. Anaesthesia, 2001, 56 (8): 760-763.
    118. S.S. Cai, J.L. Dufner-Beattie, G.D. Prestwicha. A selective protein sensor for heparin detection[J]. Anal. Biochem., 2004, 326 (1): 33-41.
    119.孙伟,丁雅勤,饶俊,等.中性红分光光度法测定肝素钠的研究[J].光谱学与光谱分析, 2006, 26 (7): 1322-1325.
    120. J. Li, J.K. Liu, X.J. Zhu, et al. Spectrofluorimetric determination of heparin using doxycycline-europium probe[J]. J. Lumin, 2005, 113 (3-4): 305-313.
    121. W. Sun, Y.Q. Ding, Q.X. Wang, et al. Electrochemical detection of heparin based on its interaction with light green[J]. Electroanalysis, 2006, 18 (11): 1114-1120.
    122. P. Miku?, I. Valá?ková, E. Havránek. Analytical characterization of heparin by capillary zone electrophoresis with conductivity detection and polymeric buffer additives[J]. J. Pharm. Biomed. Anal., 2004, 36 (3): 441-446.
    123. H. Toyoda, T. Nagashima, R. Hirata, et al. Sensitive high-performanceliquid chromatographic method with fluorometric detection for the determination of heparin and heparan sulfate in biological samples: Application to human urinary heparan sulfate[J]. J. Chromatogr B, 1997, 704 (1-2): 19-24.
    124. S.P. Liu, H.Q. Luo, N.B. Li, et al. Resonance rayleigh scattering study of the interaction of heparin with some basic diphenylnaphthylmethane dyes[J]. Anal. Chem., 2001, 73 (16):3907-3914.
    125. Y.J. Long, Y.F. Li, C.Z. Huang. A wide dynamic range detection of biopolymer medicines with resonance light scattering and absorption ratiometry[J]. Anal. Chim. Acta., 2005, 552 (1-2): 175-181.
    126.贺薇,李原芳,谭克俊,等.金纳米棒与肝素相互作用的表征及肝素的等离子共振光散射分析法[J].科学通报, 2007, 52 (24): 2840-2845.
    127. X.F. Long, S.P. Liu, L. Kong, et al. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method[J]. Talanta, 2004, 63 (2): 279-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700