基于纳米金探针的6-巯基嘌呤分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,金纳米粒子因其具有很多宏观粒子所不具备的小尺寸效应、表面效应、光学效应以及特殊的生物亲和效应,已经广泛应用于临床医学、材料学等领域。而且在医学检验领域,金纳米粒子标记技术成为目前第四大标记技术。金纳米粒子所具备的特殊的物理与化学性质,在许多研究领域中表现出了潜在的应用价值。目前,金纳米粒子的分析应用主要是通过化学修饰后作为光谱探针与其它物质结合反应,但是用不经过任何化学改性的金纳米粒子作探针,结合光度法或RRS法测定药物的分析方法报道还很少见。研究的主要内容有:
     综述了金纳米粒子的制备和表征方法、光谱性质及其在分析化学中的应用和抗癌药物6-巯基嘌呤的性质、作用及分析现状等。
     利用金纳米粒子作探针,建立了一种分光光度法检测微量抗癌药物6-巯基嘌呤的新方法。6-巯基嘌呤自组装到金纳米粒子上以后,溶液的颜色由亮红色变为深蓝色,吸收光谱发生明显的变化。反应前,金纳米粒子在520 nm处出现了其典型的等离子共振吸收带,而6-巯基嘌呤在可见区无吸收峰;反应后,520 nm吸收峰处的吸光度降低,而在680 nm处出现一较强吸收峰,该吸收峰为结合产物的待征吸收峰。并且,在该波长下吸光度与6-巯基嘌呤的浓度呈良好线性关系,检出限为17μg/L。对浓度为0.25mg/L的6-巯基嘌呤进行了11次平行测定,RSD为2.9%。将该法用于检测人尿样中的6-巯基嘌呤含量,方法简便、灵敏度高、抗干扰性强,检测结果令人满意。
     以金纳米粒子为探针,建立了一种共振瑞利散射光谱法检测6-巯基嘌呤的新方法。在pH为5.50的B-R缓冲溶液中,金纳米粒子与6-巯基嘌呤自组装成体积更大的结合产物,从而使体系的共振瑞利散射光谱强度急剧增强。在实验中,研究了其共振瑞利散射光谱特征,并且考察了影响反应的一些因素和共存物质的影响。结果表明:在最佳条件下,6-巯基嘌呤浓度在0.017~0.32 mg/L范围内与共振瑞利散射光谱强度成线性关系,方法的灵敏度较高,其检出限(3σ)为8μg/L,对浓度为0.12mg/L的6-巯基嘌呤进行了11次平行测定,RSD为5.1%。考察共存物质对6-MP测定的影响,发现该方法具有较好的选择性。根据所确定的最佳条件,建立了一种共振瑞利散射光谱法检测6-巯基嘌呤的新方法,并将该方法用于人尿样中6-巯基嘌呤含量的测定,获得较好的结果。
Gold nanoparticles had many special properties such as quantum size effects, surface effects, optical effects and compatibility effects. With these properties, gold nanoparticles were widely used in the fields of clinical medicine, materials and more. Moreover, in the field of medical tests, now gold nanoparticles labels had been the forth important markers. Gold nanoparticles show the potential applied value because of their special physical and chemical characteristics. At present, the analytical applications of gold nanoparticles are as optical probes or as electrochemical sensors after chemical modification. However, there are rarely reports that spectrophotometry or Resonance Rayleigh scattering method is used to the determination of pharmaceuticals with unmodified gold nanoparticle probes. Main content are listed as follow:
     The preparation and characterization methods, spectroscopy characterization and analytical application of gold nanoparticles and the property, purpose and the present situation of its analysis of 6-mercaptopurine are revivwed here.
     A novel spectrophotometry method has been developed for the determination of micro amounts of 6-mercaptopurine, employing gold nanoparticles as probes. The color of test solution changed to blue from bright red is significantly observed upon the gold nanoparticles self-assembled with 6-mercaptopurine and the absorption peak was obviously different. Before reaction, there is a plasmon band at 520 nm that is the characteristics of gold nanoparticles and 6-mercaptopurine has no absorption peak in rang of visible light region. After reaction, the peak of 520 nm is lower, in addition, there is a maximum absorption peak located at 680 nm, which is the characteristic peak of the binding product. The absorption at 680 nm of different concentrations of 6-mercaptopurine could be quantified with good linear, with a low detection limit of 17μg/L, under optimal conditions. The relative standard deviation (n=11) was 2.9%at 0.25 mg/L 6-mercaptopurine concentration level. The proposed method was successfully applied to determination of the drug spiked human urine. The results are satisfactory, which indicates that the method is not only sensitive, simply, but also reliable and suitable for practical application.
     A novel Resonance Rayleigh scattering method was developed for the determination of micro amounts of 6-mecaptopurine, employing gold nanoparticles as probes. In pH 5.50 weak acid medium, the greatly enhanced Resonance Rayleigh scattering spectrum can be observed upon the gold nanoparticles self-assembled with 6-Mercaptopurine because both of them react with each other to form a binding product with bigger volume. In this work, The Resonance Rayleigh scattering spectral characteristics, optimum conditions for the reaction and the influencing factors were investigated. The relative Resonance Rayleigh scattering intensity (ΔIRRS) is directly proportional to the concentration of 6-Mercaptopurine in the range of 0.017-0.32 mg/L. The method has high sensitivity and the limit of detection for 6-Mercaptopurine is 8μg/L. The RSD (n=11) is 5.1% at 0.12 mg/L 6-mercaptopurine concentration level. The effect of coexisting substances on the determination of 6-mercaptopurine was studied and the results showed that this method had good selectivity. Therefore, the proposed method is successfully used to determine 6-mercaptopurine in human urine by Resonance Rayleigh scattering with gold nanoparticle probes.
引文
1.沈星灿,何锡文,梁宏.纳米粒子特性与生物分析[J],分析化学,2003,31(7):880-885.
    2. Huang S, Minami K, Sakaue H, et al. Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions [J], J. Appl. Phys.,2002,92 (12):7486-7490.
    3. Thomas K G, Kamat P V. Making gold nanoparticles glow enhanced emission from a surface-bound fluoroprobev [J], J. Am. Chem. Soc.,2000,122 (11):2655-2656.
    4.梅燕,梁惠峰,胡章记.用电镜及XRD衍射仪表征不同晶型的纳米TiO2粉末[J],现代仪器,2002,8(4):25-26.
    5. Li D, Li J. Preparation characterization and quantized capacitance of 3-mercapto-1, 2-propanediol monolayer protected gold nanoparticles [J], Chem. Phys. Lett.,2003,372 (5-6):668-673.
    6.杨文胜,高明远,白玉白.纳米材料与生物技术[M],北京:化学工业出版社,2005,129.
    7. Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions [J], Nature:Phys. Sci.,1973,241 (105):20-22.
    8. Dykman L A, Lyakhov A A, Bogatyrev V A, et al. synthesis of colloidal gold using high-molecular-weigh reducing agents [J], J. Colloid,1998,60 (6):700-704.
    9. Gardea-Torresdey J L, Tiemann K J, Gamez G, et al. Recovery of gold (Ⅲ) by alfalfa biomass and binding characterization using X-ray microfluoresence [J], Adv. Environ. Res.,1999,3 (1):397.
    10. Jana N R, Gearheart L, Murphy C J. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles [J], Chem. Mater.,2001,13 (7): 2313-2322.
    11. Jana N R, Gearheart L, Murphy C J. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles [J], Langmuir,2001,17 (22):6782-6786.
    12. Busbee B D, Obare S O, Murphy C J. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods [J], Adv. Mater.,2003,15 (5):414-416.
    13. Chiang C L. Controlled Growthof Gold Nanoparticles in Aerosol-OT/Sorbitan Monooleate/Isooctane Mixed Reverse Micelles [J], Colloid Interface Sci.,2000,230 (1): 60-66.
    14. Esumi K, Kameo A, Suzuki A, et al. Preparation of gold nanoparticles using 2-vinylpyridine telomers possessing multihydrocarbon chains as stabilizer [J], Colloid Surf. A.,2001,176 (2-3):233-237.
    15. Tsutsui G,Huang S J,Sakaue H, et al. Well-Size-controlled collidal gold nanoparticles dispersed in organic solvents [J], J. Appl. Phys.,2001,40 (1):346-349.
    16.徐国财.纳米科技导论[M],北京:高等教育出版社,2005,292-317.
    17. Jeon H J, Go D H, Chol S Y, et al. Synthesis of poly (ethylene oxide)-based thermoresponsive block copolymers by RAFT radical polymerization and their uses for preparation of gold nanoparticles [J], Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,317 (1-3):496-503.
    18. Shimada T, Imura K, Hossaim M K, et al. Near-Field Study on Correlation of Localized Electric Field and Nanostructures in Monolayer Assembly of Gold Nanoparticles [J], J. Phys. Chem. C,2008,112 (11):4033-4035.
    19.蔡凤鑫,孟进芳,邹广田.Bi2-xAxTi4O11 (A=Nd, Sb)的“软光学声子”和结构相变研究[J],科学通报,1994,39(9):793-795.
    20. Comaschi T, Balerna A and Mobilio S. Temperature dependence of the structural parameters of gold nanoparticles investigated with EXAFS [J], Phys. Rev. B,2008,77 (7): 1098-1021.
    21. Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods [J], J. Phys. Chem. B, 1999,103 (40):8410-8426.
    22. Polavarapu L, Xu Q H. A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties [J], Nanotechnology,19 (7):595-601.
    23.徐跃萍,黄雪梅,郭景坤.碘吸附法表征氧化锆超细粉的活性[J],无机材料学报,1992,7(2):422-425.
    24. Kar S, Biswas S, Chaudhuri S, et al. Substitution-induced strutural transformation in Mn-doped ZnS nanorods studied by positron annihilation spectroscopy [J], Nanotechnology,2007,18 (22):225606-225613.
    25. Yiniemi K, Vahvaselka M,Van Ingelgem Y, et al. The formation and characterisation of ultra-thin films containing Ag nanoparticles [J], Mater. Chem.,2008,18 (2):199-206.
    26. Colby A F, Jr. Gabor L H, Jon A S, et al. Template-synthesized nanoscopic gold particles; optical spectra and the effects of particle size and shape [J], J. Phys. Chem. B,1994,98 (11):2963-2971.
    27. Homyak G L, Patrissi C J, Martin C R. Fabrication, characterization, and optical properties of gold nanoparticle/porous ahrmina composites;the nonscattering maxwell-garnett limit [J], J. Phys. Chem. B,1997,101 (9):1548-1555.
    28. Huang S, Minami K, Sakaue H, et al. Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions [J], J. Appl. Phys.,2002,92 (12):7486-7490.
    29. Arumugam S R, Puspendu K D, Padmanabhan B. Binding Constant Measurement by Hyper-Rayleigh Scattering:Bilirubin-Human Serum Albumin Binding as a Case Study [J], J. Phys. Chem. B,2005,109 (12):5950-5953.
    30. Chris X, Jason B S, Watt W W. Hyper-Rayleigh and Hyper-Raman Scattering Backguound of Liquid Water in Two-Photon Excited Fluorescence Detection [J], Anal. Chem.,1997,69 (7):1285-1287.
    31. Bernhard D and Hochstrasser R M. Resonant non-linear spectroscopy in strong fields [J], J. Chem. Phys.,1983,75 (2):133-135.
    32. Bauer D R, Hudson B, Pecora R. Resonance enhanced depolarized Rayleigh scattering from diphenylolyenes [J], J. Chem. Phys.,1975,63 (1):588.
    33. Miller G A. Fluctuation theory of the resonance enhancement of Rayleigh scattering in absorbing Media [J], J.Phys.Chem.,1978,82 (5):616-618.
    34. Anglister J, Steinberg I Z. Resonance Rayleigh scattering of cyanine dyes in solution [J], J. Chem. Phys.,1983,78 (9):5358-5368.
    35. Pastnack R F, Bustamane C, Collings P J, et al. Resonace Light Scattering:A New Technique for Studying Chromophore Aggregantion [J], J. Am. Chem. Soc.,1995,269 (5226):935-939.
    36. Rubio S, Gomez-Hens A, Valcarcel M, Analytical Applications of Synchronous Fluorescence Spectroscopy [J], Talana,1986,33 (8):663-640.
    37.汪尔康.分析化学新进展[M],北京:科学出版社,2002,180.
    38. Thomas K G, Kamat P V. Making gold nanoparticle glow:enhanced emission from a surface-bound fluoroprobev [J], J. Am. Chem. Soc.,2000,122 (11):2655-2656.
    39. Xu P, Yanagi H. Fluorescence patterning in dye-doped sol-gel films by generation of gold nanoparticles [J], Chem. Mater.,1999,11 (10):2626-2628.
    40. Huang T, Murray R W. Visible luminescence of water-soluble monolayer-protected gold clusters [J], J. Phys. Chem. B,2001,105 (50):12498-12502.
    41. Zheng J, Petty J T and Dickson R M. High quantum yield blue emisson from water-soluble Au8 nanodots [J], J. Am. Chem. Soc.,2003,125 (26):7780-7781.
    42. Hwang Y N, Jeong D H, Shin H J, et al. Femtosecond emission studies on gold nanoparticles [J], J. Phys. Chem. B,2002,106 (31):7581-7584.
    43. Ipe B I, Mahima S, Thomas K G. Light-induced modulation of self-assembly on spiropyran-capped gold nanoparticles:a potential system for the controlled release of amino acid derivatives [J], J. Am. Chem. Soc.,2003,125 (24):7174-7175.
    44. Lin S Y, Liu S Y, Lin C M, et al. Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles [J], Anal. Chem.,2002,74 (2):330-335.
    45. Obare S O, Hollowell R E, Murphy C J. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles [J], Langmuir,2002,18 (26):10407-10410.
    46. Kim Y J, Robert C, Johnson, et al. Gold Nanoparticle-Based Sensing of "Spectroscopically Silent" Heavy Metal Ions [J], Nano. Lett.,2001,1 (4):165-167.
    47. Zamborini F P, Leopold M C, Hicks J F, et al. Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles [J], J. Am. Chem. Soc.,2002,124 (30):8958-8964.
    48. Storhoff J J, Lazarides A A, Mucic R C, et al. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? [J], J. Am. Chem. Soc.,2000,122 (19): 4640-4650.
    49. Bailey R C, Nam J M, Hupp J T, Mirkin C A. Real-Time Multicolor DNA Detection with Chemoresposive Diffraction Gratings and Nanoparticle Probes [J], J. Am. Chem. Soc., 2003,125 (44):13541-13547.
    50. Liu J, Lu Y A. Colorimetric Lead Biosensor Using DNAzyme-Directed Assembly of Gold Nanoparticles [J], J. Am. Chem. Soc.,2003,125 (22):6642-6643.
    51. Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials [J], Nature,1996,382 (6592): 607-609.
    52. Storhoff J J, Elghanian R, Mucic R C, et al. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes [J], J. Am. Chem. Soc.,1998,120(9):1959-1964.
    53. Li Z, Jin R, Letsinger R L, et al. Multiple Thiol-Anchor Capped DNA-Gold Nanoparticle Conjugates [J], Nucleic Acids Res.,2002,30 (7):1558-1562.
    54. Shuho H. Vellanoweth Oligonucleotide-Capped Gold Nanoparticles for Improved Atomic Force Microscopic Imaging and Enhanced Selectivity in Polynucleotide Detection [J], Bioch. Biophys. Res. Commun.,2000,279 (1):265-269.
    55. Hermann R, Walther P, Mueller M. Immunogold Labeling in Scanning Electron Microscopy [J], Histochem. Cell. Biol.,1996,106 (3):31-39.
    56. Romano E L. Immunolakebling for Electron Microscopy [M], New York:Acad Press. 1984,3-5.
    57.吕伸,王杉,常文保.胶体金免疫分析方法的进展[J],武汉大学学报(自然科学版),2000,46(4):393-399.
    58. Velev O D, Kaler E W. In Situ Assembly of Colloidal Particles into Miniaturized Bisensors [J], Langmuir,1999,15 (11):3693-3698.
    59. Niemeyer C M, Ceyhan B. DNA-Directed Functionalization of Colloidal Gold with Proteins [J], Angew. Chem. Int. Ed.,2001,40 (19):3685-3688.
    60. Ciesiolka T, Gablus H J. An 8-to 10-fold enhancement in sensitivety for quantitation of proteins by modified application of colloidal gold [J], Anal. Biochem.,1988,168 (2): 280-283.
    61. Hunter J B, Hunter S M. Quantification of proteins in the low nanogram range by staining with the colloidal gold stain AuroDye [J], Anal. Biochem.,1987,164 (2):430-433.
    62. Moeremans M, Daneels G. De Mey J Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membranes [J], Anal. Biochem.,1985,145 (2):315-321.
    63. Bradford M M. A rapid and sensitive method for the quantitation of microgram of microgram quantities of protein utilizing the principle of protein-dye binding [J], Anal. Biochem.,1976,72 (1-2):248-254.
    64. Nath N, Chilkoti A A. Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface [J], Anal. Chem.,2002,74 (3): 504-509.
    65.彭敬东,刘绍璞,罗红群,等.氯金酸-小檗碱离子缔合物体系的共振瑞利散射光谱研究及其分析应用[J],化学学报,2005,63(8):745-751.
    66. Luo H Q, Li N B, Liu S P. Resonance Rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application [J], Biosens. Bioelectron.,2006,21 (7):1186-1194.
    67.魏小琴.共振瑞利散射光谱法测定四环素类抗生素的新方法研究[D],西南师范大学硕士论文,2006.
    68.张锦坤,陆谦贞.内科讲座:肠胃疾病(第一版)[M],北京,人民卫生出版社,1981:184.
    69.陈粤华.用金纳米微粒作探针共振瑞利散射法测定药物的新方法研究[D],西南师范大学硕士论文,2005.
    70.鲁群岷.金纳米微粒与有机小分子相互作用的共振Rayleigh散射光谱及其分析应用研究[D],西南师范大学博士论文,2007.
    71.姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J],化工进展,2007,26(3):310-318.
    72.华东化工学院主编.生化制药(《药品集》第七分册)[M],上海:上海科学技术出版,1982,89.
    73.安登魁.药物分析[M],济南:济南出版社,1992,35:2872.
    74. Relling M V, Hancock M L, Boyett J M, et al. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia [J], Blood,1999,93 (9): 2817-2823.
    75.中华人民共和国卫生部药典委员会编.中华人民共和国药典(第Ⅱ部)[M],北京:化学工业出版社,1990,758-759.
    76. Rosenfeld J M, Taguchl V Y, Hlllcoat B L, et al. Determination of 6-Mercaptopurine in Plasma by Mass Spectrometry [J], Anal. Chem.,1977,49 (6):727-727.
    77. Kosta N, Ksenija V. Potentiometric and Volumetric Determination of 6-Mercaptopurine [M], New York:Acad Press,1990,1:69-73.
    78. Su Y, Hon Y Y, Chu Y Q, et al. Assay of 6-mercaptopurine and its metabolites in patient plasma by high-performance liquid chromatography with diode-array detection [J], Chromatocraphy B,1999,732 (2):459-468.
    79.符冠烨,张迎雪.流动注射化学发光法测定巯嘌呤[J],海南师范学院学报(自然 科学版),2002,15(2):61-63.
    80.朱英贵,沐小龙,王伦,等.Cu (phen) 22+-H2O2-6-巯基嘌呤化学发光体系测定6-巯基嘌呤[J],安徽师范大学学报(自然科学版),2003,26(1):43-44.
    81.赵丹华,訾言勤.流动注射化学发光增强法测定巯嘌呤的应用研究[J],分析试验室,2006,25(1):65-68.
    82.王亚平,丁莉华,董川.6-巯基嘌呤,硫唑嘌呤,8-氮杂鸟嘌呤的滤纸基质室温燐光法研究[J],分析化学研究简报,2004,32(1):91-95.
    83.郑洪,鞠混先,朱广华.双嘧达莫对胰腺癌细胞内抗肿瘤药物6-巯基嘌呤浓度的影响及6-巯基嘌呤的荧光分光光度法测定[J],分析试验室,2004,23(8):1-4.
    84. Shen X C, Jiang L F, Liang H, et al. Determination of 6-mercaptopurine based on the fluorescence enhancement of Au nanoparticles [J], Talanta,2006,69 (2):456-462.
    85.曲松.抗癌药物及其与DNA相互作用的电化学研究[D],郑州:郑州大学硕士论文,2005.
    86.王翠红,李风菊,袁利杰,等.抗癌药物6-巯基嘌呤在悬汞电极上的电分析方法及其电极过程机理研究[J],分析科学学报,2003,19(5):468-469.
    87.林丽,周宇艳,鲜跃仲,等.微渗析-多壁碳纳米管修饰电极液相色谱电化学检测应用于药物与蛋白结合的研究[J],分析化学学报,2004,20(2):121-124.
    88.王传平,孙舒婷,张丽娜,等.光度法在药物分析中的研究与应用[J],分析测试技术与仪器,2007,13(3):169-173.
    89.李正平,段新瑞,白玉惠.基于金纳米粒子自组装的分光光度法测定半胱氨酸[J],分析化学研究简报,2006,34(8):1149-1152.
    90. Labande A, Ruiz J, Astruc D, Supramolecular Gold Nanoparticles for the Redox Recognition of Oxoanions:Syntheses,Titrations,Stereoelectronic Effects,and Selectivity [J], J. Am. Chem. Soc.,2002,124 (8):1782-1789.
    91. Bryant M A, Pemberton J E. Surface Raman Scattering of self-assembled monolayers formed form 1-alkanethiols:behavior of films at gold and comparison to films at silver [J], J. Am. Chem. Soc.,1991,113 (22):8284-8293.
    92. Nuzzo R G, Zegarski B R, Dubois L H. Fundamental studies of the chemisorption of organosulfur compounds on gold (111) Implications for molecular self-assembly on gold surfaces [J], J. Am. Chem. Soc.,1987,109 (3):733-740.
    93. Selvaraj V, Alagar M, Hamerton I. Analytical detection and biological assay of antileukemic drug using gold nanoparticles [J], Electrochim. Acta,2006,52 (3): 1152-1160.
    94. Yang H F, Liu Y L, Liu Z M, et al. Raman Mapping and In Situ SERS Spectroelectrochemical Studies of 6-Mercaptopurine SAMs on the Gold Electrode [J], J.Phys.Chem.B,2005,109 (7):2739-2744.
    95.姜忠义,成国辉.纳米生物技术[M],北京:化学工业出版社,2003,19.
    96. James J S, Robert E, Robert C M, et al.One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes [J], J. Am. Chem. Soc.,1998,120 (9):1959-1964.
    97. Nath N, Chilkoti A. An immobilized gold nanoparticle sensor for label free optical detetion of biomolecular interactions [J], Anal. Biochem.,1987,160 (2):301-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700