共振瑞利散射技术在腐植酸与金属离子相互作用研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐植酸是一类天然的多分散有机聚电解质生物大分子,是环境中天然有机物最重要的组成部分之一,能与环境中重金属离子、包括有机污染物在内的其它有机物及矿物质等发生相互作用,从而影响上述物质在环境中的迁移和传输、固定及积聚、化学反应性和生物利用度等重要的物理、化学、生物、地球化学行为及过程。由于其含有C、N、P、S等营养元素,是营养元素的储存库,可应用于肥料、土壤改良,是湖泊异养型微生物所需能源的主要提供者。由于其含有大量可电离的酚羟基及羧基,是湖泊水体pH的天然调节剂和控制因素及用于环境污染治理;并可作为抗病毒剂、重金属螯合剂、键合毒性化学品的聚合物和防电离辐射物质而有一定的医疗价值。因此对腐植酸的研究有非常重要的理论意义和现实意义,其基础研究和应用研究一直是相关研究的热点。
     本论文主要运用共振瑞利散射技术,结合紫外-可见光谱,荧光光谱、傅立叶红外、电导、电子透射电镜等现代分析化学方法和手段,对腐植酸及腐植酸与金属离子的相互作用进行了多手段、多角度地研究,取得了一些初步进展,其研究结论主要体现在以下几个方面:
     1.共振瑞利散射光谱技术因其实验仪器简单,方法灵敏度高、光谱信息丰富等特点而倍受广大研究者的关注。研究了一系列条件如pH、离子强度、不同酸介质、浓度及有机溶剂对国际腐植酸协会(IHSS)的标准土壤腐植酸共振瑞利散射和荧光光谱特性的影响,并用于腐植酸与部分重金属离子相互作用的研究,表明共振瑞利散射光谱完全可以应用于腐植酸及其与其它相关物质相互作用的研究中。
     2.初步研究了共振瑞利散射光谱技术用于腐植酸定量测定的可能,表明该技术有一定选择性,信号强度高,经进一步优化测定条件的研究,可望作为一种新的腐植酸定量分析技术。
     3.共振瑞利散射光谱并结合荧光光谱研究了腐植酸与金属离子(Cu2+、Pb2+、Zn2+、Cd2+、Fe3+、Al3+)在不同pH、不同金属离子浓度时的相互作用。结果表明Cu2+、Pb2+、Fe3+、Al3+与腐植酸相互作用较强,随金属离子浓度增加,荧光强度降低,以Cu2+较为明显,而共振瑞利散射均增强。Zn2+、Cd2+的作用弱。
     4. HA的紫外-可见光谱表现为无特征吸收,随着波长的增加紫外吸收逐渐降低,而且随着HA浓度的增加,紫外吸收也相应增大。
     5.三维荧光光谱表明腐植酸与金属离子相互作用发射波长发生蓝移,而激发波长基本不变。用修正型Stern-Volmer模型计算腐植酸与金属离子铜的络合稳定常数logK。
     6.结合傅立叶红外光谱技术探讨了HA与金属离子(Cu2+、Pb2+)的相互作用机理,表明腐植酸与金属离子作用主要发生在羧基位。
     7. HA与金属离子相互作用中溶液电导随金属离子浓度增加而增加,最后达到一个稳定值,其溶液电导率的拐点变化与相应RRS和荧光光谱强度的拐点发生变化的浓度范围一致。
     8.结合透射电镜讨论了各种条件下腐植酸及腐植酸-金属离子RRS产生及增强原因,认为聚集、聚集形成不均匀性及固态纳米颗粒、固液界面的形成及疏水性是RRS产生及增强的原因。
Humic acid is a kind of natural multi-dispersions organic polyelectrolyte biological macromolecules and the most important component part of natural organic materials in environment. It can interact with heavy metal ions, other organic compounds including organic pollutants and minerals etc, therefore affecting migration and transmission, fixed and accumulation, chemical reactivity and bioavailability, and other important physical, chemical, biological, geochemical behavior and process of these substances in environment. Because of containing C, N, P, S, and other nutrients, it serve as the repository of nutrient elements that can be used in fertilizer and soil improvement and the main provider of energy for heterotrophic microorganisms in lakes. It is also the pH modifier of natural lake water and control factors for containing a considerable amount of phenolic hydroxyl and carboxyl group, which is helpful to environmental pollution government. at the same time, it has certain medical value when used as antivirals, heavy metal chelating agent, bonding toxic chemicals and polymers Anti-ionizing radiation substances. Therefore the study of humic acid has a very important theoretical and practical significance, and its basic and applied research has always been the hot spot in related research.
     In this paper, Resonance Rayleigh Scattering technology, combined with UV-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared, conductivity, electronic transmission electron microscopy, and other modern analytical chemistry methods were used to study humic acid and the interaction of humic acid and metal ions in multi-means and multi-angle and has made some preliminary progress. The conclusion mainly manifests in the following several aspects:
     1. Resonance Rayleigh Scattering spectroscopy catches much attention of extensive researchers for its simple experimental apparatus, high sensitivity, and richness in spectrum information and so on. The impact of a series of conditions such as pH, ionic strength, different acid medium and organic solvents on the Resonance Rayleigh Scattering and the fluorescence spectrum characteristic of standard soil humic acid of IHSS were studied and used in the humic acid and the partial heavy metal ion interaction research. Result indicated that resonance Resonance Rayleigh Scattering spectra can be definitely applied to humic acid and related material interaction research.
     2. Preliminary study on the possibility of Resonance Rayleigh Scattering spectra technology for the quantitative determination of humic acid showed that the technology has a certain selectivity, high signal intensity. Resonance Rayleigh Scattering spectra is expected to serve as a new quantitative analysis technology of humic acid through further optimization of determination condition.
     3. Resonance Rayleigh Scattering spectroscopy and fluorescence spectroscopy were used to study the interaction between humic acid and metal ions(Cu2+、Pb2+、Zn2+、Cd2+、Fe3+、Al3+)in different pH and ions concentration. Result showed that Cu2+、Pb2+、Fe3+、Al3+ have strong interaction with humic acid. Fluorescence intensity reduced along with the increasing metal ions concentration. Cu2+ is more obvious than other metal ions. Of these metal ions, Resonance Rayleigh Scattering is strengthened except Zn2+ and Cd2+.
     4. The ultraviolet-visible spectrum of humic acid showed no characteristic absorption, ultraviolet absorption gradually reduced with increase in wavelength, and along with the increase of concentration of HA, ultraviolet absorption increased correspondingly.
     5. The three dimensional fluorescence spectrum indicated that emission wavelength blue shift occurred when interaction happened, but the excitation wavelength basically unchanged. Modified Stern-Volmer model was used to compute stability constants logK of humic acid and Cu2+.
     6. Fourier infrared spectrum technology was used to discuss the interaction mechanism of humic acid and metal ions(Cu2+、Pb2+), result showed that the interaction mainly occurred in the carboxyl group position.
     7. Solution conductivity increased along with the increasing metal ion concentration in the interaction between humic acid and metal ions, ultimately achieved a stable value。The range of concentration which result in the inflection point change of solution conductivity, corresponding RRS and fluorescence spectrum intensity maintained consistent.
     8. Transmission electron microscope was also used to discuss the reason for RRS appearance and signal enhancement of humic acid and humic acid - metal ion under various conditions. Aggregation and the formation of unevenness and solid nanometer particles, the solid-liquid interface and hydrophobic were believed to be the main reason for the RRS occurrence and enhancement.
引文
1.陈国珍,黄贤智,许金钩等.荧光分析法(第二版)[M]. 北京: 科学出版社,1990: 109
    2.迟凤琴.土壤腐殖质特性与土壤肥力[J].黑龙江农业科学,1995(1):50-51
    3.傅平青,刘丛强,尹祚莹等.腐植酸三维荧光光谱特性研究[J].地球化学,2004,33(3):302-306
    4.傅平青,刘丛强,吴丰昌等.溶解有机质的三维荧光光谱特征研究[J].光谱学与光谱分析,2005,25(12):2024-2028
    5. 郭瑾 , 马军 . 松花江水中天然有机物的提取分离与特征表征 [J]. 环境科学,2005,26(5):79-83
    6.郭晓峰.腐植酸的胶体性质[J]. 腐植酸,1996,(1):1-2
    7.韩贵琳,刘丛强.贵州乌江水系的水文地球化学研究[J].中国岩溶,2000,19(1):37
    8.何忠效,姚知行,饶泓.盐效应对DNA大分子构象的影响[J].生物物理学报,1989, 5(1):70-75
    9.黄承志,童沈阳.Meso-[四(对-三甲铵基)苯基]卟啉在核酸分子表面长距组装[J].西南师范大学学报(自然科学版),1997,22(6):648-653
    10.黄世德,梁生旺.分析化学(下册)[M].中国中医药出版社,1987
    11.蒋治良,李芳,梁宏.磷钼杂多酸-罗丹明 S 体系的共振散射光谱研究[J].化学学报,2000,58(8):1059-1062
    12.蒋治良,钟福新,李芳.绿色银纳粒子的共振散射光谱研究[J].化学学报,2001, 59(3): 438-441
    13.焦坤和李忠佩.土壤溶解有机质的含量动态及转化特征的研究进展[J].土壤,2005,37(6):593-600
    14. Krumgaiz.B,邓丹云.盐效应对高盐度溶液pH值的影响[J].国外矿床地质,1989, (3): 85-90
    15.李本超,朱咏煊等.地质样品的同步和三维荧光光谱及其地球化学意义[J]. 地质地球化学,1989,(4):67-68
    16.李宏斌,刘文清等.水体中溶解有机物的三维荧光光谱特征分析[J].大气与环境光学学报.2006,1(3):216-221
    17.李宏斌,刘文清等.基于三维荧光光谱技术的多组分分析浓度校准方法研究[J]. 2007,24(3):306-310
    18.李丽,贾望鲁,彭平安等.裂解技术研究 Pahokee 泥炭腐植酸的组成和来源特征[J].分析化学,2005,33(2):150-154
    19.李克斌,刘维屏,邵颖.重金属离子在腐植酸上吸附的研究[J].环境污染与防治,1997,19(1):9-11
    20.李克斌.土壤腐殖酸的提取及表征[J].陕西化工,1998,27(4):12
    21.李原芳,黄承志.α,β,γ,δ-四(4-羟苯基)卟啉对核酸分子识别的光谱研究[J].西南师范大学学报(自然科学版),1997,22(5):543-548
    22.李原芳,黄承志,胡小莉.共振光散射技术的原理及其在生化研究和分析中的应用[J].分析化学,1998,26(12):1508-1513
    23.李云峰,王兴理.腐殖质-金属离子的络合稳定性及土壤胡敏素的研究[M].贵阳:贵州科技出版社,1999
    24.李忠佩,程励励,林心雄.红壤腐殖质组成变化特点及其与肥力演变的关系[J].土壤,2002(1):9-15
    25.刘绍璞.共振瑞利散射及共振非线性散射在分析化学中的应用[M]. 北京: 科学出版社,2003: 280-288
    26.刘绍璞,龙秀芬.某些分子光谱分析法测定核酸的进展[J].理化检验:化学分册,2002,38(2):101-107
    27. 刘 绍 璞 , 刘 忠 芳 . 离 子 缔 合 物 二 级 散 射 光 谱 的 分 析 应 用 [J]. 化 学 学报,1995,53(12):1178-1183
    28.刘绍璞,刘忠芳.硒(Ⅳ)-碘化物-结晶紫体系的共振发光和二级散射光谱[J]. 高等学校化学学报,1996,17(8):1213-1215
    29. 刘 志 宏 , 蔡 汝 秀 . 三 维 荧 光 光 谱 技 术 分 析 应 用 进 展 [J]. 分 析 科 学 学报,2000,16(6):516-523
    30.楼涛,陈国华,谢会祥等.腐植植与有机污染物作用研究进展[J].海洋环境科学,2004,23(3):72-74
    31.罗红群.共振瑞利散射及共振非线性散射测定肝素和某些物理化学参数的新方法研究[D].西南师范大学,2002
    32.鲁群岷,刘忠芳,刘绍璞.金纳米微粒作探针共振瑞利散射法测定某些蒽环类抗癌药物[J].化学学报,2007,65(9):821-828
    33.马春琪,刘瑛,李克安等.瑞利光散射及其在生物化学分析中的应用研究[J].科学通报,1999,44(7):682-690
    34.南海军,刘忠芳,刘绍璞.胆酸盐在酸性介质中自聚集作用的共振瑞利散射光谱及其分析应用研究[J].化学学报,2006,64(12):1253-1259
    35.尚爱安,刘玉荣,梁重山等.土壤中重金属的生物有效性研究进展[J].土壤,2000(6):294-210
    36.孙毓庆,胡育筑,李万章.分析化学[M].科学出版社.2003,234-270,275-293
    37.孙舒婷,马洪敏,陈欣等.现代分析技术在药物分析中的研究与应用[J].分析测试技术与仪器,2007,13(4):229-235
    38.田宝珍,薛含斌.络合滴定-阳极溶出伏安法测定腐植酸与金属络合物的稳定常数[J].环境科学研究,1994,7(3):51-52
    39.王春艳,王新顺等.基于不同光谱技术的原油样品的荧光分析[J].光谱学与光谱分析,2006,26(4):728-732
    40.王立英,吴丰昌和张润宇.应用 XAD 系列树脂分离和富集天然水体中溶解有机质的研究进展[J].地球与环境,2006,34(1):90
    41.王晓蓉.环境化学[M].南京:南京大学出版社,1993,53-57
    42.徐栋,冯科,吴峰等.天然水体底质中腐植酸的光谱特征[J].分析科学学报,2003,19(6):500-501
    43.颜承农,李杨等.荧光光谱法研究丙酮与牛血清白蛋白的相互作用特征[J].环境科学学报,2006,26(11):1880-1885
    44.颜承农,童金强等.荧光光谱法研究培氟沙星与牛血清白蛋白结合反应特征[J]. 分析化学,2006,34(6):796-800
    45.杨睿,刘绍璞.某些分子光谱分析法测定蛋白质的进展[J].分析化学,2001,29(2): 232-241
    46.俞天智,滕秀兰.两种腐殖质的荧光光谱研究[J].甘肃科学学报,1997,9(1):55-57
    47.于鑫,张晓健,王占生.水源水及饮用水中的有机物对人体健康的影响[J].中国公共卫生,2003,19(4):481-482
    48.袁洪福,褚小立,王艳斌等译.水分析手册[M].北京:中国石化出版社, 2005: 363
    49.曾凡蓉,席永清等.荧光光度法测定环境水样中的苯酚和对苯二酚[J].分析试验室,2007,26(5):76-79
    50.曾丽璇,陈桂珠,吴宏海等.水体腐植酸影响下河蚬对低浓度镉的蓄积和释放[J].生态科学,2006,25(3):13-17
    51.章燕豪主编.物理化学[M].上海:上海交通大学出版社,1988,537
    52.张超,叶仲斌,施雷庭等.疏水缔合聚合物建立流动阻力机理研究[J].中国海上油气,2007,19(4):251-253
    53.张莉,李娜,赵凤林等.糖胺聚糖分析测定的研究进展[J].分析化学平素与进展,2005,33(7):1024
    54.张昀,李淑敏,包一兵等.水中腐殖酸分析及其卫生意义[J].卫生研究,1995,24(5): 275-277
    55.周国平,李似欣,杨秋水.四种腐植酸的组成性质研究[J].石油大学学报(自然科学版),1991,15(3):102-107
    56. 朱燕 , 李爱民 , 李超等 . 土壤有机质级份的红外和热重特性 [J]. 环境化学,2005,24(3):289-290
    57.Abbt-Braun G., Johannsen K., Kleiser G.., et al., Adsorption behavior of humic substances on activated carbon: comparison with the physical and chemical character of material form different origin[J].Environ Int,1994, 20(3):397-403
    58.Aiken G.R., Mcknight D.M., Thorn K.A., et al., Isolation of hydrophilic organic acids from water using non-ionic macroporous resins[J].Org Geochem,1992,18: 567-573.
    59.Alberts J.J., Takacs M., Egeberg P.K., Total luminescence spectral characterization of natural organic matter (NOM) size fractions as defined by ultrafiltration and high performance size exclusion chromatography(HPSEC)[J].Org Geochem,2002,33, 817-828
    60.Almgren T., Josefsson B., Nyquist G., A Fluorescence method for studies of spent sulfite liquor and humic substances in sea water[J]. Anal Chim Acta,1975,78(2): 411-422
    61.Antunes M C G., Joaquim C G., Silva E Da., Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances[J]. Anal Chim Acta, 2005, 546: 52-59
    62.Ashley J T F., Adsorption of Cu(II) and Zn(II) by estuarine riverine and terrestrial humic acids[J]. Chemosphere, 1996, 33: 2175-2187
    63.Averett R C., Leenheer J A., Mcknight D M., et al., Humic substances in the Suwannee River, Georgia: interactions, properties, and proposed structures, editors[J]. USGS Water-Supply Paper,2373
    64.Baigorri R., Fuentes M., Gonz′alez-Gaitano G., et al., Analysis of molecular aggregation in humic substances in solution[J]. Colloids and Surfaces A, 2007, 302: 301-306
    65.Baratti G., Magdaleno., Coichev N., Chemiluminescent determination of humic substances based on the oxidation by peroxymonosulfate[J]. Anal Chim Acta, 2005, 552: 141-146
    66.Bohren C.F., Huffman D.R., Absorption scattering of light by small particals[M]. New York: John Wiley &Sons,1983,4
    67.Bortiatynski J.M., Hatcher P.G., Knicker H., NMR techniques(C,N, and H) in studies of humic substances, in: Humic and Fulvic Acids. Isolation, Structure and Environmental Role [M].Washington, DC:American Chemical Society,1996,57-77
    68.Brun G L., Milburn D L D., Automated Fluorometric Determination of HumicSubstances in Natural Water[J]. Anal Lett, 1977,10(14): 1209-1219
    69.Buffle J., Altmann R S., Filella M., et al., Complexation by natural heterogeneous compounds: site occupation distribution functions a normalized description of metal complexation[J]. Geochim Cosmochim Acta,1990, 54:1535-1553
    70.Burchard W., Biochemical socity transactions[J].Soc Trans,1991,19:478
    71.Cabaniss S.E., Shaman M.S., Copper binding by dissolved organic matter: I Suwannee River fuivic acid equilibria. Geochim Cosmochim Acta,1988a,52: 185-193
    72.Cabaniss S.E,Shaman M.S., Copper binding by dissolved organic matter: II Variation in tvpe and source of organic matter. Geochim Cosmochim Acta, 1988b, 52: 195-200
    73.Cameron, D.F., Sohn, M.L. Functional group content of soil and sedimentary humic acids determined by CP/MAS 13C NMR related to conditional Zn(II) and Cd(II) formation constants[J]. Sci Total Environ, 1992, 113: 121-132.
    74.Carpenter P D., Smith J D., Simultaneous spectrophotometric determination of humic acid and iron in water[J]. Anal Chim Acta, 1984, 159: 299-308
    75.Cesar plaza., Gennaro brunette., Nicola senesi., et al., Molecular and quantitative analysis of metal ion binding to humic acids from sewage and sludge-amended soils by fluorescence spectroscopy Envion Sci Technol, 2006,40:917-923
    76.Chen W., Westerhoff P. L., Leenheer J.A., et al., Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environ Sci Technol, 2003, 7: 5701-5710
    77.Charles M., Sharples S., Lindab M., Effects of Aluminum-Induced Aggregation on the Fluorescence of Humic Substances[J]. Environ Sci Technol., 1999, 33: 3264-3270
    78.Chin Y P., Aiken G R., ?Loughlin E., Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances[J].Environ Sci Technol, 1994,28: 1853-1858
    79.Coble P.G., Green S.A., Blough N.V., et al., Characterization of dissolved organic matter in the black sea by fiuorescence spectroscopy [J]. Nature,1990, 348:432-435
    80.Coble P.G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51: 325-346.
    81.Cominoli A., Buffle J., Haerdi W., Voltammetric study of humic and fulvic substances Part III. Comparison of the capabilities of the various polarographictechniques for the analysis of humic and fulvic substances[J]. J Electroanalytical Chem, 1980, 110(1-3): 259-275
    82.Croué J.P., Benfdetti M.F., Violleauand D., et al., Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte river: evidence for the presence of nitrogenous binding site[J]. Environ Sci Technol., 2003,37: 328-336
    83.Debye P.J., Theory o f light scattering[J].Appl Phys,1994,15:338
    84.David K. Ryan., James H Weber., Copper (Ⅱ) complexing capacities of natural waters by fluorescence quenching[J]. Environ Sci Technol, 1982,16: 866-872
    85.David K. Ryan., James H Weber., Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid[J]. Anal Chem,1982,54:986-990
    86.Esteves Da Silva JCG., Machsdo AASC., Oliverira CJS., er al., Fluorescence quenching of anthropogenic fulvic acids by Cu(Ⅱ),Fe(Ⅲ) and UO2+[J]. Talanta,1998,45:1155-1165
    87.Fakoussa R.M., Frost P.J., In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus trametes versicolor [J]. Appi Microbiol Biotechnoi, 1999,52:25-45
    88.Fakoussa R.M., Hofrichter M., Biotechnology and microbiology of coal degradation[J]. Appl Microbiol Biotechnol.,1999,52:25-45
    89.Frimmel,F.H., Christman,R.F., Flaig,W., et al., Generation of model chemical precursors, in: Humic Substances and their Role in the Environment[M].New York: John Wiley &Sons, 1988:75-91
    90.Hautala K., Peuaravuori J., Pihlaja K., Mesurement of aquatic humus content by spectroscopic analyses[J].Water Res, 2000,34: 246-258
    91.Hayes M.H.B., Malcolm R.L., Swift R.S., et al., Molecular weight, size, shape, and charge characteristics of humic substances: some basic consideration, in: Humic Substances Ⅱ[M].New York: John Wiley &Sons ,1989a:449-465
    92.Her N., Amy G. Mcknight D., Sohn J., et al., Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UV, DOC and fluorescence detection. Water Res[J]. 2003,37: 4295-4303
    93.Hongve D., Baann J., Becher G. Lomo S., Characterization of humic substances by means of high-performance size chromatography[J]. Environ Int, 1996,22: 489-494
    94.Imasaka T., Tsukamoto A., Ishibash N., Anal chem,1988, 60:1326
    95.Juhani peuravuori., NMR spectroscopy study of freshwater humic material in ligh of supramolecular assembly[J]. Environ Sci Technol,2005,39:5541-5549
    96.Kacker T., Haupt E., Garms C., et al., Structural character-isation of humic acid-bound PAH residues in soil by 13C-CP-MAS-NMR-spectroscopy: evidence of covalent bonds[J].Chemosphere, 2002,48:117-131
    97.Kevin A.Thorn., Penny J Pettigrew., Wayne S.Goldenberg., Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions[J]. Environ Sci Technol,1996,30:2764-2775
    98.Kieron J.Doick., Peter Burauel., Kevin C.Jones., et al., Distribution of aged 14C-PCB and 14C-PAH residues in particle-size and humic fractions of an agricultural soil [J]. Environ Sci.Technol, 2005,39:6575-6583
    99. Kinniburgh D.G., Milne C.J., Bendeetti M.F., et al., Metal ion binding by humic acid: Application of the NICA-Donnan model[J].Environ Sci Technol, 1996,30:1687-1698
    100. Kinniburgh D.G., Van Riemsdijk W.H., Koopal L.K., et al., Ion binding to natural organic matter: competition, heterogeneity, stoichiometry, and thermodynamic [J]. Consistency Colloids and surfaces A: Physicochemical and Engineering Aspects. 1999,151:147-166
    101.Langford, C.H., Gamble,D.S., Underdown, A.W., et al., Interaction of metal ions with a well characterized fulvic acid, in: Aquatic and terrestrial humic materials[M]. Ann Arbor, MI: Ann Arbor Science, 1983:219-327
    102.Leenheer J.A., Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters[J]. Environ Sci Technol, 1981,15: 578-587.
    103.Lempert W., ang C.H., .Chem Phys., Rayleigh-Brillouin scattering and struct ural rexation of polystyrene-cyclohexane solutions[J]. 1980,72(6):3490
    104.Liu S P., Liu Q., Liu Z. F., et al., Resonance Rayleigh Scattering of Chromium(VI)-iodide-basic Triphenylmethane Dye Systems and Their Analytical Application[J]. Anal Chim Acta, 1999, 379: 53-61
    105.Lu X and Jaffe R., Interaction between Hg and natural dissolved organic matter: a fluorescence spectroscopy based study[J].Water Res, 2001,35:1793-1803
    106.Lydersen E., Humus and Acidification. In: Hessen D O, Tranvik L J. Eds.Aquatic humic substances[M]. Berlin Heidelberg: Spring-Verlag, 1998:63-93
    107. Marino D. F., Ingle J. D., Determination of humic acid by chemiluminescence[J].Anal Chim Acta, 1981, 124(1): 23-30
    108.Mark A. Nanny., Jesus P.Maza., Noncovalent interaction between monoaromatic compounds and dissolved humic acids: a deuterium NMR T1 relaxation study[J].Environ Sci Technol,2001,35:379-384
    109.Marley N.A., Gaffeny J.S., Orlandini K.A., Characterization of aquatic humic and fulvic material by cylindrical internal reflectance infrared spectroscopy in: humic and fulvic acids. Isolation, structure and environmental role[M]. Washington DC: American Chemical Society, 1996:96-107
    110.McKnight D.M, Boyer E.W., Westerhoff P.K., Doran P.T., et al., Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnol Oceanogr, 2001,46: 38-48
    111.Michael U. Kumke., Sascha Eidner., Tobias Kruger., Fluorescence quenching and luminescence sensitization in complexes of Tb3+ and Eu3+ with humic substances[J]. Environ Sci Technol, 2005,39:9528-9533
    112.Micha?owski J., Ha?aburda P., Koj?o A., Determination of humic acid in natural waters by flow injection analysis with chemiluminescence detection[J]. Anal Chim Acta, 2001, 438: 143-148
    113. Ndou T., Warner I., Applications of Multidimensional Absorption and Luminescence Spectroscoples in Analytical Chemistry [J].Chemical Review, 1991, 91(4): 493-507
    114. Nicola senesi .Molecular and quantitative aspects of the chemistry of fulvic acid and its interaction with metal ions and organic chemicals partⅡ:The fluorescence spectroscopy approach[J]. Analytica Chimica ,1990,232: 77-106
    115. Nomizu T., Sanji M., Hiraide M., et al., Determination of Humic and Fulvic Acids in River Waters by Concentration with Anion Exchanger Followed by Centrifugation[J]. Anal Sci, 1989, 5: 363-365
    116.Ohzeki K., Tatehana M., Nukatsuka L., et al., Determination of Humic Acid and Iron(iii) by Solid-state Spectrophotometry to Study Their Interactions[J]. Analyst, 1991, 116: 199-205
    117.Pasternack R.F., Bustamante C. Collings P.J., et al., Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. J.Am.Chem.Soc. 1993, 115:5393-5398
    118.Pasternack R.F., Collings P.J., Resonance light scattering: a new technique for studying chromophore aggregation [J]. Science,1995, 269:935-938
    119.Peuravuori J., and Pihlaja K., Isolation and characterization of natural organic matter from lake water: comparison of isolation with solid adsorption and tangential membrane filtration[J]. Environ Int, 1997,23: 441-451
    120.Piccolo A., Stevenson F.J., Infrared spectra of Cu2+,Pb2+ and Ca2+ complex of soil humic substance [J]. Geoderma, 27:195-208
    121.Garrison A.W., Schmitt P., Kettrup A., Capillary electrophoresis for the characterization of humic substances[J]. War Res, 1995, 29(9):2149-2159
    122.Saar R.A., Weber J.H., Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions[J]. Anal Chem, 1980, 52:2095-2100
    123.Schulten H.-R., A chemical structure for humic acid. Pyrolysis-gas chromatography/mass spectrometry and pyrolysis-soft ionization mass spectrometry evidence, in: Humic Substances in the Gobal Environment and Implications on Human Health[M]. Amsterdam: Elsevier, 1994:43-56
    124.Schulten, H.-R., The three-dimensional structure of humic substances and soil organic matter studied by computational analytical chemistry[J]. Fresenius J. Anal. Chem.1995, 351,:62-73
    125.Senesi N., Molecular and quantitative aspects of the chemistry of fulvic and its interactions with metal ions and organic chemicals, partⅠ : the electron spin resonance approach[J]. Anal. Chim. Acta, 1990a,232: 51-75
    126.Senesi N., Molecular and quantitative aspects of chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part Ⅱ. the fluorescence spectroscopy approach[J]. Anal Chim Acta, 1990a,232:77-106
    127.Senesi N., Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part Ⅱ . The fluorescence spectroscopy approach[J]. Anal. Chim. Acta, 1990b,232: 77-106
    128.Senesi N., Application of electron spin resonance(ESR) spectroscopy in soil chemistry[J]. Adv Soil Sci, 1990c, 14:77-130
    129.Senesi N., Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approach, in: biogeochemistry of trace metal [M]. Boca raton, Fl: Lewis, 1992b:425-491
    130.Senesi N., Sposito G., Manganese(Ⅱ) complexation by humic acids form soils and soil fungi, proceedings, 6th international conference on heavy metals in the environment[M].1987:330-333[36] P. Ulrich, M. G. Weller, D. Knopp.Enzyme-Linked Immunosorbent Assay for Humic Acids[J]. Anal. Sci., 1993, 9: 795-797
    131.Senesi N., D’Orazio V., Ricca G., Humic acids in the first generation of EUROSOILS[J]. Geoderma, 2003,116: 325-344
    132.Sheng G. P., Zhang M. L., Yu H. Q., A rapid quantitative method for humic substances determination in natural waters[J]. Anal Chim Acta, 2007, 592: 162-167
    133.Sorouradinm M-H., Hiraide S., Kawaguchi H., Spectrophotometric Determination of Humic Substancesin Water by Sorption on XAD-2 Resin Followed by Desorption with Sodium Dodecyl Sulfate[J]. Anal Sci, 1993, 9: 863-865
    134.Stevenson F.J., Humus Chemistry. Genesis, Composition, Reactions [M]. New York: John Wiley &Sons, 1982
    135.Stevenson F.J., Humus chemistry. Genesis, composition, reactions, 2nd edn[M]. New York: John Wiley &Sons , 1994
    136.Ulrich P., Weller M. G., Knopp D., Enzyme-Linked Immunosorbent Assay for Humic Acids[J]. Anal Sci, 1993, 9: 795-797
    137.Takahashi Y., Minai Y., Ambe S., et al., Simultaneous determination of stability constants of humate complexes with various metal ions using multitrace technique[J]. Sci Tot Environ, 1997, 198:61-71
    138.Tekely P., Application of high resolution carbon-13 nuclear magnetic resonance to heterogeneous macromolecular solids [J].Trends Phys Chem,4:181-201
    139.Thurman, E.M., Malcolm, R.L. Preparative isolation of aquatic humic substances[J]. Environ. Sci. Technol., 1981, 15: 463–466
    140.Tipping E., Humic ion binding model Ⅵ:An improved description of the interaction of protons and metal ions with humic substances[J]. Aquatic Geochem,1998, 4:3-48
    141.Tremblay L., Gagne J-P., Fast Quantification of Humic Substances and Organic Matter by Direct Analysis of Sediments Using DRIFT Spectroscopy[J]. Anal Chem, 2002, 74: 2985-2993
    142.Warren L.A., Haack E.A., Biogeochemical controls on metal behavior in freshwater environments[J].Earth-Science Review,2001,54:261-320
    143.Weber J.H., Binding and transport of metals by humic materials, in: humic substances and their role in the environment[M]. Chichester: John Wiley &Sons,165-178
    144.William p. Johnson., Gaobin bao., Wynn W. John., Specific UV absorbance of Aldrich humic acid: changes during transport in aquifer sediment[J]. Environ Sci Technol, 2002,36: 608-616
    145.Wu F.C., Evans R.D., Dillon P.J., High-performance chromatographic fractionation and characterization of fulvic acid[J]. Anal Chim Acta, 2002,464: 47-55
    146.Wu F.C., Cai Y.R., Evans R.D., et al., Complexation between Hg(??) and dissolved organic matter in stream waters: an application with fluorescence spectroscopy[J]. Biogeochemistry, 2004a,719: 339-351
    147.Wu F.C., Evans R.D., Dillon P.J., et al., Molecular size distribution characteristics of metal-DOM complexes in stream waters by high-performance size-exclusion chromatography (HPSEC) and high-resolution inductively coupled plasma mass spectrometry (ICP-MS)[J]. J. Anal At Spectrom, 2004b,19: 979-983
    148.Wu F.C., Evans R.D., Dillon P.J., et al., Rapid quantification of humic and fulvic acids by HPLC in natural waters[J]. Appl Geochemi, 2007, 22: 1598-1605
    149.Xiaoqiao lu., W.David Johnson., James hook., Reaction of vanadate with aquatic humic substances: an ESR and 51V NMR study[J]. Environ Sci Technol, 1998,32: 2257-2263
    150.Xue H.B. and Sigg L., Cadmium speciation and complexation by natural organic ligands in fresh water[J]. Anal Chim Acta, 1998,363: 249-259
    151.Zhou Q.H., Cabaniss S.E., Mauruce P.A., Consideration in the use of High-Pressure Size Exclusion Chromatography (HPSEC) for determining molecular weights of aquatic humic substances[J]. Water Res, 2000,34: 3505-3514

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700