分子光谱法研究染料及生物大分子与某些药物的相互作用及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当物质分子受到光(电磁波)的照射时,会发生光的吸收、反射或透射以及光的发射、散射等现象。分子光谱即是将这些光现象进行分光所得到的光谱,它包含着物质的组成、结构、理化特性、反应历程等丰富的信息。分子光谱法则是以此为基础对物质进行测量和表征的分析方法,分子光谱分析是定性、定量分析研究物质的常用分析技术,是测定和鉴别分子结构的重要实验手段,是化学反应理论发展和实验验证的基础。分子光谱根据吸收电磁波的范围不同,可分为紫外、可见光谱和近红外光谱、红外光谱等;根据电磁波的发射方式不同又可分为分子荧光、磷光和散射光谱等。本文采用分子光谱法研究染料及生物大分子与某些药物的相互作用及其分析应用:1、纳它霉素对牛血清白蛋白的荧光猝灭作用,计算了不同温度下结合位点数n,结合常数K_4,以及对应的热力学参数△G,△H和△S;2、硫酸软骨素与牛血清白蛋白的相互作用,研究体系的RRS和SOS光谱特征及其影响因素和分析应用;3、研究赤藓红与扑尔敏的相互作用及其分析应用;4、研究卤代荧光素与西布曲明的相互作用及其分析应用;5、研究阿霉素与金属离子和赤藓红三元离子缔合物体系的光谱特征及其分析应用。
     1牛血清白蛋白-纳它霉素体系
     在中性介质中,采用荧光光谱和同步荧光光谱,研究了纳它霉素与血清白蛋白间的相互作用。依据F(o|¨)rster非辐射能量转移机理探讨了纳它霉素与血清白蛋白相互结合时其给体、受体间的距离(r=1.08 nm)和能量转移效率(E=22.99%),并用同步荧光技术考察了纳它霉素对血清白蛋白构象的影响。并根据热力学常数确定了该药物与血清白蛋白之间的作用力类型主要为氢键和范德华力。此外,还研究了在中性介质中,纳它霉素与血清蛋白反应形成结合产物,此时将导致蛋白质内源荧光(λ_(ex)/λ_(em)=285 nm/347 nm)猝灭,其猝灭值(△F)与纳它霉素浓度成正比,据此可建立以血清蛋白为探针的荧光猝灭法测定酸奶中纳它霉素的残留量的新方法。
     2硫酸软骨素-牛血清白蛋白体系
     在pH 3.5的B-R缓冲溶液中,带正电荷的牛血清白蛋白(BSA)与带负电荷的硫酸软骨素(CS)在水溶液中能通过静电相互作用形成BSA-CS聚合物体系。实验以△λ=0的方式和荧光扫描的方式扫描分别得到体系的RRS光谱和SOS光谱,研究了牛血清白蛋白与硫酸软骨素聚合物体系的共振瑞利散射(RRS)光谱和非线性二级散射光谱(SOS)光谱特征,实验还发现当牛血清白蛋白与硫酸软骨素作用时会增强其RRS光谱和SOS光谱,且体系的RRS光谱增强程度与其中任一组分浓度增加成正比,基于此可建立起灵敏度高的测定CS和BSA的RRS光谱分析的新方法,此外还探讨了RRS增强的机理。
     3.扑尔敏-赤藓红体系
     3.1赤藓红褪色分光光度法测定扑尔敏
     在弱酸性介质中,马来酸氯苯那敏(CPM)与赤藓红(ET)或曙红Y(EY)阴离子借静电引力和疏水作用力而形成离子缔合复合物。溶液的吸收光谱发生变化,赤藓红体系发生明显的褪色作用,最大褪色波长位于525 nm,CPM浓度在0.1~4.0μg·mL-1范围内遵从比尔定律,ε为3.5×10~4 L·mol(-1)·cm~(-1)。方法灵敏度较高,选择性好,操作简便快速,用于片剂及尿样中马来酸氯苯那敏的测定,结果满意。
     3.2扑尔敏与赤藓红的荧光猝灭和共振散射光谱及其分析应用
     在pH 4.4 B-R缓冲介质中,扑尔敏(CPM)与赤藓红(ET)相互作用形成离子缔合物,导致荧光和同步荧光猝灭及共振瑞利散射(RRS)的显著增强并产生新的RRS光谱,最大RRS峰位于578 nm附近。其荧光猝灭程度及散射增强程度与扑尔敏浓度成线性关系,线性范围分别为:0.24~8.μg·mL~(-1)、0.08~3.6μg·mL~(-1)。将方法用于尿样中扑尔敏含量的快速测定,结果满意。此外还讨论了共振散射增强机理及荧光猝灭的原因。
     4西布曲明-卤代荧光素体系
     4.1卤代荧光素与西布曲明的荧光猝灭和褪色光谱及其分析应用
     在弱酸性缓冲溶液中,乙基曙红(EE)、赤藓红(ET)和荧光桃红(PX)三种卤代荧光素与盐酸西布曲明(SH)形成离子缔合物,导致吸收光谱发生变化和荧光猝灭。文中研究了反应产物的吸收和荧光光谱特征,适宜的反应条件,据此发展了以卤代荧光素为光谱探针的灵敏、简便、快速测定SH的新方法。其中ET体系褪色反应灵敏度最高,对SH的线性范围为0.1~4.0μg·mL~(-1),检出限为0.06μg·mL(-1);PX-SH体系的荧光猝灭法对SH的线性范围是0.2~4.6μg·mL~(-1)(λ_ex/λ_em=540 nm/560 nm),检出限为0.09μg·mL~(-1)。讨论了离子缔合反应对荧光及吸收光谱的影响及卤代荧光素荧光猝灭原因。
     4.2卤代荧光素与西布曲明相互作用的共振散射光谱及其分析应用
     用共振瑞利散射(RRS)法研究了,研究了乙基曙红(EE)、赤藓红(ET)和荧光桃红(PX)三种卤代荧光素与盐酸西布曲明(SH)的相互作用,发现乙基曙红、赤藓红和荧光桃红三种卤代荧光素与盐酸西布曲明(SH)形成了离子缔合物导致两体系产生强烈的RRS,它们的最大散射峰分别位于316 nm、345 nm和370 nm。考察了适宜的反应条件及共存物质的影响,在一定范围内SH的浓度与RRS强度成正比,其检出限分别为32 ng·mL~(-1)(EE-SH体系)、28ng.mL~(-1)(ET-SH体系)和21 ng·mL~(-1)(PX-SH体系)。以ET-SH体系为例,由光偏振实验,测得体系573 nm处的共振散射光谱偏振度P为0.95,表明体系的共振散射光谱主要由散射光构成,基本不含共振荧光成分。本实验还用讨论了体系的共振散射增强的原因。
     5阿霉素-Me(Ⅱ)-卤代荧光光素体系
     在弱酸性NaAc-HAc介质中,研究了阿霉素与金属离子Cu(Ⅱ)和Pd(Ⅱ)形成的阳离子配合物和阴离子卤代荧光素染料结合生成三元离子缔合物的反应,结果表明,三元离子缔合物的形成使体系的共振瑞利散射强度(RRS)显著增强,两个金属离子所形成的结合产物的RRS光谱特征相似,最大RRS峰均位于570 nm附近。但引起的RRS增强的程度Pd(Ⅱ)>Cu(Ⅱ),RRS的增量与阿霉素的浓度在一定范围内线性相关,据此建立了一种测定阿霉素的高灵敏度的分析方法。该方法的检出限(3σ)为8.2ng·mL~(-1),为阿霉素的测定提供了一种新的方法。
When the material molecule receives the light (electromagnetic wave), the absorption, reflection or transmission and emission, scattering will take place. The molecule spectrum is obtained from dividing these light phenomena, it includes abundant information such as the composition, structure, physical and chemical characteristics, reaction mechanism and so on. Molecular Spectrometry is the analytical method of measuring and characterizing, molecule spectral analysis is commonly used analysis technology of the qualitative and quantitative analysis, it is the important experimental method of determining and indentifing molecular structure, it is the development foundation of chemical reaction theory and experimental verification. According to difference ranges of absorbing the electromagnetic wave, it can be divided into ultraviolet-visible spectrum, the near-infrared spectrum and infrared spectrum etc; according to the difference electromagnetic wave emission method, it can be divided into the molecular fluorescence, the phosphorescence and the scattering spectrum and so on. This article studies on the interaction of some pharmaceuticals with biological macromolecule and dyes by Molecular Spectrometry and their analytical applications: 1. Fluorescence Quenching of Bovine Serum Albumin by Natamycin, The binding site number n and the binding constant K_A , corresponding thermodynamic parametersΔG,ΔH andΔS at different temperatures were calculated; 2. The interaction of chondroitin sulfate with bovine serum albumin, we studied the RRS and SOS spectra characheristics of the system; 3. Study on the interaction of Chlorphenamine with erythrosine and its analytical applications; 4. Study on the interaction of Sibutramine with halofluorescein and their analytical applications; 5. Study on the spectra characheristics of ternary ion-association complexes of Doxorubicin-Me(II)-Erythrosine system and thair analytical applications.
     1 Natamycin - bovine serum albumin system
     The interaction of natamycin and bovine serum albumin (BSA) was studied with fluorescence spectroscopy and synchronous fluorescence. The binding distance(r=1.08 nm) and transfer eficiency (E=22.99%) between natamycin and BSA were obtained according to the theory of F(o|¨)rster non-radiation energy transfer. Furthermore, the effect of natamycin on the conformation of BSA was also analyzed using synchronous fluorescence spectrometry. Finally, the thermodynamic data show that the interaction forces of BSA with natamycin is the hydrogen bond and van der waals interaction. In addition, in neutral medium, natamycin could bind with BSA to form complexes, which would result in the quenching of the intrinsic fluorescence (λ_(ex)/λ_(em)=285 nm/347 nm) of the BSA. The quenching intensity (ΔF) was directly proportional to the concentration of the natamycin. Therefore, a new analytical method was established to determine trace ntamycin in yoghurt products.
     2 Chondroitin sulfate- bovine serum albumin system
     In pH 3.5 B-R buffer solution, BSA with positive charge and chondroitin sulfate (CS) with negative charge formed self-assembled polymer via electrostatic interaction in aqueous solution. We studied the resonance rayleigh scattering (RRS) and second-order scattering (SOS) spectra of CS-BSA system, RRS and SOS spectra were found by synchronous scanningΔλ=0 and scanning the fluorescence spectrum mode, respectively; we researched the RRS and SOS spectra characheristics of CS-BSA and BSA-CS system, it is found that RRS intensity can be enhanced after the interaction of CS and BSA, and there was a linear relationship between the RRS intensity and CS or BSA concentration. So a new method for the sensitive and rapid determination of CS and BSA can be developed. In addition, the RRS enhanced mechanism has been discussed.
     3 Chlorphenamine maleate - erythrosine system
     3.1 Fading spectrophotometric determination of chlorphenamine maleate with erythrosine
     In weak acidic medium, Chlorphenamine Maleat (CPM) react with halogenated fluoresce dyes such as erythrosine (ET) and eosinY (EY) to form the ion-association complex through electrostatic and hydrophobic interaction, the color of solutions changes obviously, erythrosine system has a remarkable color fading reaction and the fading wavelengths is 525 nm, the concentration of CPM obeys Beer's law in the range of 0.1-4.0μg·mL~(-1), the molar absorptivity (ε) is 3.5×10~4 L·mol~(-1)·cm~(-1). The method is sensitive, simple and rapid, it has been applied to the determination of CPM in tablets and urine with satisfactory results.
     3.2 The fluorescence quenching and resonance Rayleigh scattering enhancement of ET-CPM system and its analytical application
     In pH 4.4 BR buffer medium, erythrosine (ET) and Chlorphenamine Maleate (CPM) could form ion-association complex, which leads to the quenching of fluorescence and synchronized fluorescence, and the significant enhancement of resonance Rayleigh scattering (RRS) of erythrosine. The fluorescence and RRS intensities have linear relationship with the CPM concentration in the range of 0.24-8.0μg·mL~(-1), and 0.08-3.6μg·mL~(-1), respectively. The method could be applied to the determination of CPM in urine samples with satisfactory results. The mechanisms of the RRS enhancement and fluorescence quenching were discussed as well.
     4 Sibutramine - halofluorescein systems
     4.1 Study on determination of sibutramine by fluorescence quenching and fading spectrophotometry
     In weak acid buffer solutions, 3 halofluorescein dyes, such as, ethyl eosin (EE), erythrosine(ET) and phloxine(PX), can react with Sibutramine(SH) to form ion-association complexes, which not only results in the quenching of fluorcence, but also results in the great decrease of absorbance. In this work, the spectral characteristics of fluorcence and absorption spectra, the optimum conditions of the reaction were investigated. A new method for the determination of Sibutramine by using halofluorescein as a probe has been developed. ET-SH system has the highest sensitivity for the fading reaction. There is a linear relationship between the absorption intensities and SH concentration in the range of 0.1-4.0μg·mL~(-1), The detection limit for SH is 0.06μg·mL~(-1); PX-SH system has the highest sensitivity for the fluorcence quenching reaction, the linear range is 0.2-4.6μg·mL~(-1)(λ_(ex)/λ_(em)=540 nm/560 nm). The detection limit for SH is 0.09μg·mL~(-1). In addition, the reasons for the the quenching of fluorcence and the fading of absorption spectra were discussed.
     4.2 Studies on the interaction of Sibutramine with halofluorescein and their analytical application by resonance Rayleigh scattering spectra
     The interaction of halofluorescein, such as, ethyl eosin (EE), erythrosine (ET) and phloxine(PX) with Sibutramine(SH) have been investigated by resonance rayleigh scattering spectra(RRS). SH can react with halofluorescein to form ion-association complexes, which can result in the significant enhancement of RRS intensity. The maximum scattering peaks esist at nm for EE-SH, nm for ET-SH and nm for PX-SH. The RRS spectral characteristics, the the optimum conditions and influencing factors have been studied for EE-SH, ET-SH and PX-SH reaction systems. The intensity of RRS is directly proportional to the concentration of SH in a certain concentration range, the detection limit for SH was 32 ng·mL~(-1) (EE-SH system), 28 ng·mL~(-1)(ET-SH system) and 21 ng·mL~(-1)(PX-SH system), respectively. The polarization of light was measured, the polarization value P of the RRS at 573 nm is measured to be 0.95, the experimental facts revealed that the scattering peak of ET-halofluorescein mainly consists of resonance scattering and few resonance fluorescence. In addition, the reasons for intensity enhancement of RRS have been discussed.
     5 Doxorubicin-Me (II)-erythrosine systems
     In NaAc-HAc buffer solution, the Doxorubicin reacted with Cu(II) and Pd(II) ion to form cation chelates which further reacted with anion halofluorescein dyes, such as ethyl eosin(EE), erythrosine(ET) and phloxine(PX) to form ternary association-complexes. As a result, the significant enhancements of RRS intensities were observed. Their spectral characteristics of RRS were similar, and the maximum RRS wavelengths were at 570 nm. The increments of RRS intensity were different in the series of Pd (II)>Cu (II). The enhanced RRS intensities were proportional to the concentration of DOX, the detection limit for DOX is 8.2 ng·mL~(-1); a kind of new experimental method of measuring DOX was provided
引文
[1]马春琪,刘瑛,李克安,童沈阳,瑞利散射光散射及其在化学分析中的应用研究,科学 通报,1999,44(7):682-690.
    
    [2]Anglister J. and Steinberg I. Z., Resonance rayleigh light scattering of some porphyrins insolution: Intensities and depolarization ratios, Chemical Physics, 1983,75(3): 443452.
    
    [3]Bauer D. R., Hudson B. Pecora R., Resonance enhanced depolarizen rayleigh scattering fromDiphenyloyenes, J. Chem. phys. 1975,63 (1): 588-561.
    
    [4]Miller G. A., Fluctuation theory of the resonnce enhancement of rayleigh scattering in absorbingMedia, J. Phys. Chem., 1978,85: 616-618.
    
    [5]Anglister J., Steinberg I. Z., Depolarized rayleigh light scattering in absorption bands measuredin lycopene solution, Chem. phys. Lett., 1979,65 (1): 50-54.
    
    [6]Anglister J., Steinberg I. Z., Resonance rayleigh scattering of cyanine dyes in solution:Intensities and depolarization ratios, J.Chem. Phys.,1983,78(9): 5358-5368.
    
    [7]章燕豪,物理化学,上海:上海交通大学出版社,1988:p537.
    
    [8]Fujita Y., Mori I., Toyoda M., et al. Determination of proteins by using the color reaction, Chem Pharm Bull., 1990, 38(4): 956-959.
    
    [9]刘绍璞,刘忠芳,李明, 离子缔合物二级散射光谱的分析应用Ⅰ.硒(Ⅳ)-碘化物-罗丹明 B体系,化学学报,1995,53:1178-1184.
    
    [10]刘绍璞,刘忠芳,离子缔合物二级散射光谱的分析应用Ⅲ.汞(Ⅱ)-硫氰酸盐-罗丹明染 料体系,分析化学,1996,24(5):501-505.
    
    [11]刘绍璞,刘忠芳,硒(Ⅳ)-碘化物-结晶紫体系的共振发光和二级散射光谱,高等学校化 学学报,1996,17(8):1213-1215.
    
    [12]高建华,林鹏,陈彬,毛陆原,Zn(Ⅱ)-硫氰酸盐-罗丹明体系反二级散射光谱法测Zn,冶 金分析,2000,20(4):1-3.
    
    [13]刘绍璞,刘忠芳,铝(Ⅴ)硫氰酸盐-碱性三苯甲烷染料体系的二级散射光谱及其分析应用,西南师范大学学报(自然科学版),1998,24(4):412-417.
    
    [14]Shenghui Fu, Zhongfang Liu, Shaopu Liu, Aoer Y, Study on the resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectra of the interactions of palladium(Ⅱ)-ceftriaxone chelate with anionic surfactants and their analytical applications, Talanta, 2008(75): 528-535.
    
    [15]Huang C. Z., Liu Y., Wang Y. H., Guo H. P., Resonance light scattering imaging detection of proteins with a,b,g ,d-tetrakis (p-sulfophenyl) porphyrin, Anal. Biochem. 2003,321: 236-243.
    
    [16]Ezequiel Vidal, Palomeque E.M., Lista A. G, et al. Anal. Bioanal. Chem., 2003, 376: 38-40.
    
    [17]代小霞,李原芳,黄承志,流动注射.共振光散射联用技术测定注射液中肝素的含量,分 析化学,2005,33(11):1535-1538.
    
    [18]Dongpo Xu, Shaopu Liu, Zhongfang Liu and Xiaoli Hu, Determination of verapamilhydrochloride with 12-tungstophosphoric acid by resonance Rayleigh scattering methodcoupled to flow injection system, Analytica Chimica Acta, 2007,588(1): 10-15.
    
    [19]Lijun Dong, Ying Li, Yaheng Zhang, Xingguo Chen and Zhide Hu,A flow injection samplingresonance light scattering system for total protein determination in human serum, pectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 2007,6(4-5): 1317-1322.
    
    [20]Yanhua Chen, Yuan Tian, Dejiang Gao. Determination of serum albumin in the presence ofpoly(diallyldimethylammonium chloride) by resonance light scattering technique.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4-5):1011-1015.
    
    [21]Yang Liu, Jinghe Yang, Shufang Liu. Resonance light scattering technique for the determinationof protein with rutin and cetylpyridine bromide system. Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy, 2005,61(4): 641-646.
    
    [22]Xiufen Long, Shaopu Liu, Ling Kong, Zhongfang Liu. A study on the interaction of proteinswith some heteropoly compounds and their analytical application by resonance Rayleighscattering method.Talanta, 2004, 63(2): 279-286.
    
    [23]Rutao Liu, Jinghe Yang, Xia Wu and Zengjun Lan. Resonance double light scattering methodfor the determination of proteins with morin-CTMAB.Spectrochimica Acta Part A: Molecularand Biomolecular Spectroscopy, 2002,58(14): 3077-3083.
    
    [24]Hideki Murakawa, Jiro Abe, Atsushi Seki and Hiroaki Takahashi. Resonance CARS andmolecular orbital studies of the binding of bilirubin to human serum albumin.Journal ofMolecular Structure, 1993,297(13): 4148.
    
    [25]Feng P., Hu X. L, Huang C. Z., Determination of Proteins at Nanogram Levels with TheirEnhancement Effects of Resonance Light-Scattering on Quercetin. Anal.Lett., 1999, 32(7):1323-1328.
    
    [26]魏永巨,李克安,童沈阳,蛋白质.铬天青S体系的弹性光散射及其初步分析应用,化学 学报,1998,56(3):290-297.
    
    [27]Xiufen Long, Qiang Miao, Shuping Bi, Desheng Li and Caihua Zhang, Resonance Rayleighscattering method for the recognition and determination of double-stranded DNA usingamikacin, Talanta, 2004,64(2): 366-372.
    
    [28]Rutao Liu, Jinghe Yang and Xia Wu. Interaction of cetylpyridine bromide with nucleic acidsand determination of nucleic acids at nanogram levels based on the enhancement of resonanceRayleigh light scattering. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy, 2002,58(9): 1935-1942.
    
    [29]Rutao Liu, Jinghe Yang, Xia Wu and Changxia Sun, Study on the resonance light scatteringspectrum of berberine-cetyltrimethylammonium bromide system and the determination ofnucleic acids at nanogram levels. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy, 2002,58(3): 457-465.
    
    [30]Rutao Liu, Jinghe Yang, Xia Wu and Tao Wu, Resonance double frequency light scattering ofthe morin-nucleic acid-cetyltrimethylamrnoniurn bromide system and its analyticalapplication.Analytica Chimica Acta, 2001,448(1-2): 85-91.
    
    [31]Huang C. Z., Li Y. F., Shi Y. D., Shu R. L., Assembly of Methylene Blue on Nucleic AcidTemplate as Studied by Resonance Light-Scattering Technique and Determination of NucleicAcids at Nanogram Levels, Bull.Chem. Soc. Jpn., 1999,72: 1501-1504.
    
    [32]Huang C. Z., Li Y. E, Pu Q. H., Lai L. J., Interaction of nile bule sulphate with nucleic acids asstudied by resonance light-scattering measurements and determination of nucleic acids atnanogram levels, Anal. Lett., 1999,32(12): 2395-2398.
    
    [33]Huang C. Z., Li Y. F., Hu X. L., et al., Three-dimensional spectrum of the interactions of nile??blue sulphate with DNA and determination of DNA by light-scattering, Anal. Chim. Acta., 1999,395:187-190.
    
    [34]Wang M., Yang J. H., Wu X., et al., Study of the interaction of nucleic acids with acridine redand CTMAB by a resonance light scattering technique and determination of nucleic acids atnanogram levels, Analytica Chimica Acta, 2000,422:151-158.
    
    [35]Li Z. P., Li K. A., Tong S. Y., Determination of nucleic acids in acidic medium by enhancedlight scattering of large particles, Talanta, 2000,51: 63-70.
    
    [36]胡小莉,刘绍璞,罗红群,曲利本红与氨基糖苷类抗生素相互作用的共振瑞利散射光谱 及其分析应用,化学学报,2003,61(8):1287-1293.
    
    [37]范莉,刘绍璞,杨大成,测定新药雷洛昔芬的曲利本红共振瑞利散射法,分析测试学报, 2003,22(1):27-30.
    
    [38]鲁群岷,刘忠芳,刘绍璞,金纳米微粒作探针共振瑞利散射法测定某些葸环类抗癌药物, 化学学报,2007,65(9):821-828.
    
    [39]刘绍璞,刘忠芳,钼(Ⅴ)-硫氰酸盐-碱性三苯甲烷染料体系的二级散射光谱及其分析应用, 西南师范大学学报(自然科学版),1998,24(4):412-417.
    
    [40]刘绍璞,杨睿,刘忠芳,铬(Ⅵ)-碘化物.维多利亚蓝4R体系的共振瑞利散射和二级散射 及其分析应用,分析化学,1998,26(12):1432-1436.
    
    [41]周贤杰,刘绍璞,银纳米微粒与酚藏花红相互作用的共振瑞利散射光谱研究,西南师范 大学学报(自然科学版),2003,28(2):267-271.
    
    [42]蒋治良,冯忠伟,李芳等,金纳米粒子的共振散射光谱,中国科学.B辑,2001,31(2):183-188.
    
    [43]蒋治良,李芳,梁宏,共振散射光强度与金粒子粒径的关系,高等学校化学学报,2000, 21(10):1488-1490.
    
    [44]蒋治良,冯忠伟,刘庆业等,金纳米粒子的非线性共振散射及光强度函数研究,无机化 学学报,2001,17(3):355-360.
    
    [45]蒋治良,李芳,梁宏,磷钼杂多酸-罗丹明S体系的共振散射光谱研究,化学学报,2000, 58f8):1059-1062.
    
    [46]Liu S.P., Lu M.Y., Luo H.Q., Kong L, J. A Study on Resonance Rayleigh Scattering Spectroscopy of [I_2-Br]-Ethyl Violet System, Southwest China Normal University(Natural Science), 2001, 26(5): 547-550.
    
    [47]杨卓,刘绍璞,刘忠芳,胡小莉,某些酸性三苯甲烷染料与阳离子表面活性剂相互作用 的共振瑞利散射光谱及其分析应用,高等学校化学学报,2004,25(6):1040-1042.
    
    [48]Yang Z., Liu Z. F., Liu S. P., Luo H. Q., Kong L., RRS Method for the Determination of Cationic Surfactants with Bromophenol Blue, Southwest China Normal University(Natural Science), 2004,29(5): 773-776.
    
    [49]陈飒,刘绍璞,罗红群,乙基紫.阴离子表面活性剂体系的共振瑞利散射光谱及其分析应 用,分析化学,2004,32(1):19-24.
    
    [50]王明霞,刘忠芳,胡小莉,刘绍璞,阳离子表面活性剂与四苯硼钠反应的共振瑞利散射 光谱及其分析应用,分析化学,2005,33(10):1427-1430.
    
    [51]刘绍璞,刘忠芳,阳离子表面活性剂-曙红Y体系的二级散射光谱及其在分析化学上的应 用,分析化学,1996,24(6):665-668.
    
    [52]陈国珍,黄贤智,郑朱梓,许金钩,王尊本主编,荧光分析法:第二版,北京:科学出 版社,1990,p502-506.
    
    [53]张保林,王文清,白风莲,蕙醒及黄酮类化合物与人血清白蛋白的结合反应研究,高等 化学学报,1994,15(3):373-378.
    
    [54]张保林,王文清,袁荣尧,蒽醌及黄酮类化合物与牛血清白蛋白结合,化学学报,1994,52: 1213-1217.
    
    [55]陈国珍,荧光分析法[M],北京:科学出版社,1990:p122.
    
    [56]马春琪,李克安,赵凤林,牛血清白蛋白与铬天青S作用机理的研究,化学学报,1997, 57(4):389-395.
    
    [57]易长海,颜承农,上官云凤,苯噻啶与蛋白质作用特征的热力学研究,华中师范大学学 报:自然科学版,2002,36(3):329-332.
    
    [58]Wu P., Brand L., Resonance energy transfer: methods and applications, Anal. Biochem., 1994,218(1): 1-13.
    
    [59]Kasai S., Horie T., Mizuma T., Awazu S, Fluorescence energy transfer study of the relationshipbetween the lone tryptophan residue and drug binding sites in human serum albumin. J. Pharm.Sci., 1987,76(5): 387-392.
    
    [60]马贵斌,杨频,能量转移技术及其在溶液分子的微区结构分析中的应用,化学通报,1993, 23(3):29-32.
    
    [61]张晓威,赵风林,李克安,环丙沙星与牛血清白蛋白相互作用的研究,高等学校化学学 报,1999,20(7):1063-1067.
    
    [62]Plsavento M., Profumo A., Interaction of albumin with a sulphonatedazo dye in acidic solution,Talanta, 1991,38(3): 1099-1103.
    
    [63]Kakin K.A., In Proteins in Human Nutrition (Porter J W G, Rolls B A, eds): 179-193.
    
    [64]Miller J. N., Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc,1979,16(2): 203-208.
    
    [65]鄢远,许金钩,陈国珍,三维荧光光谱法研究蛋白质溶液构象,中国科学(B辑),1997(1): 381-419.
    
    [66]黄孟基,郭新东,王永华,陈晓珍,高效液相色谱法测定月饼中纳它霉素残留,食品与 发酵工业,2006,32(5):121-123.
    
    [67]骆健美,金志华,岑沛霖,RP-HPLC法测定发酵液中纳它霉素含量,中国抗生素杂志, 2004,29(11):653-656.
    
    [68]梁景乐,吕忠良,赵爱华,双波长紫外分光光度法快速测定发酵液中纳它霉素含量,食 品与发酵工业,2007,33(4):126-129.
    
    [69]戴小慧,章建芳,陈龙,硫酸软骨素免疫增强作用研究,中国药业,2006,15(16):16-17.
    
    [70]郭亭,赵建宁,氨基葡聚糖和硫酸软骨素在治疗骨性关节炎中的应用,中国骨伤,2004,17(9): 574-575.
    
    [71]荣晓花,硫酸软骨素在药品和保健食品中的应用,山东食品科技,2004,1:18-19.
    
    [72]牛增元,张小吐,刘钢,孙忠松,反相离子对高效液相色谱法测定硫酸软骨素,化学分 析计量,2002,11(4):7-9.
    
    [73]赵振锋,段钢,高效液相色谱方法中不同色谱柱测定硫酸软骨素的比较,中国生化药物 杂志,2007,28(3):203-204.
    
    [74]潘自国,陶礼萍,李爱珍,硫酸软骨素的RP-HPLC测定,中国医药工业杂志,2007,38(9): 659-661.
    
    [75]胡慧廉,丁乃立,吴莲珍,顶空气相色谱法测定硫酸软骨素中有机溶剂残留,化学分析 计量,2006,15(1):21-23.
    
    [76]高华,刘坤,于兹东,间苯三酚分光光度法测定硫酸软骨素的研究,中国生化药物杂志, 2000,21(5):247-248.
    
    [77]高贵珍,焦庆才,丁一磊,陈雷,天青A分光光度法测定硫酸软骨素含量的研究,光谱 学与光谱分析,2003,23(3):600-602.
    
    [78]施文健,吴秋华,庄奇佳,十六烷基三甲基溴化铵光度滴定法测定硫酸软骨素钠盐,理 化检验化学分册,2003,39(3):147-149.
    
    [79]丁雅勤,孙伟,高瑞芳,吖啶橙分光光度法测定硫酸软骨素含量,中国生化药物杂志, 2006,27(2):68-70.
    
    [80]陈媛媛,蒋治良,李振中,维多利亚蓝B分光光度法测定硫酸软骨素,光谱学与光谱分 析,2006,26(6):1482-1150.
    
    [81]蒋治良,邹明静,梁爱惠,硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光 谱研究及分析应用,化学学报,2006,64(2):111-116.
    
    [82]李继桃,李念兵,罗红群,甲基紫硫酸软骨素共振瑞利散射光谱及其应用,分析测试学 报,2007,26(2):183-186.
    
    [83]李艳平,吴拥军,常佩亮,化学发光法快速测定硫酸软骨素注射液的含量,华西药学杂 志,2007,22(3):331-332.
    
    [84]中华人民共和国药典,2005.Vol Ⅱ(二部):p39.
    
    [85]覃洁萍,莫可,络合-萃取分光光度法测定咳特灵胶囊中扑尔敏的含量,药物分析杂志, 1995,15(3):36-38.
    
    [86]冯宇,赵凤林,童沈阳,马来酸氯本那敏与7,7,8,8四氰基对二次甲基苯醌的荷移反应, 分析化学,2003,31(11):1327-1329.
    
    [87]刘魁,李宝林,四阶导数分光光度法测定感冒通片中马来酸氯苯那敏的含量,华西药学 杂志,2003,18(2):129-131.
    
    [88]Einar Jacobsen, Knut H(?)gberg. Polarographic determination of chlorpheniramine maleate in Pharmaceuticals, Analytica ChimicaActa, 1974,71(1):157-163.
    
    [89]孙素芳,刘国瑞,王喆,马来酸氯苯那敏片的HPLC测定,中国医药工业杂志,2006, 37(9):627-629.
    
    [90]Masashi Yamaguchi, Hisako Monji, Takatsuka Yashiki, Sensitive high- performance liquid chromatographic determination of chlorpheniramine in human serum using column switching, Journal of Chromatography B: Biomedical Sciences and Applications, 1994,661(1):168-172.
    
    [91]唐亚军,谢天尧,扑尔敏对映体的毛细管电泳方波安培分离检测,分析试验室,2002,21(5):??79-82.
    
    [92]陆豪杰,康经武,杨永坛,欧庆瑜,毛细管电泳分离与测定尿液中扑尔敏对映体,分析 化学,1999,27(7):794-797.
    
    [93]左晓春,笪宏远,新一代减肥药-西布曲明,中国临床药理学杂志,2000,16(2):155-157.
    
    [94]T. Radhakrishna, Ch. Lakshmi Narayana, D. Sreenivas Rao., LC method for the determination of assay and purity of sibutramine hydrochloride and its enantiomers by chiral chromatography, Journal of Pharmaceutical and Biomedical Analysis, 2000,22(4):627-639.
    
    [95]权伍英,栾燕,张欣,LC-MS/MS检测减肥保健品中的盐酸芬氟拉明和盐酸西布曲明, 中国卫生检验杂志,2007,17(1):10-12.
    
    [96]Jun Chen, Wei Lu, Qizhi Zhang and Xinguo Jiang, Determination of the active metabolite of sibutramine by liquid chromatography-electrospray ionization tandem mass spectrometry.Journal of Chromatography B, 2003,785(2): 197-203.
    
    [97]秦宗会,谭蓉,蒲利军,江虹,刚果红褪色光度法测定盐酸西布曲明及作用机理研究, 分析化学,2006,34(4),403-406.
    
    [98]秦宗,谢兵,紫外光谱法测定曲美胶囊中的盐酸西布曲明,光谱试验室,2005, 22(5):1025-1027.
    
    [99]Young RC, Ozols RF, Myers CE, The anthraeyeline antineoplastic drugs, N Engl J Med, 1981, 305(3):139-153.
    
    [100]韩锐,肿瘤化学预防及药物治疗,北京:北京医科大学中国协和医科大学联合出版社,1994, 266-272.
    
    [101]Di Marco A, Gaetani M, Scorpinato B, Adriamycin: A new antbiotic with antitumor acti-vity, Cancer Chemother Rep, 1969,53:33-37.
    
    [102]闫继东,辛华,郑雅娟,应用荧光分光光度法测定血清及组织中阿霉素含量,中国试验 诊断学,2007,11(5):596-597.
    
    [103]魏锋,王进通,顾梅英,反相高效液相色谱法测定阿霉素的血药浓度,药物分析杂志, 1995,15(3):16-19.
    
    [104]张洪妍,沈朋,栾连军,一种测定MDR肿瘤细胞内外阿霉素浓度的方法,化学学报, 2004,62(12):1162-1165.
    
    [105]G. De Groot, B. C. A. Tepas and G. Storm, High-performance liquid chromatographic??determination of doxorubicin in tissues after solid phase extraction, Journal of Pharmaceuticaland Biomedical Analysis, 1988,6(6-8): 927-932.
    
    [106]Gerard De Groot, Bernadette C. A. Tepas and Gert Storm. A fast, sensitive determination ofdoxorubicin in rat plasma by solid-phase extraction and reversed-phase ion-pairchromatography,Analytica Chimica Acta, 1989,217:149-156.
    
    [107]J. M. Jacquet, M. Galtier, F. Bressolle and J. Jourdan, sensitive and reproducible HPLC assayfor doxorubicin and pirarubicin, Journal of Pharmaceutical and Biomedical Analysis, 1992,10(5):343-348.
    
    [108]Adrian B. Anderson, Jamie Gergen and Edgar A. Arriaga, Detection of doxorubicin andmetabolites in cell extracts and in single cells by capillary electrophoresis with laser-inducedfluorescence detection, Journal of Chromatography B: Analytical Technologies in theBiomedical and Life Sciences, 2002,769(1): 97-106.
    
    [109]胡劲波,支瑶,李启隆,阿霉素在钴离子注入修饰电极上的电化学行为及其应用,分析 化学,1999,27(11):1280-1283.
    
    [110]孙延一,吴康兵,胡胜水,阿霉素在多壁碳纳米管膜电极上的电化学行为及其分析研究, 分析科学学报,2004,20(1):26-28.
    
    [111]谭学,胡劲波,龚兰新,阿霉素的吸附伏安法研究,分析试验室,1997,16(1):14-18.
    
    [112]杨志洁,刘盛辉,叶建农,方禹之,浸蜡石墨电极伏安法测定抗癌药物盐酸阿霉素,分 析化学,1996,24(4):471-474.
    
    [113]谭学才,李启隆,尚军,阿霉素的示波极谱法,分析化学,24(7):764-767.
    
    [1]陈国珍,荧光分析法)[M],北京科学出版社,1990:p115.
    
    [2]杨频,高飞,生物无机化学原理[M],北京科学出版社,2002:p59.
    
    [3]朱铿,童沈阳,荧光黄与蛋白质相互作用的研究,高等学校化学学报,1996,17(4):539-541.
    
    [4]冯喜增,白春礼,林璋,吖啶橙与牛血清白蛋白的相互结合反应,分析化学,1998,26(2): 154-157.
    
    [5]马春琪,李克安,赵凤林,牛血清白蛋白与铬天青S作用机理的研究,化学学报,1999,57(4): 389-395.
    
    [6]吴丹,徐桂英,光谱法研究蛋白质与表面活性剂的相互作用,物理化学学报,2006, 22(2):254-260.
    
    [1]戴小慧,章建芳,陈龙,硫酸软骨素免疫增强作用研究,中国药业,2006,15(16):16-17.
    
    [2]郭亭,赵建宁,氨基葡聚糖和硫酸软骨素在治疗骨性关节炎中的应用,中国骨伤,2004, 17(9):574-575.
    
    [3]荣晓花,硫酸软骨素在药品和保健食品中的应用,山东食品科技,2004,1:18-19.
    
    [1]刘绍璞,王芬,刘忠芳,胡小莉,盐酸表柔比星与核酸相互作用的共振瑞利散射光谱研 究及其分析应用,化学学报,2007,65(10):962-970.
    
    [2]金同珍,中国药物大词典,北京:中国医药科技出版社,1991,p85.
    
    [1]陈国珍,黄贤智,许金钩,郑朱梓,王尊本,荧光分析法,北京:科学出版社,1990:p26.
    
    [2]Garratt C.J., Hind I.D., Haddock R.E., Single/repeat dose kinetics of sibutramine metabolites in obeses subjects(abstract), J. Clin Pharmacol, 1995,35: 928.
    
    [3]Garratt C.J., Hind I.D., Haddock R.E., Single/repeat dose kinetics of sibutramine metabolites in obeses subjects (abstract), J. Clin Pharmacol, 1995, 35: 927.
    
    [4]魏永巨,刘翠格,赵品,曙红Y的共振光散射与共振荧光,科学通报,2005,8:628-632.
    
    [5]陈国珍,黄贤智,许金钩,等,荧光分析法,北京:科学出版社,1990:p15-23,p236-265.
    
    [6]章燕豪,“物理化学”,上海交通大学出版社,1988,p538.
    
    [7]刘绍璞,蒋治良,孔玲,等.[HgX_2]_n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh 散射光谱.中国科学(B辑),2002,32(6):554-560.
    
    [1]J. Anglister and I. Z. Steinberg , Resonance rayleigh light scattering of some porphyrins in solution: Intensities and depolarization ratios, Chemical Physics, 1983,75(3):443452.
    
    [2]中国大百科全书编辑委员会,中国大百科全书生物学Ⅱ,中国大百科全书出版社,北京,1991,p1374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700