阴离子表面活性剂与纤维素衍生物的瑞利散射光谱研究及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Study on the Rayleigh Scattering Spectra of Anionic Surfactant and Cellulose Derivatives and Their Analytical Application
  • 作者:陈飒
  • 论文级别:硕士
  • 学科专业名称:分析化学
  • 学位年度:2002
  • 导师:刘绍璞
  • 学科代码:070302
  • 学位授予单位:西南师范大学
  • 论文提交日期:2002-04-01
摘要
瑞利散射是入射光波长等于散射光波长,而且散射微粒远小于入射波长的一种弹性散射。当散射光位于或接近于分子吸收带时,其散射强度偏离I∝1/λ~4的瑞利定律,并且在某些波长出的散射强度大大提高,这个现象称为共振瑞利散射(resonance Rayleigh scattering,RRS)或共振增强瑞利散射(resonance enhanced Rayleigh scattering,RERS)。
     本文简述了瑞利散射和共振瑞利散射的基本性质及其在科学研究中的应用,回顾了它的发展历程,重点介绍了共振瑞利散射的理论基础、应用现状和新发展。并用以下五种体系为例,研究了阴离子表面活性剂和纤维素衍生物(硝化纤维素和羧甲基纤维素钢)及其反应产物的瑞利散射及共振瑞利散射光谱特征及分析应用。
     1.阴离子表面活性剂-阳离子表面活性剂体系
     在pH4.0-4.8的HAc-NaAc缓冲溶液中,当阳离子表面活性剂(CS)因静电引力和疏水作用力与阴离子表面活性剂(AS)形成离子缔合物时,将产生强烈的瑞利散射信号。试验了6种阳离子表面活性剂与3种阴离子表面活性剂的相互作用,它们均具有相似的瑞利光谱特征,其最大散射波长均位于277nm,并且在一定范围内,阴离子表面活性剂的浓度与散射强度成正比。方法均有高灵敏度,对于不同体系检测限在19.1ng/mL至85.0mg/mL之间。其中以氯化十六烷基二甲基苄铵(BCDAC)-AS体系最灵敏,其检出限分别为19.7ng/mL(十二烷基硫酸钠,SDS),35.9ng/mL(十二烷基苯磺酸钠,SDBS),36.9ng/mL(十二烷基磺酸钠,SLS)。方法也有较好的选择性,可用于痕量阴离子表面活性剂的测定。文中研究了离子缔合反应的适应条件、影响因素、分析化学性质,并讨论了Na_2SO_4的增敏作用。方法用于合成水样及实际水样的分析,结果满意。对反应机理也进行了初步的探讨。
    
     阴离子表面活性剂与纤维素衍生物的瑞利散射光谱研究及其分析应用
    2.乙基紫-阴离子表面活性剂体系
     在弱酸性介质中,乙基紫(EVX结晶紫K、甲基紫(MV卜甲基绿(MeX亮绿(GB。
    孔雀石绿(MG)等碱性三苯甲烷类染料(BTPMD俏与阴离子表面活性剂(A)反应形成离
    子缔合物,并导致共振瑞利散射不同程度的增强,并产生新的RRS光谱,其中以乙基
    紫最好,结晶紫和甲基紫次之,甲基绿、亮绿和孔雀石绿作用微弱。因此本文以乙基紫
    为例,研究了它与三种阴离于表面活性剂的作用。结果表明反应产物的最大RRS峰位
    于 330urn和 508urn,同时反应产物还能产生明显的二级散射和倍频散射。方法有很高
    的灵敏度,对于AS 的检出限分别为l.lug/mL(SDBS、2.sng/mL(SDS和
    269卫咖L侣LS),可用于痕量AS的测定。文中研究了离于缔合反应的适宜条件,讨论
    了离子强度、有机溶剂、温度的影响,考察了方法的线性范围和选择性。此法用于合成
    水样和环境水样中阴离子表面活性剂的测定,获得满意的结果。
    3.阳离子表面活性剂对碱性三苯甲烷染料-阴离子表面活性剂体系RRS的增敏作用及
    其分析应用
     实验表明,适量的阳离子表面活性剂的存在对于MV、CV、MeG、GB及MG有强
    增敏作用。这可能是阳离子表面活性剂与碱性三苯甲烷类染料和阴离子表面活性剂发生
    了协同作用。试验了5种阳离子表面活性剂,发现增敏程度不同,其中以BCDAC和
    Zeph增敏效果最好,可使上述 5种二元离子缔合体系的散射强度提高 0.7亿.8倍,因
    此适宜于对痕量AS的测定,文中试验了不同阳离子表面活性剂对于不同二元体系ngs
    光谱特征的影响,研究了它们适宜的反应条件,各种影响因素,方法的灵敏度和选择性
    等分析性质。方法用于合成水样、环境水样中AS的测定,获得满意的结果。文中还对
    有关反应机理进行了初步的讨论。
    4.在不同溶剂中的硝化纤维素的吸收光谱和瑞利散射光谱研究
     研究了硝化纤维素州C)在丙酮K 厂 乙酸丁酯田lltyl MCtatC厂 乙胎
    (Acetonitrile、四氢峡哺(Tetrahydro阶an,THFX二甲亚冽Dimethyl Sulfoxide,DMSOX
    乙酸(Aceti acid卜乙醚-乙醇(Diethvl Ether-Alcohol*)七种溶剂中的紫外吸收和瑞利散
    射光谱。除丙酮体系以外,随着NC浓度的增加,NC在不同溶剂中的吸光度增强,吸
    收波长发生明显红移,在一定波长下,NC的浓度与M存在线性关系。NC在上述七种
    溶剂中的瑞利散射强度明显增强,RS峰向长波方向移动。水的加入可大大提高NC-丙
    酮体系的瑞利散射强度。利用硝酸纤维素溶于一定溶剂中能产生瑞利散射增强的信号,
    建立了简单、快速检测NC的分析方法,用于测定实际样品(胶棉液)和合成样,结果
    令人满意。
    
     摘 要
     — —
     5.梭甲基纤维素钠-叮晖类染料体系的吸收、荧光和共振瑞利散射光谱研究
     在中性或弱碱性条件下,梭甲基纤维素钠(CMC)与叮陡黄(AYX叮咤橙(AO形成的
     离子缔合物,使染料褪色,最大褪色波长分别位于 434urn叮咤黄体系贞 488urn仆陡橙
     体系);荧光发生狩灭,AY和 AO体系的入e
Rayleigh scattering (RS) is an elastic scattering with the scattering wavelength being equal to the incident wavelength(A,j) and the scattering particle being much smaller than A.J. When the scattering wavelength is close to or situated on the molecular adsorption band, the scattered intensity deviates from 11 A/ dependence and becomes quite large at some wavelength. This phenomenon is known as resonance Rayleigh scattering (RRS) or resonance enhanced Rayleigh scattering (RERS).
    This dissertation introduced the elementary properties of Rayleigh scattering and resonance Rayleigh scattering and their applications in scientific research, reviewed the developing course of this technique and discussed mainly the theoretical basement and recent development of studying RS &RRS spectra, the present situation of application and the development of RS or RRS as analytical technique. Then, taking the following five systems including anionic surfactant and cellulose derivatives such as nitro-cellulose (NC), sodium Carboxymethyl cellulose (CMC) as well as reaction product for the examples, this dissertation studied the spectral characteristics, the affecting factors, the properties of analytical chemistry and their analytical application.
    1. Anionic Surfactant-Cationic Surfactant mixtures systems
    In pH4.0-4.8 acetic acid-sodium acetate buffer medium, the SDS, SDBS and SLS and cationic surfactants such as Cetylpyridinium bromide(CPB), Tetradecane pyridinium bromide (TPB), Hexadecyl pyridinium chlorid (CPC), Tetradecyldimethyl benzylammonium chloride (Zeph), Benzyl-dimethyl-hexadacylammonium chlorid (BCDAC), Cetyl trimethylammonium bromide (CTAB) by virtue of electrostatic forces and hydrophobic interaction can lead to the great enhancement of RS intensity. The Rayleigh scattering spectra of the six systems are
    
    
    similar and the maximum RRS peaks are located at 277nm. The concentration of AS is proportional to scattered intensity in specified range. The method for anionic surfactants has high sensitivity and the detection limits of the six systems are between 19.1ng/mL and 85.0ng/mL. Among them, the BCD AC-AS systems are the most sensitive. The detection limits is 19.7ng/mL for SDS, 35.9ng.mL for SDBS and 36.9ng/mL for SLS. This dissertation investigated the suitable reaction conditions and affecting factors as well as the relation between AS concentration and scattered intensity, and discussed sensitized effect of Na2SO4.The effect of some coexisting substance was investigated and the method was applied to the determination of anionic surfactant with BCDAC in environmental water sample and in synthetic sample with satisfactory results. This dissertation discussed reaction mechanism and cause of enhancement of Rayleigh scattering.
    2. Ethyl Viqlet -Anionic Surfactant systems
    In weak acid media, the anionic surfactants reacts with basic triphenylmethane dyes (BTPMD) such as Ethyl Violet, Crystal Violet, Methyl Violet, Methyl Green, Brillant Green, Malachite Green to form ion-association complexes. The formation brings about an increase of scattered intensity depending on different dyes and new scattering peaks. The sensitivity order is EV>MV>CV>MeG>GB>MG. Taking EV-AS systems for example, we studied the interaction of EV and three kinds of anionic surfactants. The result shows that there are two scattering peaks such as 330nm and 508nm in resonance Rayleigh scattering spectra. At the same time, the reaction product has second-order-scattering and double frequency scattering spectra. This method has fairly high sensitivity, and the detection limit for SDBS is l.lng/mL, 2.5ng/mL for SDS, 269.1ng/mL for SLS. This dissertation investigated the suitable reaction conditions and affecting factors as well as the relation between anionic surfactant concentration and scattered intensity, and discussed mainly the influence of ion strength, organic solvent and temperature. The effect of some coexisting substance was investigated and the method was used successfully to the determination of trace amounts of anionic surfactant in
引文
1 章燕豪主编,物理化学,上海交通大学出版社,上海,1988:p537
    2 Bohren, C. F., Huffman, D. R., Absorption Scattering of Light by Small Particals, John Wiley and Sons, New York, 1983:p.4
    3 吴国祯编著,分子振动光谱学:原理与研究,清华大学出版社,北京,2001:p112
    4 Young, A. T., Phys. Today, 1982, 1:42
    5 印永嘉,李大珍,物理化学简明教程(下册),人民教育出版社,北京,1980:p132
    6 Miller G. A., J. Phys. Chem., 1978, 82(5): 616
    7 Lempert, W. and Wang, C. H.; J. Chem. Phys., 1980, 72(6): 3490
    8 Burchard, W., Biochem. Soc. Trans., 1991, 19:478
    9 Hulburt, E. O., J. Opt. Soc. Amer., 1941, 31:467
    10 Strzalkowski, A., Acta Astronomica (Warszawa), 1955, 5:95
    11 Kuiper, G. P., The atmospheres of the Earth and Planets (2nd ed.), Chap. 12, Univ. of Chicago press, Chicago, 1952
    12 Debye, P., d. Appl. Phys., 1944, 15:388
    13 钱人元,施良和,史观一.化学学报,1957,23:215
    14 应琦宗,陈国庆,黄丽荣.高分子通讯,1981,1:24
    15 Tanford, c., Physical Chemistry of Macromolecules, John Wiley and Sons, Inc., New York and London, 1961: p.275-316
    16 Huglin, M. B., Pure and Appl. Chem., 1977, 49:929
    17 Verbist, T. et al., Proc. SPIE-Int-Soc. Opt. Eng., 1991, 1775(Nonlinear optical Properties of Organic Materials V.): 206
    18 Tupitsyn, V.P. et al., Khim. Tekhnol., 1988, 31(11): 50
    19 Blaszczak, Z., Acta. Phys. Pol. A., 1985, A 68(4): 629
    20 Shu Zhen Zhang; Feng Lin Zhao; Ke An Li; Shen Yang Tong. Anal. Chim. Acta, 431(2001),133-139
    
    
    21 Chun Qi Ma, Ke An Li, Shen Yang Tong, Bull. Chem. Soc. Jpn, 1997,70,129-133
    22 Gong Yao, Ke An Li, Shen Yang Tong, Talanta, 1999, 50: 585-594
    23 Yao G., Li K.A., Tong S. Y. Anal.Chim. Acta, 1999, 398, 319-327
    24 Chun Qi Ma, Ke An Li, Shen Yang Tong, Anal. Chim. Acta, 1997, 338,255-260
    25 Stanton, S. G. and Pecora, R., J. Chem. Phys., 1981, 75(12) : 5615
    26 Placzek, G. in Handbuch der radiology, Vol. VI, edited by Marx, E.,(akademische Verlagsfesellschaft, Leipzig, 1934) ,part2: p205-374.
    27 Bauer, D. R., Hudson, B. and Pecora, R., J. Chem. Phys., 1975, 63(1) :588
    28 Hlgashlgakl, Y, Christensen, D. H. and Wang, C. H., J. Phys. Chem., 1981, 85: 2531
    29 Pasternack, R. F. and Ceilings, P. J., Science, 1995, 269: 935
    30 Massing, S. and Mortensen, O. S., J. Chem. Phys., 1980, 73: 1078
    31 Mortensen, O. S. and Hassing, S., in Advances in Infrared and Raman Spectre-scopy, ed. By Clark, R. J. H. and Hester, R. E. (Heyden, London, 1980) , Vol. 6: p.1
    32 Nester, J. and Spiro, T. G., J. Raman Spectrosc., 1973, 1: 543
    33 Anglister, J. and Steinberg, I. Z., Chem. Phys. Lett., 1979, 65(1) : 50; Anglister, J. and Steinberg, I. Z.,J. Chem. Phys., 1983, 78(9) : 5358
    34 Liu S. P., Liu Z. F., Spectrachim. Acta, 1995, 51A, 1497-1500
    35 Rubio, S., Gomez-Hens, A. and Valcarce, M., Talanta, 1986, 33: 633
    36 Imasaka, T., Tsukamoto, A. and Ishibash, N., Anal.Chem., 1988, 60: 1326
    37 中国大百科全书编辑委员会,中国大百科全书生物学Ⅱ,北京,中国大百科全书出版社,1991: p.1374
    38 Pasternack R. F., Bustamante C. Ceilings P. J., Giannetto A. Gibb E., J. Am. Chem. Soc., 1993, 115:5393
    39 Huang C.Z., Li K.A., Tong S.Y., Bull. Chem. Soc. Jpn., 1997, 70: 1843-1849
    40 Pasternack R. F., Schaefer K.F., Hambright P., Inorg. Chem., 1994, 33: 2062-2065
    41 Parkash J., Robblee J.H., Agnew J., et al., Biophys. J., 1998, 74: 2089-2099
    42 Micali N., Scolaro L.M., Romeo A., et al., Physica A, 1998, 249: 501-510
    43 Purrello R., Bellacchio E., Gurrieri S., et al., J. Phys. Chem. B, 1998, 102: 8852-8857
    44 Casamento M., Arena G.E., Lo Passo C. et al., Inorg. Chim. Acta, 1998, 276: 242-249
    45 Huang C Z., Li Y. F., Liu X. D., Anal Chim Acta, 1998, 375: 89
    46 达毛拉 杰力里,黄承志,分析化学, 1999, 27(10) : 1204
    
    
    47 Huang Cheng Zhi, Li Yuan Fang, Huang Xin Hua et al., Acta Phys.-Chim. Sin., 2001, 17(3):222-228
    48 黄新华,李原芳,奉萍等,分析化学,2000,28(6):682-686
    49 Huang C. Z., Li Y. F., Shi Y. D., Shu R. L., Bull. Chem. Soc. Jpn., 1999, 72:1501
    50 Wang Y. T., Zhao F. L., Li K. A., Tong S. Y., Anal. Chim. Acta., 1999, 396:75
    51 向海艳,陈小明,李松青,分析化学,2000,28(11):1398-1401
    52 Hang C Z., Li Y. F., Pu Q. H., Lai L. J., Anal. Letter, 1999, 32(12): 2395
    53 Hang C Z., Li Y. F., Hu X. L., Li N. B., Anal. Chim. Acta, 1999, 395:187
    54 李天剑,沈含熙,高等学校化学学报,1998,19(10):1570
    55 刘绍璞,龙秀芬,胡小莉,范莉,西南师范大学学报(自然科学版),2001,26(2),164-169
    56 刘绍璞、胡小莉、罗红群等,中国科学(B辑),32,2002(1):18-25
    57 Yuan Fang Li, Wei Qun Shu, Ping Feng et al., Anal. Sci., 2001, 17:693-696
    58 Ma C. Q., Li K. A., Tong S. Y., Anal. Biochem., 1996, 239(1): 86-91
    59 Ma C. Q., Li K. A., Tong S. Y., Fresen. J. Anal. Chem., 1997, 357:915-920
    60 魏永巨,李克安,童沈阳,化学学报,1998,56:290-297
    61 胡小莉,奉萍,李原芳,西南师范大学学报(自然科学版),1998,23:561-566
    62 Ma C Q, Li K A, Tong S Y., Bull. Soc. Jpn., 1997, 70:129-133
    63 Ma C. Q., Li K. A., Tong S. Y., Analyst, 1997, 122:361-364
    64 Guo Zhongxian, Shen Hanxi. Anal. Chim. Acta, 2000, 408:177
    65 Shaopu Liu, Rui Yang, Qin Liu, Anal. Sci., 2001, 17:243-247
    66 Liu S. P., Liu Q., Anal. Sci., 2001, 17 (2): 239-242
    67 刘绍璞,范莉,龙秀芬,胡小莉,西南师范大学学报,2001,26(3):293~296
    68 范莉,刘绍璞,龙秀芬,胡小莉,分析化学,2002,30(1):81-85
    69 杨睿、刘绍璞、龙秀芬,西南师范大学学报,1999,24(2):179-182
    70 Feng Ping, Hu Xiaoli, Huang Chengzhi., Anal. Lett., 1999, 32(7): 1323-1338
    71 杨睿,西南师范大学硕士学位论文,1999
    72 Shaopu Liu; Hongqun Luo; Niangbing Li; et. al., Anal. Chem., 2001, 73(16): 3907~3914
    73 Luo Hongqun, Liu Shaopu, Liu Zhongfang et al., Anal Chem. Acta, 2001, 449:261-270
    74 Liu S. P., Liu Z. F., Zhou G. M., Anal. Lett., 1998, 31(7): 1247-1259
    75 Liu S. P., Liu Q., Liu Z. F. et al., Anal Chim. Acta, 1999, 379:53-61
    76 Liu S. P., Liu Z. F., Huang C. Z., Anal Sci., 1998, 14:799-802
    
    
    77 刘绍璞,周光明,刘忠芳,高等学校化学学报,1998,19:1040-1044
    78 S. P. Liu, Z. F. Liu, H. Q. Luo, Anal. Chim. Acta, 2000, 407:255-260
    79 刘芹,西南师范大学硕士研究生论文,1998,p39
    80 Cao Q E, Zhao Y K, Yao X J., Hu Z D, Xu Q. H, Anal Lett, 2001, 34(5): 773
    81 Cao Q E, Zhao Y K, Yao X J., Hu Z D, Xu Q. H, Spectrochim, Acta Part A, 2000, 56:1319-1327
    82 蒋治良,李芳,梁宏,化学学报,2000,58(8):1059-1062
    83 Oshima M., Goto N., Susanto J. P., Motomizus, Analyst, 1996, 121(8): 1085
    84 Liu S. P., Feng P., Mikrochim. Acta (In press)
    85 胡小莉,西南师范大学硕士学位论文,2001
    86 Liu S. P., Zhang Z. Y., Luo H. Q., Anal. Sci. (in press)
    87 Fan L., Liu S. P., Yang D. C., Hu X. L., Chinese Chem. (in press)
    88 刘绍璞;刘忠芳;李明,化学学报,1995,53,1185-1192
    89 刘绍璞,刘忠芳,李明,分析化学,1996,28(5),501-505
    90 刘绍璞,刘忠芳,李明,化学学报,1995,53,1178-1184
    91 刘绍璞、刘忠芳、蒋治良、李明、龙秀芬,化学学报,2001,11:1864-1869
    92 高建华,林鹏,陈彬,毛陆原,冶金分析,2000,20(4):1
    93 刘绍璞,刘忠芳,西南师范大学学报(自然科学版),1998,24(4):412
    94 刘绍璞,杨睿,分析化学,1998,26(12):1432
    95 蒋治良,冯忠伟,刘庆业等,无机化学,2001,17(3),355-360
    96 蒋治良,光子学报,2001,30:460
    97 蒋治良 钟福新,李芳,化学学报,2001,59(3):438-441
    98 梁宏,沈星灿,蒋治良,中国科学(B辑),2000,30(5):560~566
    99 谢齐运,蒋治良,物理化学学报,2001,17(5):406-411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700