纳米Fe_2S_3和纳米CoS与明胶蛋白质的原位相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,纳米粒子生物效应研究工作的内容主要是从生物整体水平、细胞水平、分子水平以及环境等几个层面开展开来的。分子水平上研究,能更好地解释纳米材料与生物大分子作用的本质。本文首次研究了纳米Fe_2S_3和纳米CoS与明胶蛋白质的原位相互作用,主要内容如下:
     1、在明胶介质中合成了水溶性纳米Fe_2S_3和纳米CoS。
     2、利用紫外–可见吸收光谱(UV–Vis)研究了纳米Fe_2S_3和纳米CoS原位键合作用。结果表明,粒子原位键合作用的拟合方程符合准一级反应动力学方程,并求得准一级反应的表观活化能、表观指数前因子及活化热力学参数;根据Lineweave-Burk方程计算了纳米粒子与明胶蛋白原位作用的键合常数K以及对应温度下反应的热力学参数。
     3、利用常规荧光光谱、同步荧光光谱和共振荧光光谱研究了纳米Fe_2S_3和纳米CoS与明胶蛋白的原位作用,实验发现在明胶溶液中纳米粒子的生成对明胶蛋白的内源荧光有较强的猝灭作用。依据Stern-Volmer方程、Scatchard方程和Van’t Hoff方程详细研究计算了纳米粒子与明胶蛋白结合的作用机制(包括荧光猝灭机理和结合常数),推测了主要作用力类型。研究同时表明,纳米粒子对明胶蛋白同步荧光光谱和共振光散射光谱的数据也可以定量计算原位作用的猝灭常数、猝灭速率常数、结合常数和热力学参数。根据F?rster的偶极-偶极非辐射能量转移原理计算了供体-受体间距离r,其值均小于7 nm,发生分子内的非辐射能量转移。
     4、应用同步荧光光谱和三维荧光光谱研究了纳米Fe_2S_3和纳米CoS与明胶蛋白发生反应后明胶蛋白构象的变化。结果表明,纳米Fe_2S_3和纳米CoS改变了明胶蛋白分子中荧光基团所处的微观环境,同时,当纳米粒子增加到一定浓度的时候,明胶蛋白的荧光峰被猝灭完全,此时明胶蛋白质的结构几乎完全被破坏,说明纳米Fe_2S_3和纳米CoS对蛋白质结构有很大的影响。
Currently, the research on biological effects of nanoparticles is mainly fromthe biological overall level, cellular level, molecular level, and the environmentlevel and so on. At the molecular level, we can better explain the essence of theinteraction between nano-materials and biological macromolecules. The thesis firststudy the in-situ interaction between the nano-Fe_2S_3 and nano-CoS with gelatinprotein, The main points as follows:
     1. Nano-Fe_2S_3 and nano-CoS were prepared in the gelatin solution.
     2. The in-situ interaction between the nano-Fe_2S_3 and nano-CoS wereinvestigated by means of UV-visible absorption spectra (UV-Vis). Theexperimental results show that the fitted equation of in-situ interaction of thenanoparticles followed the pseudo-first-order reaction, obtaining the apparentactivation energy, apparent pre-exponential factor and thermodynamic parametersof activation. According to the Line weave-Burk equation, the constant (K)and thethermodynamic parameters in corresponding temperature were obtained.
     3. The in-situ interaction of gelatin protein with the nano-Fe_2S_3 and nano-CoShas been studied using fluorescence spectroscopy, synchronous fluorescencespectroscopy and magnetic resonance fluorescence spectroscopy. It has been foundthat the formation of nanoparticles has a strong ability on the fluorescencequenching of the gelatin protein in the gelatin solution. The fluoreseencequenching mechanisms, the binding constants and the main interaction foreeinvolving in the interaction of nanoparticles and gelatin proteins were confirmedby Stern-Volmer equation, Scatchard equation and Van’t Hoff equation.The studyalso shows that the data of synchronous fluorescence spectroscopy and resonancerayleigh light scattering spectra, which is from the action of nano-Fe_2S_3 andnano-CoS on the gelatin protein, is also suitable for the research on quenchingconstants, bimolecular quenching rate constants, reaction constants (K) andthemodynamics parameters. According to F?rster’s the energy transfer theory ofdipole-dipole non-radiative, we calculate that the distance r between the donor and acceptor is less than 7 nm and the non-radiative energy transfers within molecule.
     4. The conformation of gelatin protein were studied using synchronousfluorescence spectra and fluorescence spectra of three-dimensional. The resultsshow that the nano-Fe_2S_3 and nano-CoS change the micro-environment of gelatinprotein, in which when the nanoparticles increase to a certain concentration, thefluorescence of gelatin protein will be completely quenched. It indicates that thestructure of gelatin protein is almost destroyed completely, which is an evidencethat Nano-Fe_2S_3 and Nano-CoS can create great influence on the structure ofprotein.
引文
[1]牟季美,张立德.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]徐云龙,赵崇军,钱秀珍.纳米材料科学导论[M].上海:华东理工大学出版社,2008.
    [3] Shi F, Deng Y Q. Preparation and characterization of polymer immobilized nano-Aucatalysts for oxidative carbonylation of aniline and its derivatives[J]. Sci. Tech. Cata. , 2003,145: 193?196.
    [4] Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A and Yang P Y. Morphologicalcontrol of catalytically active platinum nanocrystals[J]. Angew. Chem. Int. Ed. , 2006,118(46): 7988?7992.
    [5] Tsang S C, Chen Y K, Harris P J F, Green M L H. A simple chemical method of openingand filling carbon nanotubes[J]. Nature, 1994, 372(10): 159?162.
    [6] Nakamura S, Mukai T, Senoh M. Candela–class high–brightness InGaN/AIGa double–heterostructure-blue–light–emitting diodes[J]. Appl. Phys. Lett. , 1994, 64(13): 1687–1689.
    [7] Eychmüller A. Structure and photophysics of semiconductor nanocrystals[J]. J. Phys.Chem. B, 2000, 104(28): 514–518.
    [8] HalPerin W. Quantum size effects in metal partieles[J]. Rev. Mod. Phys. , 1986, 58(3): 533-60.
    [9] Nakamura S. FirstⅢ–V–nitride–based violet laser diodes[J]. J. Cryst. Growth. , 1997,170(l–4): 11–15.
    [10] Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phasesyntheses of inorganic nanoparticles[J]. Chem. Rev. , 2004, 104(9): 3893–3946.
    [11] Che G L, Lakshmi B B, Fisher E R, Martin C R. Carbon nanotubule membranes forelectrochemical energy storage and production[J]. Nature, 1998, 393(28): 346–349.
    [12] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O and Ryoo R. Ordered nanoporous arraysof carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412:169–172.
    [13] Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, EislerH J and Bawendi M G. Optical gain and stimulated emission in nanocrystal quantum dots[J].Science, 2000, 290(5490): 314–317.
    [14] Wang Z L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-Frommaterialsto nanodevices[J]. Adv. Mater. , 2003, 15(5): 432–436.
    [15] Wang Z L. Characterizing the structure and properties of individual wire-like nanoentities[J].Adv. Mater. , 2000, 12(17):1295–1298.
    [16] Phillips J. Evaluation of the fundamental properties of quantum dot infrared detectors[J].J.Appl. Phys. , 2002, 91: 4590–4594.
    [17]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.
    [18] Wang Q G, Peng R R, Xia C R, Zhu W and Wang H T. Characteristics of YSZ synthesizedwith a glycine-nitrate proeess[J]. Ceram. Int. , 2008, 34(7): 1773-1778.
    [19] Yi C, Qingqiao W, Hongkun P and Charles M L. Nanowire nanosensors for highly sensitiveand seleetive detection of biological and chemical species[J]. Science, 2001, 293(5533):1289-1292.
    [20] Xin X S, LüZ, Ding Z H, Huang X Q, Liu Z G, Sha X Q, Zhang Y H and Su W H.Synthesisand characteristics of nanocrystalline YSZ by homogeneous precipitation and its electricalproperties[J]. J. Alloys Compd. , 2006, 425(1-2): 69-75.
    [21] Wolfe D E, Singh J. Titanium carbide coatings deposited by reactive ion beam-assisted,electron beam-physical vapor deposition[J]. Surf. Coa. Technol. , 2000, 124(2): 142-153.
    [22] Butz B, St-rmer H, Gerthsen D, Boekmeyer M, Krüger R, Ivers-Tiffée E and Luysberg M.Microstructure of nanocrystalline yttria-doped zireonia thin films obtained by Sol-Gelprocessing[J]. J. Am. Ceram. Soc. , 2008, 91(7): 2281-2289.
    [23]蒋华麟,陈萍华.溶胶-凝胶法制备纳米材料研究进展[J].广东化工,2011,37(11):262-264.
    [24] Liu C P, Li M W, Zhong C, Huang J R, Tian Y L, Tong L and Mi W B. Comparative studyof magnesium ferrite nanocrystallites prepared by sol-gel and coprecipitation methods[J]. J.Mater. Sci. , 2007, 42(15): 6133-6138.
    [25] Switzer J A, Shnae M L, PhilliPs R. Observational constraints on the global atmosphericCO_2 budget[J]. Science, 1990, 247(4949): 1431-1438.
    [26] Pyrz W D, Park S, Blom D A, Buttrey D J and Vogt T. High-angle annular dark-fieldscanning transmission electron microscopy investigations of bimetallic nickel bismuthnanomaterials created by electron-beam-induced fragmentation[J]. J. Phys. Chem. C, 2010,114(6): 2538–2543.
    [27] Chen Z W, Li S, Yan Y S. Synthesis of template-free zeolite nanocrystals by reversemicroemulsion-microwave method[J]. Chem. Mater. , 2005, 17(9): 2262-2266.
    [28] Piao L Y, Liu X Z, Mao L J, Ju S T. Preparation of nano-alumina by reverse microemulsionmethod[J]. Acta. Phys. Chim. Sin. , 2009, 11: 2232-2236.
    [29] Suslick K S, Choe S B, Cichowals A A and Grinstaff M W. Sonochemical synthesis ofamorphous iron[J]. Nature, 1991, 353(6343): 414-416.
    [30] Krishna C M, Kondo T, Riesz P. Sonochemistry of alcohol-water mixtures. spin-trappingevidence for thermal decomposition and isotope-exchange reactions[J]. J. Phys. Chem. ,1989, 93(13): 593-596.
    [31] Zheng X, Xie Y, Zhu L, Jiang X and Yan A. Formation of vesicle-templated CdSe hollowspheres in an ultrasound-induced anionic surfactant solution[J]. Ultrason. Sonochem. , 2002,9(6): 311-316.
    [32] Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolytesemiconductornanoparticle composite Films[J]. J. Phys. Chem. , 1995, 99(35): 13065-13069.
    [33] Kumari L, Li W Z, Wang D Z. Monoclinic zirconium oxide nanostructures synthesized by ahydrothermal route[J]. Nanotechnology. 2008, doi:10.1088/0957-4484/19/195602.
    [34] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology[J]. Chem. Rev. , 2004, 104(l): 293-346.
    [35] Liu J W, Shao M W, Chen X Y, Yu W C, Liu X M and Qian Y T. Large-scale synthesis ofcarbon nanotubes by an ethanol thermal reduction process[J]. J. Am. Chem. Soc. , 2003,125(27): 8088-8089.
    [36] Sampanthar J T, Jian D, Gan G J. Template-free low temperature hydrothermal synthesisand characterization of rod-shaped manganese oxyhydroxides and manganese oxides[J].N-anotechnology, 2007, doi: 10.1088/0957-4484/18/2/025601.
    [37] Yan H Q, He R R, Johnson J, Law M, Saykally R J and Yang P D. Dendritic nanowireultraviolet laser array[J]. J. Am. Chem. Soc. , 2003, 125(16): 4728-4729.
    [38] Steinfeld J I. Laser Induced Chemical Process[M]. New York: Plenum Press, 1981.
    [39]彭必先,陈丽娟.从胶原到明胶[J].明胶科学与技术,1994,14(1):1-11.
    [40]肖文君.胶原水解物及其生物学价值[J].明胶科学与技术,2010,30(3):157-165.
    [41] Ward A G, Courts A. The science and technology of gelatin[M]. New York:Academic, 1977.
    [42] Terao K, Karino T, Nagasawa N, Yoshii F, Kubo M and Dobashi T. Gelatin microspherescrosslinked with X-ray: preparation, sorption of proteins, and biodegradability[J]. J. Appl.Polym. Sci. , 2004, 91: 3083-3087.
    [43]张换换,李明霞,李文飞,刘军海.明胶的制备及其在日用化学品中的应用[J].中国洗涤用品工业,2010,3:48-50.
    [44]缪进康.明胶及其在科技领域中的利用[J].明胶科学与技术,2009,29(1):28-49,51.
    [45]陈丽清,马良,张宇昊.现代加工技术在明胶制备中的应用展望[J].食品科学,2010,31(19):418-421.
    [46]贾冬英,王文贤,姚开,张铭让.胶原蛋白多肽功能特性的研究[J].食品科学,2001,22(6):21-24.
    [47] Harris P. Food Gel[M]. London and Newyork: Elaevier Applied Science, 1990.
    [48]李芳,王全杰,侯立杰.明胶微胶囊的应用现状与发展趋势[J].中国皮革,2011,4(1):43-46,54.
    [49]彭必先,改革开放以来中国明胶事业的发展[J].感光材料,1993,6:10-14.
    [50] Service R F. Nanomaterials show signs of toxicity[J]. Science, 2003, 300(5617): 243.
    [51] Brumfiel G. A little known knowledge[J]. Nature, 2003, 424(6946): 246–248.
    [52] Borm P J, Kreyling W. Toxicological hazards of inhaled nanoparticles-potential implicationsfor drug delivery[J]. J. Nanosci. Nanotechnol. , 2004, 4(5): 521-531.
    [53] BéruBéK, Balharry D, Sexton K, Koshy L and Jones T. Combustion-derived nanoparticles:mechanisms of pulmonary toxicity[J]. Clin. Exp. Pharmacol Physiol. , 2007, 34(10):1044-1050.
    [54] Lok C N, Ho C M, Chen R, He Q Y, Yu W Y, Sun H Z, Tam P K H, Chiu J F and Che C M.Protean is analysis of the mode of antibacterial action of silver nanoparticles[J]. J.Protecme Res. , 2006, 5(4): 916-924.
    [55] Zhu S Q, Oberd-rster E, Haasch M L. Toxicity of an engineered nanoparticle(fullerene, C60)in two aquatic species daphnia and fathead minnow[J]. Mar. Environ. Res. , 2006, 62(1):5-9.
    [56] Oberdistor E. Induce oxidative manufactured nanomaterials stress in the brain ofjuvenilelarge mouth bass[J]. Environ. Health Perspect. , 2004, 112(10): 1058-1062.
    [57] Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for gram-negative bacteria[J]. J. Colloid Interface Sci. , 2004, 275(1):177-182.
    [58] Yang L, Walts D J. Particle surface characteristics may play an important role in phytoxicityof alumina nanoparticles[J]. Toxicol. Lett. , 2005, 158(2): 122-132.
    [59] Oberd-rster E. Manufactured nanomaterials (fullerenes, C60)induce oxidative stress in thebrain of juvenile largemouth bass[J]. Environ. Health Perspect. , 2004, 112(10):1058-1062.
    [60]张金洋,宋文华.纳米氧化锌的健康危害与生态安全性研究进展[J].生态毒理学报,2010,5(4):457-468.
    [61] Braydich-Stolle L, Hussain S, Schlager J J and Hofmann M C. In vitro cytotoxicity ofnanoparticles in mammalian germline stem cells[J]. Toxicol. Sci. , 2005, 88(2): 412-419.
    [62] Derfus A M, Chen A A, Min D H. Targeted quantum dot conjugates for siRNA delivery[J].Bioconjug. Chem. , 2007, 18(5): 1391-1396.
    [63] Magrez A, Kasas S, Salicio V, Pasquier N, Seo J W, Celio M, Catsicas S, Schwaller B andForróL. Cellular toxicity of carbon-based nanomaterials[J]. Nano. Lett. , 2006, 6(6):1121-1125.
    [64] Goodman C M, McCusker C D, Yilmaz T and Rotello V M. Toxicity of gold nanoparticlesfunctionalized with cationic and anionic side chains[J]. Bioconjug. Chem. , 2004, 15(4):897-900.
    [65]丁玲,刘鹏,李世迁.纳米材料毒性和安全性研究进展[J].材料导报,2010,24(3):29―32.
    [66] Khara D G, Anders B, Richard O. Redefining risk research priorities for nanomaterials[J]. J.Nanopart. Res. , 2010, 12 (2): 383–392.
    [67] Nel A, Xia T, Madler L and Li N. Toxic potential of materials at the nanolevel[J]. Science,2006, 311(5761):622.
    [68] Lynch I, Dawson K A. Protein-nanoparticle interactions[J]. nanotoday, 2008, 3(1–2): 40–47.
    [69] Vertegel A A, Siegel R W, Dordick J S. Silica nanoparticle size influences the structure andenzymatic activity of adsorbed lysozyme[J]. Langmuir, 2004, 20(16): 6800–6807.
    [70] Shang W, Nuffer J H, Dordick J S and Siegel R W. Unfolding of ribonuclease A on silicananoparticle surfaces[J]. Nano Lett. , 2007, 7(7): 1991–1995.
    [71] Cedervall T, Lynch I, Lindman S, Bergg-rd T, Thulin E, Nilsson H, Dawson K A and LinseS. Understanding the nanoparticle-protein corona using methods to quantify exehange ratesand affinities of proteins for nanoparticles[J]. Proc. Nat. Acad. Sci. USA. , 2007, 104(7):2050–2055.
    [72] Onuma K, Sato Y, Ogawara S, Shirasawa N, Kobayashi M, Yoshitake J, Yoshimura T, ligoM, Fujii J and Okada F. Nano-scaled particles of titanium dioxide convert benign mousefibrosarcoma cells into aggressive tumor cells[J]. Am. J. Pathol. , 2009, 175(5): 2171–2183.
    [73] Karajanagi S S, Vertegel A A, Kane R S and Dordick J S. Structure and function of enzymesadsorbed onto single-walled carbon nanotubes[J]. Langmuir, 2004, 20(26): 11594–11599.
    [74] Patila S, Sandbergb A, Heckertc E, Selfc W and Seala S. Protein adsorption and cellularuptake of cerium oxide nanoparticles as a function of zeta potential[J]. Biomaterials, 2007,28(31): 4600–4607.
    [75] Ehrenbelg M S, Fliedman A E, Finkelstein J N, Oberdrster G and McGrath J L. Theinfluence of protein adsorption on nanoparticle association with cultured endothelial cells[J].Biomaterials, 2009, 30(4): 603–610.
    [76] Cedervall T, Lynch I, Foy M, Bergg-rd T, Donnelly S C, Cagney G, Linse S and Dawson KA. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles[J].Angew. Chem. Int. Ed. , 2007, 46(30): 5754–5756.
    [77] Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T and Dawson K A. Nanoparticle sizeand surface properties determine the protein corona with possible implications forbiological impaets[J]. Proc. Nat. Acad. Sci. USA. , 2008, 105: 14265–14270.
    [78] Klein J. Probing the interactions of proteins and nanoparticles[J]. Proc. Nat. Acad. Sci.USA., 2007, 104(7): 2029–2030.
    [79] Shen J W, Wu T, Wang Q and Kang Y. Induced stepwise conformational change of humanserum albumin on calbon nanotube surfaces[J]. Biomaterials, 2008, 29(28): 3847–3855.
    [80] R-cker C, P-tzl M, Zhang F, Parak W J and Nienhaus G U. A quantitative fluorescencestudy of protein monolayer formation on colloidal nanoparticles[J]. Nat. nano. , 2009, 4:577–580.
    [81] Lindman S, Lynch I, Thulin E, Nilsson H, Dawson K A and Linse S. Systematic investigationof the thermodynamics of HAS adsorption to N-iso-propylacrylamide/N-tert-butyl-acrylamidecopolymer nanoparticles. Effects of particle size and hydrophobicity[J]. Nano Lett. ,2007, 7(4): 914–920.
    [82] Linse S, Cabaleiro-Lago C, Xue W F, Lynch I, Lindman S, Thulin E, Radford S E andDawson K A. Nucleation of protein fibrillation by nanoparticles[J]. Proc. Nat. Acad. Sci.USA. , 2007, 104(21): 8691–8696.
    [83] You C C, Miranda O R, Gider B, Ghosh P S, Kim I B, Erdogan B, Krovi S A, Bunz U H Fand Rotello V M. Detection and identification of proteins using nanoparticle-fluorescentpolymer`chemical nose′sensors[J]. Nature Nanotechnology, 2007, 2(5): 318–323.
    [84] You C C, De M, Han G, Rotello V M. Tunable inhibition and denaturation ofalpha-chymotrypsin with amino acid-functionalized gold nano particles[J]. J. Am. Chem.Soc. , 2005, 127(42): 12873–12881.
    [85] Wang L Y, Kan X W, Zhang M C, Zhu C Q and Wang L. Fluorescence for the determinationof protein with functionalized nano-ZnS[J]. Analyst, 2002, 127(7): 1531–1534.
    [86] Wang L Y, Zhou Y Y, Wang L, Zhu C Q, Li Y X and Gao F. Synchronous fluorescencedetermination of protein with functionalized CdS nanoparticles as a fluorescence probe[J].Anal. Chim. Acta, 2002, 466(1):87–92.
    [87]林章碧,苏星光,张浩等.用水溶液中合成的量子点作为生物荧光标记物的研究[J].高等学校化学学报,2003,24(2):216–220.
    [88] Shen X C, Liou X Y, Ye L P, Liang H and Wang Z Y.Spectroscopic studies on the interactionbetween human hemoglobin and CdS quantum dots[J]. J. Colloid Interface Sci. , 2007,311(2): 400–406.
    [89] Poderys V, Matulionyte M, Selskis A and Rotomskis R. Interaction of water-soluble CdTequantum dots with bovine serum albumin[J]. Nanoscale Res. Lett. , 2011,doi:10.1007/s11671-010-9740-9.
    [90] Jhonsi M A, Kathiravan A, Renganathan R. Spectroscopic studies on the interaction ofcolloidal capped CdS nanoparticles with bovine serum albumin[J]. Colloids Surf. , BBiointerfaces, 2009, 72(2): 167–172.
    [91] Ding L, Zhou P J, Li S Q, Shi G Y, Zhong T and Wu M. Spectroscopic studies on thethermodynamics of L-cysteine capped CdSe/CdS quantum dots–BSA interactions[J]. J.Fluoresc. , 2011,21(1): 17–24.
    [92] Jhonsi M A, Kathiravan A, Renganathan R. Spectroscopic studies on the interaction ofcolloidal capped CdS nanoparticles with bovine serum albumin[J]. Colloids Surf. , BBiointerfaces, 2009, 72(2): 167–172.
    [93] Wang Y Q, Ye C, Wu LH, Hu Y Z. Synthesis and characterization of self-assembledCdHgTe/gelatin nanospheres as stable near infrared fluorescent probes in vivo[J]. J. Pharm.Biomed. Anal. , 2010, 53(2): 235–242.
    [94] Dzagli M M, Canpean V, Iosin M, Mohou M A and Astilean S. Study of the interactionbetween CdSe/ZnS core–shell quantum dots and bovine serum albumin by spectroscopictechniques[J]. J. Photochem. Photobiol. , A: Chemistry, 2010, 215(1): 118–122.
    [95] Mandal G, Bardhan M, Ganguly T. Interaction of bovine serum albumin and albumin–goldnanoconjugates with L–aspartic acid. a spectroscopic approach[J]. Colloids Surf. , B, 2010,81(1): 178–184.
    [96] Shen X C, Liou X Y, Ye L P, Liang H and Wang Z Y. Spectroscopic studies on theinteraction between human hemoglobin and CdS quantum dots[J]. J. Colloid Interface Sci. ,2007, 311(2): 400–406.
    [97] Kathiravan A, Paramaguru G, Renganathan R. Study on the binding of colloidal zinc oxidenanoparticles with bovine serum albumin[J]. J. Mol. Struct. , 2009, 934(1–2): 129–137.
    [98] Jhonsi A M, Kathiravan A, Renganathan R. Spectroscopic studies on the interaction ofcolloidal capped CdS nanoparticles with bovine serum albumin[J]. Colloids Surf. , B, 2009,72(2): 167–172.
    [99] Xiao J B, Bai Y L, WangY F, Chen J W and Wei X L. Systematic investigation of theinfluence of CdTe QDs size on the toxic interaction with human serum albumin byfluorescence quenching method[J]. Spectrochim. Acta, Part A: Molecular and BiomolecularSpectroscopy, 2010, 76(1): 93–97.
    [100] Xiao J B, Chen T T, Chen L S, Cao H, Yang F and Bai Y L. CdTe quantum dots (QDs)improve the affinities of baicalein and genistein for human serum albumin in vitro[J]. J.Inorg. Biochem. , 2010, 104(11): 1148–1155.
    [102] Liu Y, Liu X H, Wang X. Biomimetic synthesis of gelatin polypeptide-assisted noblemetalnanoparticles and their interactionstudy[J]. Nanoscale Res. Lett. , 2010, doi:10.1007/s11671-010-9756-1.
    [103]唐世华,黄建滨.纳米CdS与明胶蛋白质的相互作用[J].化学学报,2008,66(13):1534―1540.
    [104] Wan D Y, Wang Y T, Zhou Z P, Yang G Q, Wang B Y and Wei L. Fabrication of the orderedFeS2 (pyrite) nanowire arrays in anodic aluminum oxide[J]. Mater. Sci. Eng. , B, 2005,122(2): 156–159.
    [105] XuY, Guan Y H, Zheng Z Y and Tong X H. Microstructure and tribological properties ofplasma-sprayed nanostructured sulfide coating[J]. J. Mater. Sci. Technol. , 2006, 22(5),589–593.
    [106] Wang H D, Xu B S, Liu J J, Zhuang D M. Investigation on friction and wear behaviors ofFeS films on L6 steel surface[J]. Appl. Surface Sci. , 2005, 252(4): 1084–1091.
    [107] Wang H D, Zhuang D M, Wang K L and Liu J J.The comparison on tribological propertiesof ion sulfuration steels under oil lubrication[J]. Mater. Lett. , 2003, 57(15): 2225–2232.
    [108] Wang W, Wang S Y, Wang K Y, GaoY L and Liu M. A facile route to FeS nanowires via aninfiltrate on process[J]. Solid State Commun. , 2006, 140(7–8): 325–328.
    [109] Byrdin M, Santabarbara S, Gu F F, Fairclough W V, Heathcoteb P, Redding K andRappaport F. Assignment of a kinetic component to electron transfer between iron-sulfurclusters Fx and FA/B of photosystem I[J]. Biochem. Biophys. Acta(BBA)–Bioenergetics,2006, 1757(11): 1529–1538.
    [110] Zhang B, Ye X C, Hou W Y, Zhao Y and Xie Y. Biomolecule-assisted synthesis andelectrochemical hydrogen storage of Bi2S3 floweriike patterns with well-alignednanorods[J]. J. Phys. Chem. B, 2006, 110(18): 8978–8985.
    [111] Hang B T, Watanabe T, Egashira M, Watanabe I, Okada S and Yamaki J I. The effect ofadditives on the electrochemical properties of Fe/C composite for Fe/air battery anode[J]. J.Power Sources, 2006, 155(2): 461–469.
    [112] Chen X Y, Wang Z H, Wang X, Wan J X, Liu J W and Qian Y T. Single-source approach tocubic FeS2 crystallites and their optical and electrochemical properties[J]. Inorg. Chem. ,2005, 44(4): 951–954.
    [113] Cruz-Alvarez V, Ortiz-López J, Mejía-Garcia C, Arellani-Peraza J S, Snchez-Martnez V Mand Chvez-Carvayar J J. Anisotropies in carbon nanotube synthesis by the hydrogen areplasma jet method fullerenes, nanotobes and carbon nanostructures[J]. FullerenesNanotubes and Carbon Nanostructures, 2005, 13(4): 299–311.
    [114] Li H J, Guan L H, Shi Z J and Gu Z N. Direct synthesis of high purity single-walledcarbon nanotube fibers by arc discharge[J]. J. Phys. Chem. B, 2004, 108(15): 4573–4575.
    [115] Zhu J S, Yang J L, Liu Z Y, Dadyburjor D B, Zhong B and Li B Q. Improvement andcharacterization of an impregnated iron-based catalyst for direct coal liquefaction[J]. Fuelprocess. Tech. , 2001, 72(3): 199–214.
    [116] Iori F, Degoli E, Luppi E, Magri R, Marri I, Cantele G, Ninno D, Trani F and Ossicini S.Doping in silicon nanocrystals: An ab initio study of the structural, electronic and opticalproperties[J]. J. Lum. , 2006, 121(2): 335–339.
    [117] Mack J J, Tari S, Kaner R B. Enhanced solid-state metathesis roultes to carbonnanotubes[J]. Inorg. Chem. , 2006, 45(10): 4243–246.
    [118] Nath M, Choudhury A, Kundu A and Rao C N R. Synthesis and characterization ofmagnetic iron sulfide nanowires[J]. Adv. Mater. , 2003, 15 (24): 2098–2101.
    [119] Ennaoui A, Fiechter S, Goslowsky H and Tributsch H. Photoactive syntheticpolycrystalline pyrite FeS2[J]. J. Electrochem. Soc. , 1985, 132(7): 1579–1582.
    [120] Ferrer I J, Nevskaia D M, Heras C D and Sánchez C. About the band gap nature of FeS2 asdetermined from optical and photoelectrochemical measurements[J]. Solid State Commun. ,1990, 74(9): 913–916.
    [121] Ennaoui A, Fiechter S, Pettenkofer C, Alonso-Vante N, Büker K, Bronold M, H-pfner Cand Tributsch H. Iron disulfide for solar energy conversion[J]. Solar Energy Materials andSolar Cells, 1993, 29(4): 289–370.
    [122] Berne B J, Pecora R. Dynamic light scattering with applications to chemistry, biology, andphysics[M]. Dover Publications, 2000.
    [123]程忠玲.褐藻多糖硫酸酯与明胶形成复合材料的抗凝血活性[J].中国组织工程研究与临床康复,2007,11(48):9731–9733.
    [124]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010,34.
    [125]严金龙,孙汝东,柏云杉,聂福礼,王肇福.明胶的粘度行为和谱学特征[J].皮革化工,2000,16(6):1–3,7.
    [126]唐世华,黄建滨.Cu2+和Fe3+与明胶的相互作用[J].物理化学学报,2001,17(10):875–878.
    [127] Savi- J, Vasi- V. Complex formation between Pd(II) and immobilizedImidazol-azo-chromotropicacid[J]. Acta Chim. Slov. , 2006, 53(1): 36–42.
    [128]郝艳玲,范福海.坡缕石粘土吸附Cu2+的动力学[J].硅酸盐学报,2010,28(11):2138–2142.
    [129] Benesi H A, Hildebrand J H. A spectrophotometric investigation of the interaction ofiodine with aromatic hydrocarbons[J]. J. Am. Chem. Soc. , 1949, 71: 2703–2707.
    [130]唐世华,黄在银,黄建滨.明胶溶液中笤帚状纳米CdS的合成及其光谱特性研究[J].化学学报,2007, 65(15):1432–1436.
    [131]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2007.
    [132] Lakowiez J R. Principles of fluorescence spectroscopy[M]. New York: Science Press,2008.
    [133]杨频,高飞,生物无机化学原理[M].北京:科学出版社,2002.
    [134] Wang Q S, Fang T T, Liu P, Min X M and Li X. Studies on the interactions of fluorescentmagneticnanocomposites with biomolecules and cells labeling[J]. Appl. Surf. Sci. , 2010,257: 872–877.
    [135] Varlan A, Hillebrand M. Bovine and human serum albumin interactions with 3-carboxyphenoxathiinstudied by fluorescence and circular dichroism spectroscopy[J]. Molecules,2010, 15: 3905?3919.
    [136] Tang S H, Li Y Q. Interaction via in situ binding of CdS nanorods onto gelatin[J], J.ColloidInterface Sci. , 2011, doi:10.1016/j.jcis.2011.04.040.
    [137] Subramanian S, Ross J B, Ross P D, Brand L. Investigation of the nature ofenzyme-coenzyme interactions in binary and ternary complexes of liver alcoholdehydrogenase with coenzymes, coenzyme analogues, and substrate analogues byultraviolet absorption and phosphorescence spectroscopy[J]. Biochemistry, 1981, 20(14):3096?3102.
    [138] Aki H and Yamamoto M. Thermodynamics of the binding of phenothiazines to humanplasma, human serum albumin and alpha 1-acid glycoprotein: a calorimetric study[J].J.Pharm. Pharmacol. , 1989, 41(10): 674?679.
    [139] Hu Y J, Liu Y, Wang J B, Xiao X H, Qu S S. Study of the interaction betweenmonoammonium glycyrrhizinate and bovine serum albumin[J]. J. Pharm. Biomed. Anal. ,2004, 36(4): 915–919.
    [140] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslationalauxidation ofgreen fluorescent protein[J]. Proc. Natl. Acad. Sci. USA, 1994, 91(26): 12501?12504.
    [141]杨曼曼,杨频,张立伟.荧光法研究咖啡酸类药物与白蛋白的作用[J].科学通报,1994,39(1):31–35.
    [142]徐绪国,王娟,孙崇敏,闫天堂.照相明胶荧光特性的研究[J].化学物理学报,2000,13(5):576–580.
    [143] He Y, Wang Y W, Tang L F, Liu H, Chen W, Zheng Z L and Zou G L. Binding of Puerarinto Human Serum Albumin:A Spectroscopic Analysis and Molecular Docking[J]. J.Fluoresc. , 2008, 18(2): 433–442.
    [144] Hu Q R, Wang S L, Zhang Y and Tang W H. Synthesis of cobalt sulfide nanostructures bya facile solvothermal growth process[J]. J. Alloys Compd. , 2010, 491(1–2): 707–711.
    [145] Liu X H. Hydrothermal synthesis and characterization of nickel and cobalt sulfidesnanocrystallines[J]. Mater. Sci. Eng. , B, 2005, 119(1): 19–24.
    [146] Nithima K, Areeporn O, Makoto O. Very slow formation of copper sulfide and cobaltsulfide nanoparticles in montmorillonite[J]. Appl. Clay Sci. , 2011, 51(1–2): 182–186.
    [147] Tao F, Zhao Y Q, Zhang G Q and Li H L. Electrochemical characterization on cobaltsulfide for electrochemical supercapacitors[J]. Electrochem. Commun. , 2007, 9(1–2):1282–1287.
    [148] Bao S J, Li C M, Guo C X, Qiao Y. Biomolecule-assisted synthesis of cobalt sulfidenanowires for application in supercapacitors[J]. J. Power Sources. , 2008, 180(1–2):676–681.
    [149] Mozafari M, Moztarzadeh F. Controllable synthesis, characterization and optical propertiesof colloidal PbS/gelatin core–shell nanocrystals[J]. J. Colloid Interface Sci. , 2010, 351:442–448.
    [150] Kim H W, Knowles J C, Kim H E. Porous scaffolds of gelatin-hydroxyapatitenanocomposites obtained by biomimetic approach: characterization and antibiotic drugrelease[J]. J. Biomed. Mater. Res. Part B Appl Biomater. , 2005, 74(2): 686–698.
    [151]张叔良,易大年,吴天明.红外光谱分析与新技术[M].北京:中国医药科技出版社,1993.
    [152]严金龙,王肇福,聂福礼.鞣性金属与甘氨酸配位作用的红外光谱研究[J].皮革化工,1997,15(4):13–15.
    [153] Chakraborty I, Malik P K, Moulik S P. Preparation and characterisation of CoS2nanomaterial in aqueous cationic surfactant medium of cetyltrimethylammoniumbromide (CTAB)[J]. J. Nanopar. Res. , 2006, 8(6): 889–897.
    [154]陈松,严金龙.铬(III)与明胶蛋白质相互作用的紫外光谱研究[J].光谱实验室,2003,20(6):900–902.
    [155]伊文涛,闫春燕,马培华,李法强.碳酸锂结晶动力学研究[J].化学工程,2009,37(12):16–19.
    [156] Ding L, Zhou P J, Li S Q, Shi G Y, Zhong T and Wu M. Spectroscopic studies on thethermodynamics of L-cysteine capped CdSe/CdS quantum dots-BSA interactions[J].J,Fluoresc. , 2010, 21(1): 17–24.
    [157] Ghali M. Static quenching of bovine serum albumin conjugated with small size CdSnano-crystalline quantum dots[J]. J. Lumin. , 2010, 130(7): 1254–1257.
    [158] Jhonsi M A, Kathiravan A, Renganathan R. Spectroscopic studies on the interaction ofcolloidal capped CdS Nanoparticles with bovine serum albumin[J]. Colloids Surf. , B:Biointerfaces, 2009, 72(2): 167–172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700