单个活细胞多功能高灵敏实时荧光显微成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单个活细胞实时检测具有重要的理论意义和实际应用价值,荧光显微成像技术因灵敏度高、特异性好、易实现“可视化”而成为该领域最具发展潜力的方法。然而由于活细胞样品的复杂性,真正适用的方法仍面临挑战。本论文着力搭建一套适用于单个活细胞实时检测和生物单分子研究的多功能、高灵敏、实时荧光显微成像系统,并探索该系统在具体生命科学问题中的应用。
     首先,搭建了一套多功能高灵敏实时荧光显微成像系统,并发展相关图像处理方法。利用像增强型CCD实现了实时荧光成像,灵敏度高、速度快、对细胞光损伤小,适合于实时检测活细胞内分子、离子分布和变化;实现了物镜型全内反射荧光成像,提高纵向分辨率、图像信噪比和灵敏度,适合于实时追踪细胞膜附近单分子动态过程;实现了荧光共振能量转移成像,分辨率突破衍射极限达到纳米量级,适合于研究活细胞内分子相互作用或构象变化;扩展了荧光比率、双标记双/三通道、荧光+微分干涉相差、三维层切等多种活细胞实时成像功能。各功能可单独或联合使用,为生命科学研究提供多种先进技术手段。
     其次,以胸腺细胞凋亡研究为例探索了该系统的具体应用,并发展相关量化分析方法。首次在单个活细胞水平实时记录了亚硝基谷胱甘肽诱导胸腺细胞凋亡的启动过程,并确定启动时间点;实时记录了不同抑制剂的协作过程,并提示不同的作用机理;实时记录并量化分析了诱导凋亡时细胞质酸化、游离钙离子水平迅速升高和线粒体跨膜电位逐渐丧失的过程,结果揭示了一定的规律性,为凋亡信号转导通路的研究提供了重要线索。
     此外,以建立的系统为平台开展生物单分子成像基础研究,优化了实验条件,并发展相关数据分析方法,为活细胞内生物单分子研究打下基础。清晰记录了单个拉直的DNA分子,并为长时间成像优化实验条件;实时记录了单个纳米粒子的运动轨迹,并进行三维追踪,分析其轨迹得到与理论计算吻合的受限布朗运动扩散系数;记录了量子点和荧光分子的荧光共振能量转移现象。
     本论文的研究将促进荧光显微成像技术在活细胞生命过程研究的应用。
Real-time detection in single living cells is of great importance in both theory and practical application. Fluorescence microscopic imaging techniques possess high sensitivity and good specificity, as well as easy realization of“visualization”, and become the most potential approaches in this field. However, applicable methods are still facing challenges because of the complexity of living cells. In this thesis, great efforts have been made to establish a real-time multifunctional fluorescence microscopic imaging system with high sensitivity for real-time detection in single living cells and studies on single biomolecules, and to explore its application to specific biological research.
     First, a real-time multifunctional fluorescence microscopic imaging system with high sensitivity was set up and relevant image processing methods were developed. An intensified charge-coupled device was employed to realize real-time fluorescence imaging, which was suitable for detecting molecular and ionic distributions and their variations in living cells in real-time with the advantages of high sensitivity, fast acquisition speed and little photodamage of cells. Objective-type total internal reflection fluorescence imaging was introduced into the system to meet the need of tracking single molecules within, on or around cell membranes in real-time, for it greatly improved the vertical resolution, signal to noise ratio in images and sensitivity. To study molecular interactions or molecular conformational changes in living cells, fluorescence resonance energy transfer imaging was realized to break through the restriction of diffraction limit and reach a resolution of nanometer order. Other real-time imaging functions for living cells were also extended, such as fluorescent ratio detection, double-labeling with two- or three-channel detection, fluorescence with differential interference contrast imaging and three-dimensional optical sectioning. Each function mentioned above could be used separately or combined with other functions for complementary advantages, providing multifunctional techniques for biological studies.
     Then specific applications of the system were explored, taking studies on thymocyte apoptosis as an example, and relevant quantitative analysis methods were developed. The start-up processes of thymocyte apoptosis induced by S-nitrosoglutathione were recorded in real-time in the level of single living cells for the first time, with the apoptosis initiating time points determined. Real-time studies of the cooperation processes of the inducer with different inhibitors suggested different mechanisms of action. During the apoptosis-inducing course, the decrease of intracellular pH, the rapid increase of intracellular free calcium ion concentration and the gradual loss of mitochondrial membrane potential were also detected in real-time and quantitatively analyzed. The results revealed some regularity, providing valuable clues for apoptotic signaling pathway studies.
     Furthermore, some fundamental researches on single biomolecules were carried out based on the system, in which experimental conditions were optimized and relevant data analysis methods were developed, laying a foundation for further application to studies on single biomolecules within living cells. Single stretched DNA molecules were clearly imaged, and experimental conditions for long-term imaging were optimized. The motion trajectories of single nano-scaled particles were recorded in real-time and tracked in three-dimension, and a diffusion coefficient of constrained Brownian motion, which was consistent with theoretical calculation, was obtained by analyzing the trajectories. Fluorescence resonance energy transfer between quantum dots and fluorescent molecules was also detected.
     This thesis is supposed to result in, to some extent, promotion of the application of fluorescence microscopic imaging techniques to studies on living cells.
引文
[1]吴家睿.后基因组时代的交叉科学:从“Bio-X”到“X Biology”.物理通报, 2002, (3): 1-2.
    [2]高体玉,冯军,慈云祥.单个活细胞分析的研究进展.科学通报, 1998, 43(7): 673-682.
    [3] R?thlein B. New territory in three dimensions. Max Planck Res, 2004, 1: 26-31.
    [4]林其谁.细胞内实时检测的意义.生命科学中的单分子行为及细胞内实时检测.北京:科学出版社, 2005: 103-121.
    [5] Lakowicz J R. Principles of fluorescence spectroscopy. 2nd edition. New York: Plenum Press, 1999: 1-20.
    [6] Digman M A, Brown C M, Sengupta P, et al. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J, 2005, 89: 1317-1327.
    [7] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol, 2003, 21: 1369-1377.
    [8] Lewis A, Taha H, Strinkovshi A, et al. Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol, 2003, 21: 1378-1386.
    [9] Ianoul A, Grant D, Pezacki J, et al. Near-field scanning optical microscopic imaging of cell membrane. Biophys J, 2004, 86: 334A-334A.
    [10] Paddock S W. Principles and practices of laser scanning confocal microscopy. Mol Biotechnol, 2000, 16: 127-149.
    [11] Byassee T A, Chan W C W, Nie S M. Probing single molecules in single living cells. Anal Chem, 2000, 72: 5606-5611.
    [12]程兵,林丹樱,王晓广,等.双光子激发荧光成像技术对小鼠植入前胚胎的实时观测.光谱学与光谱分析, 2006, 26(2): 193-197.
    [13] Mills J D, Stone J R, Rubin D G, et al. Illuminating protein interactions in tissue using confocal and two-photon excitation fluorescent resonance energy transfer microscopy. J Biomed Opt, 2003, 8: 347-356.
    [14]林丹樱,孙云旭,马万云,等.基于ICCD的快速荧光显微成像技术及在或细胞研究中的初步应用.光谱学与光谱分析, 2006, 26(5): 917- 921.
    [15] Lin D Y, Ma W Y, Duan S J, et al. Real-time imaging of viable-apoptotic switch in GSNO-induced mouse thymocyte apoptosis. Apoptosis, 2006, 11: 1289-1298.
    [16] Li D D, Xiong J, Qu A L, et al. Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys J, 2004, 87: 1991-2001.
    [17]王琛,王桂英,徐至展.全内反射荧光显微术.物理学进展, 2002, 22(4): 406-415.
    [18] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic, 2001, 2: 764-774.
    [19] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Biophotonics, 2003, 361: 1-33.
    [20] Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells. Cell Struct Funct, 2002, 27: 357-365.
    [21] Sako Y, Yanagida T. Single-molecule visualization in cell biology. Imaging Cell Biol, 2003, 9: SS1-SS5.
    [22] Wang X H, Teng Y, Wang Q L, et al. Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol, 2006, 141: 1591-1603.
    [23] Seisenberger G, Ried M U, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science, 2001, 294: 1929-1932.
    [24] Ueda M, Sako Y, Tanaka, T, et al. Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science, 2001, 294: 864-867.
    [25] Iino R, Koyama I, Kusumi A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J, 2001, 80: 2667-2677.
    [26] Mashanov G I, Tacon D, Knight A E et al. Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods, 2003, 29: 142-152.
    [27] Mashanov G I, Tacon D, Peckham M et al. The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by Imaging single molecules in live mouse myoblasts. J Biol Chem, 2004, 279: 15274-15280.
    [28] Mashanov G I, Molloy J E. Automatic detection of single fluorophores in live cells. Biophys J, 2007, 92: 2199-2211.
    [29] Ma X Y, Wang Q, Jiang Y X, et al. Lateral diffusion of TGF-βtype I receptor studied by single-molecule imaging. Biochem Biophys Res Commun, 2007, 356: 67-71.
    [30] Xiao Z Y, Ma X Y, Jiang Y X, et al. Single-molecule study of lateral mobility of epidermal growth factor receptor 2/HER2 on activation. J Phys Chem B, 2008, 112: 4140 -4145.
    [31] Zal T, Gascoigne N R. Using live FRET imaging to reveal early protein-protein interactions during T cell activation. Curr Opin Immunol, 2004, 16: 418-427.
    [32] Zaccolo M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res, 2004, 94: 866-873.
    [33] Zhuang X W, Bartley L E, Babcock H P, et al. A single-molecule study of RNA catalysis and folding. Science, 2000, 288: 2048-2051.
    [34] Oiwa K, Eccleston J F, Anson M, et al. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys J, 2000, 78: 3048-3071.
    [35] Furuta R A, Nishikawa M, Fujisawa J. Real-time analysis of human immunodeficiency virus type 1 Env-mediated membrane fusion by fluorescence resonance energy transfer. Microbes Infect, 2006, 8: 520-532.
    [36] Truong K, Ikura M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Sturct Biol, 2001, 11: 573-578.
    [37] Sako Y, Minoghchi S, Yanagida T. Single-molecule imaging of EGFR signaling on the surface of living cells. Nat Cell Biol, 2000, 2: 168-172.
    [38] Murakoshi H, Iino R, Kobayashi T et al. Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA, 2004, 101: 7317-7322.
    [39] Lin J Q, Zhang Z H, Yang J, et al. Real-time detection of caspase-2 activation in a single Hela cell during cisplatin-induced apoptosis. J Biomed Opt, 2006, 11: 024011.
    [40] Hsu Y Y, Liu Y N, Wang W Y, et al. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun, 2007, 353: 939-945.
    [41] Duncan R R. Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells. Biochem Soc Trans, 2006, 34: 679-682.
    [42] Wang Z F, Shah J V, Berns M W, et al. In vivo quantitative studies of dynamic intracellular processes using fluorescence correlation spectroscopy. Biophys J, 2006, 91: 343-351.
    [43] Bates I R, Wiseman P W, Hanrahan J W. Investigating membrane protein dynamics in living cells. Biochem Cell Biol, 2006, 84: 825-831.
    [44] Leake M C, Chandler J H, Wadhams G H, et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature, 2006, 443: 355-358.
    [45] Tadakuma H, Yamaguchi J, Ishihama Y, et al. Imaging of single fluorescent molecules using video-rate confocal microscopy. Biochem Biophys Res Commun, 2001, 287: 323-327.
    [46] Tadakuma H, Ishihama Y, Toshiharu S, et al. Imaging of single mRNA moleculesmoving within a living cell nucleus. Biochem Biophys Res Commun, 2006, 344: 772-779.
    [47] Wallrabe H, Periasamy A. Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotech, 2005, 16: 19-27.
    [48] Douglass A D, Vale R D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell, 2005, 121: 937-950.
    [49] Gorelik J, Shevchuk A, Ramalho M, et al. Scanning surface confocal microscopy for simultaneous topographical and fluorescence imaging: Application to single virus-like particle entry into a cell. Proc Natl Acad Sci USA, 2002, 99: 16018-16023.
    [50] Nishida S, Funabashi Y, Ikai A. Combination of AFM with an objective-type total internal reflection fluorescence microscope (TIRFM) for nanomanipulation of single cells. Ultramicroscopy, 2002, 91: 269-274.
    [51] Micic M, Radotic K A, Jeremic M, et al. Study of the lignin model compound supramolecular structure by combination of near-field scanning optical microscopy and atomic force microscopy. Colloid Surf B, 2004, 34: 33-40.
    [52] Mathur A B, Truskey G A, Reichert W M. Total internal reflection microscopy and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells. Crit Rev Biomed Eng, 2000, 28: 197-202.
    [53] Mark K M, Rosinov M, Nolan G P. In vivo targeting of organic calcium sensors via genetically selected peptides. Chem Biol, 2004, 11: 347-356.
    [54] Guignet E G, Hovius R, Vogel H. Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol, 2004, 22: 440-444.
    [55] Ghosh I, Hamilton A D, Regan L. Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescence protein. J Am Chem Soc, 2000, 122: 5658-5659.
    [56] Haj F G, Verveer P J, Squire A, et al. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 2002, 295: 1708-1711.
    [57] Matz M V, Fradkov A F, Labas Y A, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol, 1999, 17: 969-973.
    [58] Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater, 2005, 4: 435-446.
    [59] Jovin T M. Quantum dots finally come of age. Nat Biotechnol, 2003, 21: 32-33.
    [60] Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide insights intoerbB/HER receptor-mediate signal transduction. Nat Biotechnol, 2004, 22: 198-203.
    [61] Sukhanova A, Devy J,Venteo L, et al. Biocompatible fluorescence nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem, 2004, 324: 60-67.
    [62] Dahan M, Lévi S, Luccardini C, et al. Diffusion dynamics of glycine receptor revealed by single-quantum dot tracking. Science, 2003, 302: 442-445.
    [63] Courty S, Luccardini C, Bellaiche Y, et al. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett, 2006, 6: 1491-1495.
    [64] Liu T C, Wang J H, Wang H Q, et al. Bioconjugate recognition molecules to quantum dots as tumor probes. J Biomed Mater Res A, 2007, 83A: 1209-1216.
    [65] Berney C, Danuser G. FRET or No FRET: A quantitative comparison. Biophys J, 2003, 84: 3992-4010.
    [66] Elangovan M, Wallrabe H, Chen Y, et al. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods, 2003, 29: 58-73.
    [67] Pavlovic V, Cekic S, Kocic G, et al. Effect of monosodium glutamate on apoptosis and Bcl-2/Bax protein level in rat thymocyte culture. Physiol Res, 2007, 56: 619-626.
    [68] Nicotera P, Melino G. Regulation of the apoptosis-necrosis switch. Oncogene, 2004, 23: 2757-2765.
    [69] Kountouras J, Zavos C, Chatzopoulos D. Apoptosis and autoimmunity as proposed pathogenetic links between Helicobacter pylori infection and idiopathic achalasia. Med Hypotheses, 2004, 63: 624-629.
    [70] Chang M K, Binder C J, Miller Y I, et al. Apoptotic cells with oxidationspecific epitopes are immunogenic and proinflammatory. J Exp Med, 2004, 200: 1359-1370.
    [71] Green D R. Apoptotic pathways: ten minutes to dead. Cell, 2005, 121: 671-674.
    [72] Xu W, Boadle R, Dear L, et al. Ultrastructural changes in endothelium during apoptosis indicate low microembolic potential. J Vasc Res, 2005, 42: 377-387.
    [73] Hareramadas B, Rembhotkar G W, Rai U. Glucocorticoid-induced thymocyte apoptosis in wall lizard Hemidactylus flaviviridis. Gen Comp Endocrinol, 2004, 135: 293-299.
    [74] Yao G H, Hou Y Y. Thymic atrophy via estrogen-induced apoptosis is related to Fas/FasL pathway. Int Immunopharmacol, 2004, 4: 213-221.
    [75] Hajto T, Berki T, Boldizsar F, et al. Galactoside-specific plant lectin, Viscum album agglutinin-I induces enhanced proliferation and apoptosis of murine thymocytes in vivo. Immunol Lett, 2003, 86: 23-27.
    [76] Sharma U C, Hofstra L, Pinto Y M, et al. Real-time in vivo imaging of apoptoticcell membrane changes in monocytes and macrophages. Apoptosis, 2005, 10: 1187-1189.
    [77] Dumont E A, Reutelingsperger C P, Smits J F, et al. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med, 2001, 7: 1352-1355.
    [78] Green A M, Steinmetz N D. Monitoring apoptosis in real time. Cancer J, 2002, 8: 82-92.
    [79] Rehm M, Dubmann H, Prehn J H. Real-time single cell analysis of Smac/DIABLO release during apoptosis. J Cell Biol, 2003, 162: 1031-1043.
    [80] Goldstein J C, Munoz-Pinedo C, Ricci J-E, et al. Cytochrome c is released in a single step during apoptosis. Cell Death Differ, 2005, 12: 453-462.
    [81] Brune B, von Knethen A, Sandau K B. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ, 1999, 6: 969-975.
    [82] Choi B M, Pae H O, Jang S I, et al. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol, 2002, 35:116-126.
    [83] Melino G, Catani M V, Corazzari M, et al. Nitric oxide can inhibit apoptosis or switch it into necrosis. Cell Mol Life Sci, 2000, 57: 612-622.
    [84] Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ, 2003, 10: 864-869.
    [85] Sandau K, Brune B. The dual role of S-nitrosoglutathione (GSNO) during thymocyte apoptosis. Cell Signal, 1996, 8: 173-177.
    [86]段绍瑾,顾丽贞,张春阳,等.莱菔籽芥子碱延缓GSNO诱导胸腺细胞凋亡的作用. 2006第六届中国药学会学术年会论文集, 2006: 5175-5198.
    [87] Verhoven B, Schlegel R A, Williamson P. Mechanism of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med, 1995, 182: 1597-1601.
    [88] Vermes I, Haanen C, Steffensnakken H, et al. A novel assay for apoptosis - flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein-labeled Annexin-V. J Immunol Methods, 1995, 384: 39-51.
    [89] Gabor G, Allon N. Spectrofluorometric method for NO determination. Anal Biochem, 1994, 220: 16-19.
    [90] Dukhanin A S, Patrashev D V, Ogurtsov S I. Intracellular pH in Thymocytes at the Early Stages of Apoptosis and Necrosis. Bull Exp Biol Med, 1999, 10: 991-993.
    [91] Zhu W H, Loh T T. Effects of Na+/H+ antiport and intracellular pH in the regulation of HL-60 cell apoptosis. Biochem Biophys Acta, 1995, 1269: 122-128.
    [92] Berridge M J. The AM and FM of calcium signaling. Nature, 1997, 386: 759-760.
    [93] Takahashi A, Camacho P, Lechleiter J D, et al. Measurement of intracellular calcium. Physiol Rev, 1999, 79: 1089-1125.
    [94] Rajakulendran S, Schorge S, Kullmann D M, et al. Episodic ataxia type 1: A neuronal potassium channelopathy. Neurotherapeutics, 2007, 4: 258-266.
    [95] Kadenbach B, Arnold S, Lee I, et al. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochem Biophys Acta, 2004, 1655: 400-408.
    [96] Chulu J L C, Lee L H, Lee Y C, et al. Apoptosis induction by avian reovirus throuph p53 and mitochondria-mediated pathway. Biochem Biophys Res Commun, 2007, 356: 529-535.
    [97]徐静,何作云.细胞凋亡与线粒体.中国血液流变学杂志, 2004, 14(2): 274-276.
    [98] Halestrap A P, Doran E, Gillespie J P, et al. Mitochondria and cell death. Biochem Soc Trans, 2000, 28: 170-177.
    [99]林丹樱,马万云.活细胞内的单分子荧光成像方法.物理, 2007, 36(10): 783-790.
    [100] Lu H P, Xun L Y, Xie S N. Single-molecule enzymatic dynamics. Science, 1998, 282: 1877-1882.
    [101] Zhuang X, Bartley L E, Babcock H P, et al. A single-molecule study of RNA catalysis and folding. Science, 2000, 288: 2048-2051.
    [102] Wang Y M, Austin R H, Cox E C. Single molecule measurements of repressor protein 1D diffusion on DNA. Phys Rev Lett, 2006, 97: 048302.
    [103] Goulian M, Simon S M. Tracking single proteins within cells. Biophys J, 2000, 79: 2188-2198.
    [104] Bennink M L, Schorer O D, Kanaar R, et al. Single-molecule manipulation of double-stranded DNA using optical tweezers: Interaction studies of DNA with RccA and YOYO-1. Cytometry, 1999, 36: 200-208.
    [105] Bensimon A, Simon A, Chiffaudel A, et al. Alignment and sensitive detection of DNA by a moving interface. Science, 1994, 265: 2096-2098.
    [106]刘玉颖,王鹏业,窦硕星.应用分子梳技术对DNA单分子的研究.自然科学进展, 2007, 17(4): 421-427.
    [107]张益,陈圣福,欧阳振乾,等.单个DNA分子的拉直操纵和成像.科学通报, 2000, 45(5): 490-493.
    [108] Liu Y F, Wang P Y, Dou S X, et al. Investigating the photobleaching property of single DNA-YOYO-1 complex by molecular combing method. Chin J Chem Phys, 2005, 18(5): 651-653.
    [109]李宾,汪颖,胡钧,等.单个DNA分子光敏断裂过程的观察.科学通报, 2003,48(4): 345-347.
    [110] Akerman B, Tuite E. Single- and double-strand photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res, 1996, 24(6): 1080-1090.
    [111] Lyon W A, Fang M M, Haskins W E, et al. A dual-beam optical microscope for observation and cleavage of single DNA molecules. Anal Chem, 1998, 70: 1743-1748.
    [112]孙玉芬,徐升华,李银妹,等.受限分散体系中粒子扩散特性的研究.力学学报, 2004, 36(6): 739-743.
    [113] Cheezum M K, Walker W F, Guilford W H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J, 2001, 81: 2378-2388.
    [114] Anderson C M, Georgiou G N, Morrison I E G, et al. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. J Cell Sci, 1992, 101: 415-425.
    [115] Schütz G J, Schindler H, Schmidt T. Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J, 1997, 73: 1073-1080.
    [116]孙云旭.活细胞实时动态与高分辨显微成像方法研究.博士学位论文.北京:清华大学, 2006: 108-110.
    [117] Qian H, Sheetz M P, Elson E L. Single particle tracking: analysis of diffusion and flow in two-dimensional systems. Biophys J, 1991, 60: 910-921.
    [118] Lin B H, Yu J, Rice S A. Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys Rev E, 2000, 62: 3909-3919.
    [119] Hohng S, Ha T. Single-molecule quantum-dot fluorescence resonance energy transfer. ChemPhysChem, 2005, 6: 956-960.
    [120] Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor, Nat Mater, 2005, 4: 826-831.
    [121] Zhang C Y, Johnson L W. Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. J Am Chem Soc, 2006, 128: 5324-5325.
    [122] Bagalkot V, Zhang L F, Levy-Nissenbaum E, et al. Quantum dot-Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett, 2007, 7: 3065-3070.
    [123] Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater, 2003, 2: 630-638.
    [124] Medintz I L, Clapp A R, Brunel F M, et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater, 2006, 5: 581-589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700