Fe,V共掺杂TiO_2催化剂的合成、表征及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过不同方法合成系列单组分掺杂、双组分共掺杂的改性纳米TiO2,探讨了不同制备条件(钛源、不同掺杂元素、掺杂比例、焙烧温度)和不同反应条件(催化剂用量、反应体系酸度、光催化)对染料脱色率的影响。采用XRD、TG-DTG、FT-IR、SEM、EDS、BET、UV-Vis DRS、XRF、TEM、XPS、ESR、ICP等现代测试手段对所制备催化剂的理化性能进行详细表征与分析。实验结果表明,以四氯化钛为钛源,通过共沉淀法制备的掺杂改性纳米Ti02具有高效的吸附性能,在接近吸附饱和后还表现出一定的可见光光催化活性。其中,共掺杂Fe-V-TiO2(Ti:Fe:V物质的量比为1:0.15:0.3,400℃焙烧2 h)具有最佳的吸附性能,60 min内对100 ppm亚甲基蓝溶液(催化剂用量为1.50g/L,反应体系酸度为中性)的脱色率可达99.01%,8h后矿化率可达89.56%;可使实际印染废水的COD由1938 mg/L降为899.56 mg/L,有效降解了废水中的污染物。表征结果表明,共掺杂的样品比表面积增大,有效拓展了Ti02在可见光范围的响应;样品在溶液中可产生较多的超氧自由基,表现出较强的氧化能力;铁物种以Fe3+的形态存在,钒物种以V5+的形态存在,且处理后溶液中钒离子浓度远小于GB 3838-2000的最高浓度,表明该类共掺杂改性催化剂具有重要的实际应用意义。
The paper probes into a series of modified nano-TiO2 via different preparation methods. The effects of different system variables like preparation conditions (sources of titanium、doping elements、doping ratioes、calcinable temperatures) and reaction conditions (different adsorbent dosage、pH value、photocatalytic activity) of catalysts are also investigated. The physicochemical properties of the catalysts are measured by XRD、TG-DTG、FT-IR、SEM、EDS、BET、UV-Vis DRS、XRF、TEM、XPS、ESR and ICP. The experimental results suggest that co-doped TiO2 synthesized via coprecipitation has an excellent ability in adsorbing, utilizing titanium tetrachloride as precursors, it also has photocatalytic activities in degradation of dye under visible light after adsorption. The Fe-V-TiO2 (the doped mole ratio of Ti:Fe:V is 1:0.15:0.3, calcined at 400℃for 2 h) exhibits the best adsorbtion activity on methylene blue (MB) solution. The decolourization rate of MB (100 ppm) surpasses 99.01% within 60 min dark reaction (the catalyst dosage is 1.50 g/L, in neutral condition). Its mineralization rate of MB rises to 89.56% within 8 h, which degrades the pollutants in wastewater effectively. The COD of actual high concentrated wastewater reduces from 1938 mg/L to 899.56 mg/L. Co-doped increases the specific surface area, and expands the response scope of TiO2 in visible light. Samples in the solutiion can produce much more O2-, which exhibits excellent oxidation ability. Fe-V-TiO2 sample can be acquired by mixing iron in Fe3+ form and vanadium in V5+ form. Such solution is of a much lower vanadium density than the maxium one in GB 3838-2000, which reveals that such a modified catalyst is of considerable significance in practical application.
引文
[1]郑曦,陈日耀,陈晓等.电化学法生成Fenton试剂及其在工业染料废水降解脱色中的应用[J].环境污染治理技术与设备,2001,2(4):72-76.
    [2]Jing L, Fu H, Wang B, et al. Effects of Sn Dopant on the Photoinduced Charge Property and Photocatalytic Activity of TiO2 Nanoparticles [J]. Appl Catal, B,2006, 62(3-4):282-291.
    [3]Bao N, Zhang F, Ma Z, et al. Preparation of Si-Doped TiO2 Fibers by Sol-Gel Method and Its Photocatalytic Activity [J]. Acta Chim. Sinica.,2007,65(23):2786-2792.
    [4]Fang Y, Huang Y, Liu L, et al. Comparative Research on Degradation of Organic Pollutants with Nitrogen-Doped TiO2 Photocatalyst Under Visible Light [J]. Acta Chim. Sinica.,2007,65(23):2693-2700.
    [5]张庆祝,罗远建,李越湘等.Zr和S共掺杂TiO2光催化剂的制备及性能[J].石油化工,2009,38(1):15-19.
    [6]Chen J, Yao M, Wang X. Investigation of Transition Metal Ion Doping Behaviors on TiO2 Nanoparticles [J]. J. Nanopart Res.,2008,10(1):163-171.
    [7]Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen doped rutile TiO2(111) in visible light [J]. Journal of Physical Chemistry B,2004,108: 6004-6008.
    [8]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano. Lett.,2006,6:24-28.
    [9]Hong X T, Wang Z P, Cai W M, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J]. Chemistry of Materials,2005,17: 1548-1552.
    [10]吴玉程,宋林云,李云等.Ce掺杂TiO2纳米粉体的制备及其光催化性能研究[J].人工晶体学报,2008,37(2):427-430.
    [11]Yung K K, Akihide L, Wey Y T, et al. Photocatalytic H2 Evolution over TiO2 Nanoparticles [J]. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem. C, 2010,114(6):2821-2829.
    [12]Toshitatsu I, Tomonori N, Kazuo E, et al. Photoinduced Dynamics of TiO2 Doped with Cr and Sb [J]. J. Phys. Chem. C,2008,112(4):1167-1173.
    [13]Gratzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells [J]. Acc. Chem. Res.,2009,42(11):1788-1798.
    [14]刘立强.掺杂改性型纳米二氧化钛的制备与性能表征[D].中南大学硕士论文,2009:6-10.
    [15]Zhang D, Kim Y H, Kang Y S. Synthesis and Characterization of Nanoparticle of TiO2 Co-Doped with Sc3+and V5+Ions [J]. Curr. Appl. Phy.,2006,6(4):801-804.
    [16]Wu J M, Hayakawa S, Tsuru K, et al. In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions [J]. Thin Solid Films, 2002,414(2):275-280.
    [17]Wu J M, Shi H C, Wu W T, et al. Thermal evaporation growth and the luminescence property of TiO2 nanowires [J]. J. Cryst. Grow,2005,281(2-4):384-390.
    [18]孙振亚,祝春水,龚文琪.铁(氢)氧化物矿物对有机污染物的光催化氧化作用[J].矿物学报.2003,23(4):341-348.
    [19]Liu S, Lin K S, Churikov V M, et al. Two-photon absorption properties of star-shaped molecules containing peripheral diarylthienylamines [J]. Chem. Phys. Lett,2004,390(4-6):433-439.
    [20]沈杰,沃松涛,崔晓莉等.射频磁控溅射制备纳米Ti02薄膜及其光致特性研究[J].真空科学与技术学报,2004,24(2):81-86.
    [21]Deng X Y, Yue Y H, Gao Z. Gas-Phase Photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations [J]. Appl. Catal. B,2002, 39(2):135-147.
    [22]高镰,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:58-65.
    [23]Yun C Y, Chah S, Kang S K, et al. The Effect of Ultrasonic Waves on the Fabrication of TiO2 Nanoparticles on a Substrate Using a Self-assembly Method [J]. Korean J. Chem. Eng,2004,21(5):1062-1065.
    [24]陈士夫,赵梦月,陶跃武,太阳光二氧化钛薄层光催化降解有机磷农药的研究[J].太阳能学报,1995,16(3):234-239.
    [25]Negishi N, Takeuchi K. Preparation of photocatalytic TiO2 transparent thin film by thermal decomposition of Ti-alkoxide with a-terpineol as a solvent [J]. Thin Solid Film,2001,392:249-253.
    [26]王俭.载钛多孔玻璃光催化苯酚废水[J].环境工程,1994,12(6):16-17.
    [27]陈建华,龚竹青等.二氧化钛半导体光催化材料离子掺杂[M].科学出版社,2006:8-9.
    [28]Sasaki T, Koshizaki N, Yoon J W, et al. Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectron chemical behaviors [J]. Journal of photochemistry and photobiology A:Chemistry,2001,145(1-2):11-16.
    [29]Kestenbaum H, De Oliveira A L, Schmidt W, et al. Silver-Catalyzed Oxidation of Ethylene to Ethylene Oxide in a Microreaction System [J]. Ind. Eng. Chem. Res., 2002,41(4):710-719.
    [30]Bacsa R, Kiwi J, OhnoT, et al. Preparation, testing and characterization of doped TiO2 aetive in the peroxidation of biomolecules under visible light [J]. J. Phys. Chem. B,2005,109(12):5994-6003.
    [31]Li Q, Xie R, Li Y W, et al. Enhanced visible-light-induced photocatalytic disinfection of E.coli by carbon-sensitized nitrogen-doped titanium oxide [J]. Environ. Sci. Technol,2007,41(14):5050-5056.
    [32]石建稳,郑经堂,胡燕等.纳米Ti02光催化剂共掺杂的研究进展[J].化工进展,2006,25(60):604-607.
    [33]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. Journal of Physical Chemistry,1994,98,13669-13679.
    [34]李和平,袁曹龙,张玉强等.金属共掺杂纳米Ti02对甲基橙的催化降解[J].印染,2006,32(24):9-13.
    [35]张颖,姚明明,陶珍东等.金属离子共掺杂Ti02薄膜的光催化性能研究[J].电镀与精饰,2007,29(6):8-11.
    [36]周泽广,黄在银.Fe3+/W6+共掺杂纳米Ti02的光催化性能研究[J].广西民族大学学报:自然科学版,2007,13(3):118-123.
    [37]Shi J W, Zheng J T, Hu Y, et al. Influence of Fe and Ho co-doping on the photocatalytic activity of TiO2 [J]. Materials Chemistry and Physics,2007,106: 247-249.
    [38]Li X J, Si D J, Fang J, et al. Co-doping of iron and cerium in titanium dioxide: observation of a cooperative effect [J]. Chinese Journal of Chemical Physics,2006, 19:539-542.
    [39]Yang X, Xu L L, Yu X D, et al. One-step preparation of silver and indium oxide co-doped TiO2 photocatalyst for the degradation of rhodamine B [J]. Catalysis Communications,2008,9:1224-1229.
    [40]Niishiro R, Konta R, Kato H, et al. Photocatalytic O2 evolution of rhodium and antimony codoped rutile-type TiO2 under visible light irradiation [J]. J. Phys. Chem. C,2007,111:17420-17426.
    [41]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293 (5528):269-271.
    [42]Di Valentin C, Finazzi E, Pacchioni G, et al. Density functional theory and electron paramagnetic resonance study on the effect of N-F codoping of TiO2 [J]. Chemistry of Materials,2008,20:3706-3714.
    [43]Chen D M, Jiang Z Y, Geng J Q, et al. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity [J]. Ind. Eng. Chem. Res.,2007,46: 2741-2746.
    [44]Wei F Y, Liang S N, Peng C. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity [J]. Journal of Hazardous Materials, 2008,156:135-140.
    [45]Xie Y, Li Y Z, Zhao X J. Low-temperature preparation and visible-light induced catalytic activity of anatase F-N-codoped TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2007,277:119-126.
    [46]邢朋飞,王金淑,金建新等.S-N共掺杂纳米TiO2可见光光催化剂的制备及其性能研究[J].纳米科技,2007,4(2):29-33.
    [47]Huang D G, Liao S J, Liu J M, et al. Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol-gel-solvothermal method [J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,184:282-288.
    [48]魏凤玉,倪良锁,彭书传.TiO2-B-S光催化剂的制备及性能研究[J].太阳能学报,2007,28(6):621-625.
    [49]魏凤玉,倪良锁.硼硫共掺杂TiO2的光催化性能及掺杂机理[J].催化学报,2007,28(10):905-909.
    [50]Jiang H F, Song H Y, Zhou Z. X, et al. The roles of Li+ and F- ions in Li-F-codoped TiO2 system [J]. Journal of Physics and Chemistry of Solids,2007,68:1830-1835.
    [51]Yang X X, Cao C D, Hohn K, et al. Highly visible-light active C and V co-doped TiO2 for degradation of acetaldehyde [J]. Journal of Catalysis,2007,252:296-302.
    [52]李立清,刘宗耀,唐新村等.B/Fe203共掺杂纳米Ti02可见光下的催化性能[J].中国有色金属学报,2006,16(12):2098-2103.
    [53]孙红旗,程友萍,金万勤等.镧、碳共掺杂Ti02的制备及其可见光催化性能[J].化工学报,2006,57(7):1570-1574.
    [54]石建稳,陈少华,王淑梅等.纳米二氧化钛光催化剂共掺杂的协同效应[J].化工进展,2009,28(2):251-258.
    [55]Cong Y, Zhang J L, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-Ti02 co-doped with nitrogen and iron(III) [J]. J. Phys. Chem. C, 2007,111:10618-10623.
    [56]Zhang X, Liu Q. Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel [J]. Applied Surface Science,2008, 254:4780-4785.
    [57]Wu P X, Tang J W, Dang Z. Preparation and photocatalysis of TiO2 nanoparticles doped with nitrogen and cadmium[J]. Materials Chemistry and Physics,2007,103: 264-269.
    [58]Huang L H, Sun C, Liu Y L. Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light [J]. Applied Surface Science,2007,253:7029-7035.
    [59]Liu Z Q, Zhou Y P, Li Z H, et al. Enhanced photocatalytic activity of (La, N) co-doped TiO2 by TiCl4 sol-gel autoigniting synthesis [J]. Journal of University of Science and Technology,2007,14:552-557.
    [60]Song K X, Zhou J H, Bao J C, et al. Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticles [J]. Journal of the American Ceramic Society,2008,91:1369-1371.
    [61]Liu C, Tang X, Mo C. Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium [J]. Journal of Solid State Chemistry,2008,181:913-919.
    [62]王振华,主沉浮,董厚欢等.Pb-N共掺杂Ti02纳米晶的制备、表征及光催化性能的研究[J].山东大学学报:理学版,2007,42(9):25-29.
    [63]吴遵义,姚兰英.氮铂共掺杂纳米二氧化钛的制备及表征[J].化学研究,2006,17(1):24-27.
    [64]李金环.掺杂Ti02光催化剂的制备、表征及降解含聚污水研究[D].大庆石油学院博士论文,2008:6-7.
    [65]Armon R, Bettane P. Disinfection of Bacillus spp. Spores in drinking water by TiO2 photocatalysis as a model for Bacillus anthracis [J]. Water Sci. Technol.2004,4(2): 7-14.
    [66]李田,陈超鹏.活性炭吸附-光催化氧化深度净水工艺实验研究[J].上海环境科学.2002,21(6):342-349.
    [67]Sekine Y, Nishimura A. Removal of formaldehyde from indoor air by passive type air-cleaning materials [J]. Atmospheric Environment,2001,11(35):2001-2007.
    [68]Yu J, Zhao X. Effeet of surface treatment on the photocatalytic activity and hydrophllic property of the sol-gel derived TiO2 thin films [J]. Mater. Res.. Bull, 2001,36:97-107.
    [69]Yu J, Zhao X J, Du J C. Preparation, microstructure and photocatalytic activity of the porous TiO2 anatase coating by Sol-Gel processing [J]. Sol-gel Sci.Tech.,2000, 17(2):163-171.
    [70]邓勤.水处理吸附剂的研究进展[J].钦州学院学报.2010,25(3):19-22.
    [71]Lalhruaitluanga H, Jayaram K, Prasad M N V, et al. Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study [J]. J. Hazard. Mater.2010,175:311-318.
    [72]He Q, Hu Z, Jiang Y, et al. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)-methyl) phenol-functionalized activated carbon followed by ICP-OES determination [J]. J. Hazard. Mater.2010,175:710-714.
    [73]王兰巴音.废水处理的新材料新方法-腐植酸树脂的研制及应用[M].北京:中国环境科学出版社.1991:86-92.
    [74]Thu P T T, Thanh T T, Phi H N, et al. Adsorption of lead from water by thiol-functionalized SBA-15silicas [J]. J. Mater. Sci,2010,45:2952-2957.
    [75]Yin P, Xu Q, Qu R, et al. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material [J]. J. Hazard. Mater.2010,173:710-716.
    [76]Liu R, Liang P. Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel [J]. J. Hazard. Mater.2008,152:166-171.
    [77]Tharanitharan V, Srinivasan K. Kinetic and equilibrium studies of removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution by modified duolite XAD-761 resins [J]. Asian J. Chem.2010,22:3036-3046.
    [78]耿建暖,仇农学,雷忠利.螯合吸附分离功能纤维的研究进展[J].功能高分子学报.2004,17(3):124-129.
    [79]Zhang J P, Wang A Q. Adsorption of Pb(Ⅱ) from aqueous solution by chitosan-g-poly (acrylicacid)/attapulgite/sodium humate composite hydrogels [J]. J. Chem. Eng. Data,2010,55(7):2379-2384.
    [80]邓金珠.从清洁生产角度探讨治理印染废水的对策[J].2009,17:346-360.
    [81]冯栩,廖银章,李旭东.印染废水生物处理技术的进展[J].印染,2006,32(15):48-51.
    [82]刘梅红.印染废水处理技术研究进展[J].纺织学报.2007,28(1):116-119.
    [83]孙剑辉,孙胜鹏,乔利平等.纳米Ti02-AC负载膜光催化降解偶氮染料[J].中国给水排水.2006,22(1):101-104.
    [84]Sylwia M, Maria T, Antoni W. Photodegradation of azo dye Acid Red 18 in aquartz labyrinth flow reactorwithimmobilized TiO2 bed [J]. Dyes and Piglnents,2006,3(6): 22-26.
    [85]Xin B P, Liu X M. Adsorption of anthraquinone dyes from aqueous solutions by penicillium terrestre [J]. Journal of Beijing Institute of Technology.2006,15(3): 366-340.
    [86]蒋宝南,薛开泉,张萍萍.染料废水脱色处理研究[J].环境科学与技术.2007,30(6):81-83.
    [87]Mateja T, Katerina S, Janja K. Biodegradation of azo dye RO16 in different reactors by immobilized irpex lacteus [J]. Acta. Chim. Slov.,2006,53:338-343.
    [88]胡涛,汪玉祥,许干等.印染废水的治理研究[J].江苏环境科技.2005,18(4):29-32.
    [89]任朝华.絮凝纳米Ti02光催化氧化法处理造纸废水的研究[J].长江大学学报,2006,3(3):41-43.
    [90]吴俊,邢卫红,徐南平.无机陶瓷膜处理印染废水的研究[J].应用化工,2004,33(5):56-59.
    [91]贾汉东,魏跃伟,高玉梅等.高锰酸钾对印染废水的脱色研究[J].河南化工,2003,(1):18-20.
    [92]高蓉菁,夏明芳,尹协东等.臭氧氧化法处理印染废水[J].污染防治技术,2003,16(4):68-70.
    [93]张传君,李泽琴,程温莹等.Fenton试剂的发展及在废水处理中的应用[J].世界科技研究与发展,2007,27(6):64-68.
    [94]唐受印,戴友芝.废水处理水热氧化技术[M].北京化学工业出版社,2002:35-37.
    [95]Pablo C, Jesus G, Ljusto L. Modeling of wastewater electro oxidation process part II. Paalication to active electrodes[J]. In. Eng. Chem. Res.,2004,43(9):1923-1931.
    [96]王宝贞,王琳.水污染治理新技术-新工艺、新概念、新理论[M].北京:科学出版社,2004:256-332.
    [97]Kaindl N, Tillman U, Mobius C H. Enhancement of Capacity and Efficiency of a Biological Waste Water Treatment Plant [J]. Water Science and Technology.1999, 40(11-12):231-239.
    [98]Anastas P T, Lankey R L. Sustainability through Green Chemistry and Engineering [J]. ACS Symp. Ser.2002,823,1-11.
    [99]杨书铭,黄长盾.纺织印染工业废水治理技术[M].北京:化学工业出版社,2002,31-36.
    [100]张永利.催化湿式氧化法处理印染废水的研究.环境工程学报[J],2009,3(6): 1011-1014.
    [101]赵雪,何瑾馨,展义臻.印染废水处理技术的研究进展[J].化学工业与工程技术,2009,30(2):38-43.
    [102]Pearce C I, Lloyd J R, Guthrie J T. The removal of color from textile wastewater using whole bacterial cells:A review. Dyes and Pigments [J],2003,58(3):179-196.
    [103]毛新平,梁春华.甲基橙在镧掺杂二氧化钛表面的吸附研究[J].环境保护科学.2009,35(4):57-59.
    [104]成建华,张文莉.抗生素菌渣处理工艺[J].医学工程设计杂志,2003,24(2):31-32.
    [105]孙黔云,张灼,黄红武等.工业发酵生产单细胞蛋白的研究[J].云南大学学报(自然科学版),1996,18(2):155-157.
    [106]崔九思,王钦源,王汉平.大气污染监测方法[M].第二版.北京:化学工业出版社,1997:654-678.
    [107]叶金花.掺杂改性Ti02的光催化性能及其灭菌性能研究[D].福建师范大学硕士论文,2007:25-26.
    [108]Choi W, Termin A, Hoffmann M R, Effect of Metal ion Doping on Photocatalytic Activity of TiO2 [J]. J. Phys. Chem. B,1994,98:13669-13675.
    [109]Curco D., Gimenez J., Addardak A., et al. Effects of radiation absorption and catalyst comcentration on the photocatalytic degradation of polluants Catalysis Today [J]. J. Phys. Chem. B,2002,76:177-188.
    [110]Burns A, Hayes G, Li W, et al. Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures [J]. Materials Science and Engineering,2004,111:150-155.
    [111]Jing L Q, Sun X J, Xin B F, et al. The preparation and characterization of La doped TiO2 nano-particles and their photocatalytic activity [J]. Journal of Solid State Chemistry,2004,177:3375-3382.
    [112]Bregani F, Lietti L, Forzatti P, et al. Steady-State and Transient Reactivity Study of TiO2-Supported V2O5-WO3 De-NOx Catalysts:Relevance of the Vanadium Tungsten Interaction on the Catalytic Activity [J]. Ind. Eng. Chem. Res.,1996, 35(11):3884-3892.
    [113]吴广明,陈炎.锂离子注入对V205薄膜光吸收的影响[J].光学学报,1999,19(5):640-646.
    [114]徐志兵,孔学军,余锦龙等.负载型TiO2/硅藻土复合光催化剂的研究[J].稀有金属,2007,31(1):92-96.
    [115]付宏刚,王健强,任志宇等.Fe3+-TiO2/SiO2薄膜催化剂的结构对其光催化性能影响[J].高等学校化学学报,2003,24(9):1671-1676.
    [116]Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes [J], Journal of Solar Engineering,1997.119(3):101-107.
    [117]罗文利,牛亚斌,欧阳坚等.二甲基二烯丙基氯化铵与丙烯酰胺水溶液共聚合[J].油田化学,1998,15(3):193-196.
    [118]孙晓君.改性纳米二氧化钛制备及可见光下的光催化活性研究[D].哈尔滨工业大学博士论文,2003:60-62.
    [119]Manas R, Parida C, Vijayan C S, et al. Room Temperature Ferromagnetism and Optical Limiting in V2O5 Nanoflowers Synthesized by a Novel Method [J]. J. Phys. Chem. C,2011,115:112-117.
    [120]Roy S, Viswanath B, Hegde M S, et al. Low-Temperature Selective Catalytic Reduction of NO with NH3 over Ti0.9M0.1O2-δ(M=Cr,Mn,Fe,Co,Cu) [J]. J. Phys. Chem. C,2008,112(15):6002-6012.
    [121]杨秋文,刘素琴,黄可龙等.Fe(Ⅲ)掺杂介孔Ti02的溶剂热法合成与表征[J].湘潭大学自然科学学报,2009,31(1):71-76.
    [122]Zhou M H, Yu J G, Cheng B, et al. Preparation and Photocatalytic Activity of Fe-doped Mesoporous Titanium Dioxide Nanocrystalline Photocatalysts [J]. Materials Chemistry and Physics,2005,93:159-163.
    [123]Zhou M H, Yu J G, Cheng B. Effects of Fe-doping on the Photocatalytic Activity of Mesoporous TiO2 Powders Prepared by an Ultrasonic Method [J]. Journal of Hazardous Materials B,2006,137:1838-1847.
    [124]Yu J G, Xiang Q J, Zhou M. H.. Preparation, Characterization and Visible-light-driven Photocatalytic Activity of Fe-doped Titania Nanorods and First-principles Study for Electronic Structures [J]. Applied Catalysis B:Environm ental,2009,90:595-602.
    [125]Wu J C S, Chen C H. A Visible Light Response Vanadium Dotal Titania Nanocatalyst by Sol-gel Method [J]. Journal of Photochemistry and Photobiology A,2004,163:509-515.
    [126]Blackstock J J, Donley C L, Stickle W F, et al. Oxide and carbide formation at titanium/organic monolayer interfaces [J]. J. Am. Chem. Sci.2008,130:4041-4047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700