强制对流影响凝固微观组织的相场法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凝固材料在凝固过程中形成的微观组织决定其最终性能,有效地控制凝固过程中微观组织的形成具有重要理论和实际意义。对流作用在凝固过程中不可避免,并通过改变固液界面附近的溶质和温度分布影响凝固微观组织的形成。随着计算科学的发展,耦合流场的相场法模拟已经成为国内外学者研究的热点。枝晶是凝固过程中最常见的微观组织,本文采用耦合流场的相场模型模拟了凝固中的枝晶生长过程,研究了强制对流作用下的枝晶生长机制,定量分析了有无强制对流作用下枝晶尖端生长行为,为有效预测和改善材料性能奠定了良好的理论基础。
     本文在Wheeler相场模型的基础上,耦合温度场和流场建立了强制对流作用下纯物质枝晶生长相场模型;进一步耦合溶质场建立了强制对流作用下二元合金枝晶生长相场模型。在数值求解过程中,选用基于均匀网格的有限差分对控制方程进行离散,为了避免时间步长的限制,提高计算效率,温度场控制方程用交替显隐式法求解。采用Visual C++语言实现相关模拟程序的编制,直接将Tecplot可视化程序与相场模型计算程序集成,建立了相场法微观组织模拟的可视化软件系统。
     采用强制对流作用下纯物质相场模型,以纯Ni为例,模拟研究了强制对流作用下纯物质单枝晶和多枝晶生长演化过程。结果表明,在单枝晶生长时,逆流枝晶臂生长迅速,顺流枝晶臂生长缓慢,水平枝晶臂逆流侧和顺流侧的生长也存在显著差别;在多枝晶生长时,受强制流动、晶体结构特征和生长空间的共同作用,仅有指向逆流侧外部区域的优先生长方向上的枝晶臂生长受到促进,主枝和侧枝发达,其它优先生长方向的枝晶臂生长均受到抑制,主枝和侧枝退化,模拟结果与重力对流作用下的丁二腈枝晶生长形貌相吻合。
     采用强制对流作用下二元合金相场模型,以Ni-Cu合金为例,模拟研究了强制对流作用下二元合金单枝晶和多枝晶生长演化过程。结果表明,在强制对流作用下,逆流枝晶臂受过冷熔体冲刷,枝晶臂尖端溶质浓度和温度低,实际过冷度大,枝晶臂生长迅速;热量和溶质在顺流侧富集,顺流枝晶臂尖端溶质浓度和温度高,实际过冷度小,枝晶臂生长缓慢。多枝晶共同生长时,枝晶间内部区域的枝晶臂生长主要受相邻枝晶控制,远离边界的外部区域的枝晶臂生长主要受流场控制。模拟结果与同步辐射X射线成像观察到的直流电场下Sn-Bi合金枝晶生长形貌一致。
     采用适应hcp晶系的二元合金相场模型,模拟研究AZ91D镁合金凝固中纯扩散和强制对流作用下单枝晶和多枝晶生长过程。结果表明,在纯扩散条件下,枝晶表现出明显的六方异性,各方向均衡生长;在强制对流作用下,流体逆流侧3个方向的枝晶臂明显比流体顺流侧3个方向的枝晶臂生长快,各枝晶臂长度存在很大差异。在多晶粒生长初期,各晶粒独立生长,为规则正六边形;随着凝固的进行,正六边形晶粒逐渐发展成枝晶,相向生长的枝晶臂互相影响并竞争生长,不同枝晶的一次枝晶臂彼此抑制,最终形成不对称枝晶形貌。模拟结果与实际枝晶形貌接近。
     对σ=σ0[1+εkcos(kθ)]形式的界面能各向异性函数进行修正,建立了修正的相场模型,在对纯扩散情况下Si枝晶生长形貌进行模拟研究并与实验结果对比的基础上,以Ni-Cu合金为例,对纯扩散和强制对流作用下的高界面能各向异性二元合金枝晶生长行为进行预测。结果表明,在高界面能各向异性纯Si枝晶生长中,部分晶向角方向的生长消失,一次枝晶和二次枝晶尖端出现棱角,从而都具有典型的棱角特征,模拟结果与实验结果相符合。在高界面能各向异性Ni-Cu合金枝晶生长中,当界面能各向异性强度ε4<1/15时,随着ε4增加,枝晶尖端速度增大,且在接近1/15处达到最大值;当ε4=1/15时,枝晶尖端速度下降4.34%;进一步增加ε4时,枝晶尖端速度先增到极大值后逐渐减小。引入界面动力学各向异性后,界面仅存在界面动力学各向异性δ时,固相以类矩形方式沿<110>方向生长;界面同时存在δ、ε4和仅存在ε4时,固相以枝晶方式沿<100>方向生长。在流速为6.43 m/s的强制对流作用下,枝晶的逆流侧受过冷熔体冲刷,逆流枝晶臂生长迅速,与纯扩散时相比稳态生长速度增加12.61%;热量和溶质在顺流侧聚集,顺流枝晶臂生长缓慢,与纯扩散时相比稳态生长速度减小14.62%。
The final properties of the solidification material depend on the microstructures established during the solidification process, so to control the formation of the microstructures effectively in solidification has important theoretical and practical significance. Convection is difficult to avoid in solidification processes, it will influence the formation of the microstructures remarkably by altering the distributions of concentration and temperature in the vicinity of the solid/liquid interface. With the development of computational science, coupling with flow filed of phase field simulation for solidification microstructures has become a hot research scholars at home and abroad. Dendrite is common microstructure in solidification process. In this Dissertion, the dendritic growth process in solidification is simulated by the phase field model coupling with flow field, the mechanism of the dendritic growth under forced flow during solidification is discussed, the dendritic growth behavior of tips under without flow and forced flow is quantitatively analysed, and a favorable base for prediction and improvement of mechanical property of material is established.
     Based on the Wheeler model, coupling with the temeperature field and flow field, the phase field model for dendritic growth of pure material under forced flow is developed; Further coupling with concentration field, the phase field model for dendritic growth of alloy under forced flow is developed. The governing equations are discretized on uniform grids using the Finite Difference method. The thermal governing equation is numerically solved using an alternating direct implicit method, which improve the calculating efficiency and avoid the restriction of the time step. The Visual C++ code is used to complete the phase-field simulation program, when visible software Tecplot is integrated with the simulation program, the visible system of the phase-field simulation is established.
     Using the pure material dendritic growth phase-field model, taking pure Ni for example, the growth process of the single and multi-dendrites under forced flow are simulated. In the case of single dendrite growth, the upstream arms of dendrite grow fast, the downstream arms of it grow slow, upstream side and downstream side of the lateral principal branches has significant differences. For multi-dendrites growth, the growth of dendrite arms on the preferred directions toward the out of upstream area is promoted, which lead to the principal branches and side branches are developed; The growth of dendrite arms on the other preferred directions is inhibited, principal branches and side branches degenerate. The simulated results show that the solidification features are consistent with those observed based on the dendrite growth in succinonitrile under gravity convection.
     Using the alloy dendritic growth phase-field model, taking Ni-Cu alloys for example, the growth process of the single and multi-dendrites under forced flow are simulated. In the case of single dendrite growth, because of fluid flushing, the temperature and the concentration of the upstream dendrite arm are low, the actual supercooling of it is great, which lead to the dendrite grow fast; Heat and solute enrich in the downstream, the temperature and the concentration of the downstream dendrite arm are high, the actual supercooling of it is small, which make the dendrite grow slow. For multi-dendrites growth, the growth of dendrite arms in internal area is mainly controlled by adjacent dendrite and those in external area away from border is mainly controlled by flow field. The simulated results show that the solidification features are consistent with those observed based on the dendrite growth in Sn-Bi alloys under direct current electric field.
     Using the dendritic growth phase-field model for the magnesium alloys with hcp structure, the growth process of the single and multi-dendrites of AZ91D alloys under without flow and forced flow are simulated. These results indicate that the dendrite displays obviously six-fold symmetry anisotropy and the growth is same in each direction under without flow. When dendrite exists in a forced flow, the growth of three directions on the upstream side are much faster than those of three directions on the downstream side, there exists much differences in the length of dendrite arm. In the case of the multi-dendrites, at the early stage, the crystals grow independently and is regular hexagon; With the increase of time, the regular hexagon become to dendrite morphology. The dendrite arms grown face to face influence mutually and grow competitively, the dendrite arms of different dendrite mutually inhibited, ultimately, to form asymmetric dendrite morphology. The simulation results as same as the experimental results.
     The function of anisotropic interface energy with the form ofσ=σ0[1+εkcos(kθ)] is regularized, and the regularized phase field model is developed. By comparing the simulation morphology for dendrite growth of pure Si under without flow with experimental results, the dendrite growth behaviours of Ni-Cu alloys with strong surface energy under without flow and forced flow is predicted. The results show that the variation of interface orientation discontinuity and the corners form on the main stem and side branches of dendrite during the dendrite growth process of pure Si with strong interface energy anisotropy, the simulation results is similar to the experimental results. During the dendrite growth process of Ni-Cu alloys with strong interface energy anisotropy (ε4), asε4 increases, the growth velocity of dendrite increases when theε4 is lower than the critical value; As theε4 crossed the critical value, the growth velocity dropped down by about 4.34%; With again increase inε4, the growth velocity reached a maximum value and then tends to decrease. Introducing interface kinetic anisotropy (δ), when there only existsδ, the melt solidifies growth along the <110> orientation and the crystals grow into a square-like. Under the strong interface energy anisotropy or two kinds of anisotropies conditions, the melt solidifies in a dendrite pattern growth along the <100> orientation. Under forced flow with flow velocity of 6.43 m/s, the upstream dendrite arm grows faster because of the undercooled melt flushing, the tip velocity at steady state increases by about 12.61% compared to the case without flow. The heat and solute are congregated in the downstream, which makes the dendrite arm grows slowly, the tip velocity at steady state decreases by about 14.62% compared to the case without flow.
引文
[1] Kurz W, Fisher D J. Fundamentals of Solidification. Switzerland: Trans Tech Publications Ltd, 1998
    [2] Davis S H. Theory of Solidification. Cambridge: New York Cambridge University Press, 2001
    [3] Tiller W A, Jackson K A, Rutter J W, et al. The Redistribution of Solute Atoms during the Solidification of Metals. Acta Mater., 1953, 1(4):428-437
    [4] Mullins W W, Sekerka R F. Morphological Stability of a Partical Growing by Diffusion of Heat Flow. J. Appl. Phys., 1963, 34(2):323-329
    [5] Mullins W W, Sekerka R F. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy. J. Appl. Phys., 1964, 35(2):444-451
    [6]胡汉起.金属凝固原理.北京:机械工业出版社, 1999
    [7]张玉妥.用相场法模拟二维枝晶生长:[东北大学硕士学位论文].沈阳:东北大学, 2002
    [8] Bastlank M. A Look Back at the 20th Century Casting Process Simulation. Modern Casting, 2000, 90(12):43-45
    [9] Oldfield W. A Quatitative Approach to Casting Solidification. ASM Trans.,1966, 59(2):945-960
    [10] Hunt J D. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Mater. Sci. Eng. A,1984, 65(1):75-83
    [11] Rappaz M, Thevoz P H. Solute Diffusion Model for Equiaxed Dendritic Growth: Analytical Solution. Acta Metall., 1987, 35(12):2929-2933
    [12] Dustin I, Kurz W. Modeling of Cooling Curves and Microstructures during Equiaxed Dendritic Solidification. Z. Metallkd, 1986, 77(5): 265-273
    [13] Lipton J, Glicksman M E, Kurz W. Equiaxed Dendrite Growth in Alloys at Small Supercooling. Metall. Trans., 1989, 18(2):341-345
    [14] Wang C Y, Beckermann C. A Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidication. Mater. Sci. Eng. A, 1993, 171(1/2):199 -211
    [15]姚连增,愈文海.晶体世界.北京:科学出版社, 1992
    [16] Spittle J A, Brown S G R. Computer Simulation of the Effects of Alloy Variables on the Grain Structures of Castings. Acta Metall., 1989, 37(7):1803-1810
    [17] Zhu P P, Smith R W. Dynamic Simulation of Crystal Growth by Monte-carlo method. Acta Metall., 1992, 40(12):3369-3379
    [18] Lee H N, Ryoo H S. Monte Carlo Simulation of Micro-structure Evolution Based on Grain Boundary Character Distribution. Mater. Sci. Eng. A, 2000, 281(1/2): 176-188
    [19] Crespo D, Pradell T. Kinetic Theory of Microstructural Evolution in Nucleation and Growth Process. Mater. Sci. Eng. A, 1997, 238(1):160-165
    [20] Wang L G, Paulette C. Kinetic Monte Carlo Simulation of the Growth of Polycry- stalline Cu Films. Surf. Sci., 2001, 473(1/2):25-38
    [21]金俊泽,王宗延,郑贤淑,等.金属凝固组织形成的仿真研究.金属学报, 1998, 34(9):928- 932
    [22]刘国权,宋晓艳,于海波.一种仿真新算法及其对三维个体晶粒长大速率拓扑依赖性理论方程的验证.金属学报, 1999, 35(3):245-248
    [23]丁雨田,王海南,许广济,等. Monte Carlo方法在定向凝固模拟中的应用.特种铸造及有色合金, 2001, 17(2):83-85
    [24]郭靖原,洪泽恺,陈民,等.金属凝固与晶体生长过程的蒙特卡罗模拟.工程热物理学报, 2001, 22(6):725-728
    [25]于海青,刘英才.蒙特卡罗法模拟Pb-Sn共晶合金.材料开发与应用, 2008, 23(4):43-46
    [26]王海东,张海,李海亮,等.焙烧过程晶粒生长的Monte Carlo模拟.中国有色金属学报, 2007, 17(6):990-996
    [27]肖纳敏,李殿中,李依依. Fe-C合金中形变诱导动态相变的蒙特卡罗模拟.物理学报, 2009, 58(S1):169-176
    [28] Brown S G R, Bruce N B. Three-Dimensional Simulation Cellular Automaton Model of Microstructural Evolmion during Solidification. J. Mater. Sci. Lett., 1995, 30(5): 1144-1150
    [29] Brown S G R. A 3-Dimensional Cellular Automaton Model of Free Dendritic growth. Scripta Metall. Mater., 1995, 32(2):241-246
    [30] Gandin Ch A, Rappaz M, Tintillier R. Three-Dimensional Simulation of the Grain Formation in Inveament Casting. Metall. Trans, 1994, 25(3):629-635
    [31] Nastac L, Stefanescu D M. Stochastic Modelling of Microstructure Formation in Solidification Processes. Modelling Simul. Mater. Sci. Eng. A, 1997, 5(4):391- 420
    [32] Nastac L. Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater., 1999, 47(17):4253-4262
    [33] Lee P D, Atwood R C, Dashwood R J. Modeling of Porosity Formation in Direct Chill Cast Aluminum-magnesium Alloys. Mater. Sci. Eng. A, 2002, 328(1/2):213 -222
    [34]李殿中,苏仕方,等.镍基合金叶片凝固过程微观组织模拟及工艺优化研究.铸造, 1997, (8):1-7
    [35]李殿中,杜强,胡志勇,等.金属成形过程中组织演变的Cellualr Automaton模拟技术.金属学报, 1999, 35(1):1201-1205
    [36]张林,王元明. Ni基耐热使合金凝固过程的元胞自动机方法模拟.金属学报, 2001, 37(8): 882-888
    [37]许庆彦,柳百成.采用Celluar Automaton法模拟铝合金的微观组织.中国机械工程, 2001, 12(3):328-331
    [38]余亮,顾斌.枝晶生长的元胞自动机模拟.安徽工业大学学报, 2002, 19(1): 10-13
    [39] Wang T M, Jin J Z, Zheng X S. A CA/MC Model for the Simulation of Grain Structures in Solidification Processes. J. Mater. Sci. Lett., 2002, 37(13): 2645- 2650
    [40]严卫东,刘汉武,杨爱民,等.非定向凝固高温合金叶片晶粒组织的二维模拟.材料导报,2002, 16(4):25-27
    [41]严卫东,刘汉武,熊玉华,等.非定向熔模铸造过程中高温合金叶片晶粒组织的计算机模拟.材料工程, 2002, 46(4):43-47
    [42]丁恒敏,刘瑞祥,陈立亮,等.用Cellular Automaton模型方法模拟二元合金多晶粒枝晶生长.特种铸造及有色合金, 2005, 25(6):337-339
    [43]丁雨田,张琴豫,许广济,等.纯铜热型连铸过程三维微观组织模拟.特种铸造及有色合金, 2006, 26(9):554-558
    [44]朱鸣芳,于金,洪俊杓.金属凝固显微组织的计算机模拟.中国工程科学, 2004, 6(5):8-15
    [45]戴挺,朱呜芳,陈双林,等.铝基四元合金枝晶组织及微观偏析的数值模拟.金属学报, 2008, 44(10):1175-1182
    [46] Wei Y H, Zhan X H, Dong Z B, et a1. Numerical Simulation of Columnar Dendritic Grain Growth during Weld Solidification Process. Sci. Technol. Weld. Joining, 2007, 12(2):138-146
    [47]付振南,许庆彦,熊守美.基于概率捕获模型的元胞自动机方法模拟镁合金枝晶生长过程.中国有色金属学报, 2007, 17(10):1567-1573
    [48]吴孟武,熊守美.基于改进CA方法的压铸镁合金微观组织模拟.金属学报, 2010, 46(12):1534-1542
    [49]黄建峰,杨屹,李羽晨,等.基于元胞自动机法的铝合金定向凝固过程微观组织数值模拟.四川大学学报, 2010, 42(6):219-227
    [50]徐野川. Al2O3-ZrO2体系中晶粒长大的相场法计算机模拟研究: [东北大学硕士学位论文].沈阳:东北大学, 2004
    [51] Steinbach I, Schmitz G J. Direct Numerical Simulation of Solidification Structure using the Phase-field Method. Modeling of Casting, Welding and Advanced Solidification Process VIII, The Minerals, Metal & Materials Society, 1998: 521
    [52] Tong X, Beckermann C, Karma A. Phase-field Simulation of Dendritic Growth with Convention. Modeling of casting, Welding and Advanced Solidification Process VIII, The Minerals, Metal & Materials Society,1998:613
    [53] Collins J B, Levin H. Diffuse Interface Model of Diffusion-limited Crystal Growth. Phys. Rev. B, 1985, 31(9):6119-6122
    [54] Caginalp G, Fife P C. Dynamics of Layered Interfaces Arising form Phase Boundaries. SIAM J. on Applied Mathematics, 1988, 48(3):506-510
    [55] Fife P C, Gill G S. The Phase-field Description of Mushy Zones. Physica D, 1989, 35(1/2): 267-275
    [56] Kobayashi R. Modeling and Numerical Simulations of Dendritic Crystal Growth . Physica D, 1993, 63(3/4):410-423
    [57]Wheeler A A, Murray R J. Computation of Dendritics using a Phase Field Model. Physica D, 1993, 66(1/2):243-262
    [58] Wang S L, Sekerka R F, Wheeler A A, et al. Thermo-dynamically Consistent Phase Field Models for Solidification. Physica D, 1993, 69(1/2):189-200
    [59] Penrose O, Fife P C. Thermodynamically Consistent Models of Phase Field Type for the Kinetics of Phase Transitions. Physica D, 1990, 43(1):44-62
    [60] Murrary B T, Wheeler A A, Glicksman M E. Simulation of Experimentally Observed Dendritic Growth Behavior using a Phase-field Model. J. Cryst.Growth, 1995, 154(3/4):386-400
    [61] Braun R J, Murray B T. Adaptive Phase-field Computations of Dendritic Crystal Growth. J. Cryst.Growth, 1997, 174(1-4):41-53
    [62] Karma A, Rappel W J. Phase-field Model of Dendritic Sidebranching with Thermal Noise. Phys. Rev. E, 1999, 60(4):6614-3625
    [63] Karma A, Rapple W J. Phase Field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics. Phys. Rev. E, 1996, 53(4):3017-3020
    [64] Karma A, Rapple W J. Numerical Simulation of Three-dimensional Dendritic Growth. Phys. Rev. Lett., 1996, 77(19):4050-4053
    [65]张玉妥,李殿中,庞维诚.用相场方法模拟镍的枝晶生长.材料研究学报, 2002, 16(5):541-543
    [66]张玉妥,李殿中,李依依,等.用相场方法模拟纯物质等轴枝晶生长.金属学报, 2000, 36(6):589-591
    [67]于艳梅,杨根仓,赵达文,等.过冷熔体中枝晶生长的相场法数值模拟.物理学报, 2001, 50(12):2423-2428
    [68]赵代平,荆涛.用捕获液态改进的相场方法模拟三维枝晶生长.金属学报, 2002, 38(12):1238-1240
    [69]赵代平,荆涛,柳百成.相场模型参数对枝晶形貌的影响.金属学报, 2003, 39(8):813-816
    [70]田卫星,付海波,王周英,等.相场模拟中金属固-液热扩散系数比对晶体侧向分支形貌的影响.铸造, 2007, 56(5):501-504
    [71]田卫星,刘健,苏玉阔,等.过冷对纯镍熔体凝固过程中树枝晶侧向分支的影响.山东大学学报(工学版), 2007, 37(1):6-9
    [72]张清光,陈民,过增元.过冷熔体中枝晶生长的相场模拟.工程热物理学报, 2004, 25(3):487-489
    [73]朱昌盛,冯力,王智平,等.三维枝晶生长的相场法数值模拟研究.物理学报, 2009, 58(11):8055-8062
    [74] Wheeler A A, Boettinger W J, McFadden G B. Phase-field Model for Isothermal Phase Transition in Binary Alloys. Phys. Rev. E, 1992, 45(10):7424-7439
    [75] Boettinger W J, Warren J A. The Phase-field Method: Simulation of Alloy Dendritic Solidification during Recalescence. Metall. Materi. Trans. A, 1996, 27(3):657-668
    [76] Loginova, Amberg G, Agren J. Phase-field Simulation of Non-Isothermal Binary Alloy Solidification. Acta Mater., 2001, 49(4):573-581
    [77] Lan C W, Chang Y C, Shih C J. Adaptive Phase Field Simulation of Non- Isothermal Free Dendritic Growth of a Binary Alloy. Acta Mater., 2003, 51 (7):1857-1869
    [78] Kim S G, Kim W T, Suzuki T. Phase-field Model for Binary Alloys. Phys. Rev. E, 1999, 60(6):7186-7197
    [79] Lee J S, Suzuki T. Numerical Simulation of Isothermal Dendritic Growth by Phase-field Model. ISIJ International, 1999, 39(3):246-252
    [80] Suzuki T, Ode M, Kim S G, et al. Phase-field Model of Dendritic Growth. J.Cryst. Growth, 2002, 237 (1):125-131
    [81] Ode M, Suzuki T, Kim S G, et al. Phase-field Model for Solidification of Fe-C Alloys. Sci. Technol. Adv. Mater., 2000, 1(1): 43-49
    [82]张光跃,荆涛,柳百成,等.铝合金枝晶生长形貌数值模拟研究.铸造, 2002, 51(12):764-766
    [83]赵宇辉.铝合金微观组织相场法数值模拟技术研究: [中北大学硕士学位论文].太原:中北大学, 2006
    [84]赵代平,荆涛,柳百成.相场法模拟铝合金三维枝晶生长.物理学报, 2003, 52(7):1737-1742
    [85]龙文元,蔡启舟,陈立亮,等.二元合金等温凝固过程的相场模型.物理学报, 2005, 54(1):256-262
    [86]龙文元,蔡启舟,魏伯康,等.二元合金非等温凝固过程的相场法模拟.铸造, 2005, 25(2):88-91
    [87]刘静.金属凝固过程微观组织形成的相场法模拟研究: [西北工业大学硕士学位论文].西安:西北工业大学, 2006
    [88]丁恒敏.铸造合金的微观组织模拟-几种方法关键技术的研究:[华中科技大学博士学位论文].武汉:华中科技大学, 2005
    [89]朱昌盛,王智平,荆涛,等.二元合金微观偏析的相场法数值模拟.物理学报, 2006, 55(3):1502-1507
    [90]路阳,王帆,朱昌盛,等.等温凝固多晶粒生长相场法模拟.物理学报, 2006, 55(2):780-785
    [91] Kobayashi H, Ode M, Kim S G, et al. Phase-field Model for Solidification of Ternary Alloys Coupled with Thermodynamic Database. Scripta Mater., 2003, 48:689-694
    [92] Cha P R, Yeon D H, Yoon J K. A Phase Field Model for Isothermal Solidification of Multicomponent Alloys. Acta Mater., 2001, 49(16):3295-3307
    [93] Qin R S, Wallach E R, Thomson R C. A Phase-field Model for the Solidification of Multi-component and Multiphase Alloys. J. Cryst.Growth, 2005, 279(1):163- 169
    [94]龙文元,蔡启舟,魏伯康,等.相场法模拟多元合金过冷熔体中的枝晶生长.物理学报, 2006, 55(3):1341-1345
    [95] Feng L, Wang Z P, Zhu C S, et al. Phase-field Model of Isothermal Solidification with Multiple Grain Growth. Chin. Phys. Soc., 2009, 18(5):1985-1990
    [96]王锦程,张玉祥,杨玉娟,等.多元合金枝晶生长形态转变及显微偏析的相场法研究,中国科学, 2008, 38(11):1921-1929
    [97] Boettinger W J, Warren J A. Simulation of the Cell to Plane Front Transition During Directional Solidification at High Velocity. J. Cryst.Growth, 1999, 200(3/4):583-591
    [98] Lan C W, Chang Y C. Efficient Adaptive Phase Field Simulation of Directional Solidification of a Binary Alloy. J. Cryst.Growth, 2003, 250(3/4):525-537
    [99] Tomohiro T, Toshimichi F, Yoshihiro F. Phase-field Simulation During Directional Solidification of a Binary Alloy Using Adaptive Finite Element Method. J. Cryst. Growth, 2005, 283(1/2): 263-278
    [100] Kim S G, Kim W T. Phase Field Modeling of Rapid Solidification. Mater. Sci. Eng. A, 2001, 304-306:281-286
    [101] Yu Y M, Yang G C, Zhao D W, et al. Influence of Isothermal Approximation on the Phase-field Simulation of Directional Growth in Undercooled Melt. Chin. Phys., 2003, 12(2): 211-217
    [102]李梅娥,杨根仓,周尧和.二元合金高速定向凝固过程的相场法数值模拟.物理学报, 2005, 54(1):454-459
    [103]肖荣振,徐建林,王智平,等.高速定向凝固溶质偏析的相场法数值模拟.自然科学进展, 2007, 17(9):1273-1278
    [104] Guo J J, Li X Z, Su Y Q, et al. Phase-field Simulation of Structure Evolution at High Growth Velocities During Directional Solidification of Ti55Al45 Alloy. Intermetalic, 2004, 13(3/4): 275-279
    [105]庄建平,龙文元,方立高,等.过冷熔体定向凝固过程枝晶生长的相场法模拟.热加工工艺, 2005, 34(9):5-7
    [106]王锦程,李俊杰,杨玉娟,等.定向凝固界面形态演化及其稳定性的相场法研究.中国科学, 2008, 38(1):16-23
    [107] Karma A. Phase Field Model of Eutectic Growth. Phys. Rev. E, 1994, 49(3): 2245-2250
    [108] Wheeler A A, McFadden G B, Boettinger W J. Phase-field Model of a Eutectic Alloy. Proc. R. Soc. London, 1996(9):452-496
    [109] Steinbach I, Pezzolla F, Nestler B, et al. A Phase Field Concept for Multiphase Systems. Physica D, 1996, 94(3):135-147
    [110] Tiaden J, Nestler B, Diepers H J, et al. The Multiphase-field Model With an Integrated Concept for Modelling Solute Diffusion. Physica D, 1998, 115(1/2):73 -86
    [111] Nestler B, Wheeler A A. A Multi-phase field Model of Eutectic and Peritectic Alloys Numerical Simulation of Growth Structures. Physica D, 2000, 138(1/2):114-133
    [112] Jackson K A, Hunt J D. Lamellar and Rod Eutectic Growth. Trans. Metal. Soc. of AIME, 1996, 236(8):1129-1142
    [113]朱耀产,王锦程,杨根仓,等.三种变速条件下共晶生长的多相场法模拟.物理学报, 2007, 56(9):5542-5547
    [114]朱耀产,杨根仓,王锦程,等.二元共晶定向凝固多相场法数值模拟.中国有色金属学报, 2005, 15(7):1026-1032
    [115]杨玉娟,王锦程,朱耀产,等.自由共晶生长的多相场等温数值模拟.稀有金属材料与工程, 2007, 36(4):573-577
    [116]杨玉娟,王锦程,张玉祥,等.多相场模拟非共晶成分CBr4-C2Cl6合金片层生长的形貌选择.稀有金属材料与工程, 2008, 37(4):594-598
    [117]杨玉娟,王锦程,张玉祥,等.三维多相场数值模拟共晶CBr4-C2Cl6合金在不同抽拉速度下的形态选择.物理学报, 2009, 58(4):2797-2803
    [118] Miyazaki T, Takeuchi A, Koyama T. Computer Simulations of the Phase Decomposition on Cu-Cc Binary Alloys Based on the Non-linear Diffusion equation. J. Mater. Sci. Lett., 1992, 27(4):2444-2448
    [119]赵宇宏.合金早期沉淀过程的原子尺度计算机模拟: [西北工业大学博士学位论文].西安:西北工业大学, 2003
    [120]卢艳丽.镍基合金沉淀过程的含畸变能微观相场模拟: [西北工业大学博士学位论文].西安:西北工业大学, 2007
    [121]王永欣.铝锂合金相场模拟与实验研究: [西北工业大学博士学位论文].西安:西北工业大学,2006
    [122] Wang Y, Khachaturyan A G. Three-Dimensional Field Model and Computer Modeling of Martensitic Transformation. Acta Mater., 1997, 45(2):759-773
    [123] Artemev A, Jin Y M, Khachaturyan A G. Three-Dimensional Phase Field Model of Proper Martensitic Transformation. Acta Mater., 2001, 49(7):1165-1177
    [124] Man J, Zhang J H, Rong Y H. Microstructural Evolution of Mn-rich Antiferro- magnetic Mn-Cu Alloy under Temperature Field. Appl. Phys. Lett., 2010, 96(13): 1904-1906
    [125]满蛟,张骥华,戎咏华.马氏体相变中应变自协调效应的三维相场研究.金属学报, 2010, 46(7):775-780
    [126] Tonhardt R, Amberg G. Dendritic Growth of Randomly Oriented Nuclei in a Shear Flow. J. Cryst. Growth, 2000, 213(1/2):161-187
    [127] Tonhardt R, Amberg G. Phase-Field Simulation of Dendritic Growth in a Shear Flow. J. Cryst. Growth, 1998, 194(3/4):406-425
    [128] Diepers H J, Beckermann C. Simulation Convection and Ripening in a Binary Alloy Mush Using the Phase-field Method. Acta Mater., 1999, 47(13):3663-3678
    [129] Tong X, Beckermann C. Velocity and Shape Selection of Dendritic Crystals in a Forced Flow. Phys. Rev. E, 2000, 61(1):49-52
    [130] Lan C W, Shih C J. Phase Field Simulation of Non-isothermal Free Dendritic Growth of a Binary Alloy in a Forced Flow. J. Cryst.Growth, 2004, 264(1-3): 472-482
    [131] Li Q, Beckermann C. Modeling of Free Dendritic Growth of Succinonitrile- acetone Alloys with Thermosolutal Melt Convection. J. Cryst. Growth, 2002, 236(1-3):482-498
    [132] Tonhardt R, Amberg G. Simulation of Natural Convection Effects on Succin- onitrile Crystals. Phys. Rev. E, 2000, 62(1):828-836
    [133] Jeong J H, Goldenfeld N, Dantzig J A. Phase Field Model for Three Dimen- sional Dendritic Growth with Fluid Flow. Phys. Rev. E, 2001, 64(4):1602-1615
    [134] McNamara G R, Zanetti G. Use of the Lattice Boltzmann Equation to Simulate Lattice-Gas Automata. Phys. Rev. Lett., 1988, 61(20):2332-2335
    [135] Miller W, Succi S. A Lattice Boltzmann Model for Anisotropic Crystal Growth from Melt. J. Statistical Physics, 2002,107(1/2):173-186
    [136]陈玉娟,陈长乐.相场法模拟对流速度对上游枝晶生长的影响.物理学报, 2008, 57(7):4585-4589
    [137]陈玉娟,陈长乐,邱文旭,等.强迫对流下各相场参数对枝晶生长的影响.特种铸造及有色合金, 2008, 28(7):513-515
    [138]段萌萌,陈长乐,李展耀,等.重力对流对凝固界面形态的影响.中国科学, 2007, 37(3):396-402
    [139] Takatani H, Gandin Ch A, Rappaz M. EBSD Characterization and Modelling of Columnar Dendritic Grains Growing in the Presence of Fluid Flow. Acta Mater., 2000, 48(3):675-688
    [140] Shin Y H, Hong C P. Modeling of Dendritic Growth with Convetion using a Modified Cellular Automaton Model with a Diffuse Interface. ISIJ International, 2002, 42(4):359-367
    [141]朱鸣芳,戴挺,李成允,等.对流作用下枝晶生长行为的数值模拟.中国科学, 2005, 35(7):673-688
    [142]孙东科,朱鸣芳. CA-LB模型模拟对流枝晶生长.中国有色金属学报, 2007, 17(S1):84-87
    [143]杨朝蓉,孙东科,朱鸣芳,等.CA-LBM模拟自然对流作用下的枝晶生长.金属学报, 2009, 45(1):43-50
    [144] Taylor J E, Cahn J W. Diffuse Interfaces with Sharp Corners and Faeets: Phase Field Models with Strongly Anisotropic Surfaces. Physica D, 1998, 112(3/4): 381-411
    [145] Eggleston J J, McFadden G B, Voorhees P W. A Phase-Field Model for Highly Anisotropic Interfacial Energy. Physica D, 2001, 150(1/2):91-103
    [146] Kasajima H, Nagano E, Suzuki T, et al. Phase-field Modeling for Facet Dendrite Growth of Silicon. Sci. Technol. Adv. Mater., 2003, 4(6):553- 557
    [147] Kim S G, Kim W T. Phase Field Modeling of Dendrite Growth with High Anisotropy. J. Cryst.Growth, 2005, 275(1/2):355-360
    [148] Suzuki T, Kim S G, Kim W T. Two-Dimensional Facet Crystal Growth of Silicon from Undercooled Melt of Si-Ni Alloy. Mater. Sci. Eng. A, 2007, 449-451: 99-104
    [149]李俊杰,王锦程,杨根仓.相场法模拟界面能各向异性对枝晶生长行为的影响.自然科学进展, 2005, 15(11):1312-1317
    [150] Zhang G W, Hou H, Cheng J. Phase Field Model for Strong Anisotropy of Kinetic and Highly Anisotropic Interfacial Energy. Transactions of Nonferrous Metals Society of China, 2006, 16(Z2):307-313
    [151] Chen Z, Chen C L, Hao L M. Numerical Simulation of Facet Dendrite Growth. Transactions of Nonferrous Metals Society of China, 2008, 18(4):938-943
    [152] Langer J S Muller-Krumbhaar H. Theory of dendritic growth-I. Elements of a Stability Analysis. Acta Metall. 1978, 26(11):1681-1687
    [153] Barbieri A, Langer J S. Prediction of Dendritic Growth Rates in the Linearized Solvabolity Theory. 1989, 39(10):5314-5325
    [154]于艳梅.过冷熔体枝晶生长的相场法数值模拟: [西北工业大学博士学位论文].西安:西北工业大学, 2002
    [155] Langer J S. Directions in Condense Matter(eds. G.Grinstein, G. Mazenko). Singapore: World Scientific, 1986
    [156] Beckermann C, Diepers H J, Steinbach I, et al. Modeling Melt Convection in Phase-field Simulations of Solidification. J. Comp. Phys., 1999, 154(2):468-496
    [157]柳百成,荆涛.铸造工程的模拟仿真与质量控制.北京:机械工业出版社, 2002
    [158]徐瑞.材料科学中数值模拟与计算.哈尔滨:哈尔滨工业大社, 2005
    [159]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 1997
    [160]王福军.计算流体动力学分析.北京:清华大学出版社, 2004
    [161]荆涛,柳百成.凝固过程数值模拟.北京:电子工业出版社, 2002
    [162]高隽,黄伟.科学计算可视化.安徽科技, 2000, 13(6):4-5
    [163]陈铁.科学数据图显分析软件Tecplot.软件世界, 1995, 2(6):28
    [164] Ivantsov G P, Dokl. Temperature Field Around Spheroidal Cylindrical and Acicular Crystal Growing in a Supercooled Melt. Akad. Nauk. USSR, 1947, 58: 567-569
    [165] Saito Y, Goldbeck-wood G, Müller-Krumbhaar H. Numerical Simulation of Dendritic Growth. Phys. Rev. A, 1988, 38(4):2148-2157
    [166]陈云,康秀红,李殿中.自由枝晶生长相场模型的自适应有限元模拟.物理学报, 2009, 58(1):390-398
    [167] Jackson K A, Hunt J D. Transparent Compounds that Freeze Like Metals. Acta Metall. Mater., 1965, 13(11):1212-1215
    [168] Glicksman M E, Huang S C. Convective Flow during Dendritic Growth. Alabama: NASA Workshop on Fluids Experimental System, 1979,170-190
    [169]曹一超.透明模型合金宏微观凝固模拟研究: [西北工业大学硕士学位论文].西安:西北工业大学, 2006
    [170]段萌萌,陈长乐. SCN-Cam共晶合金的定向凝固研究.功能材料, 2011, 42 (2):252-255
    [171]王建元,陈长乐,翟薇,等.切向流动对偏晶合金定向生长机理的影响.物理学报, 2010, 59(10):7424-7430
    [172]冼鼎昌.同步辐射的现状和发展.中国科学基金, 2005,19(6):321-325
    [173] Ruvalcaba D, Mathiesen R H, Eskin D G, et al. In-situ Observations of Dendritic Fragmentation due to Local Solute-enrichment during Directional Solidification of an Aluminum Alloy. Acta Mater, 2007, 55(13):4287-4292
    [174]Yasuda H, Ohnaka I, Kawasaki K, et al. Direct Observation of Stray Crystal Formation in Unidirectional Solidification of Sn-Bi Alloy by X-ray Imaging. J. Cryst. Growth, 2004, 262(1-4):645-652
    [175] Li B, Brody H D, Kazimirov A. Real-time Observation of Dendrite Coarsening in Sn-13%Bi Alloy by Synchrotron Microradiography. Phys. Rev. E, 2004, 70(6): 2602-2605
    [176] Wang T M, Xu J J, Li J, et al. In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology. Sci China Tech Sci, 2010, 53 (5): 1278-1284
    [177]王同敏,许菁菁,李军,等.金属合金枝晶生长同步辐射X射线实时成像观察.中国科学, 2010, 40(10):1214-1220
    [178] Wang T M, Xu J J, Xiao T Q, et al. Evolution of Dendrite Growth of a Binary Alloy under an Applied Electric Current-an in Situ Observation. Phys. Rev. E, 2010, 81(4):2601- 2604
    [179]王同敏,朱晶,陈宗宁,等.电场调控下合金凝固过程枝晶形貌演变同步辐射原位成像.中国科学, 2011, 41(1):23-28
    [180]霍亮,韩志强,柳百成.基于两套网格的CA方法模拟铸造镁合金凝固过程枝晶形貌演化.金属学报, 2009, 45(12):1414-1420
    [181]赵达文.过冷熔体凝固的相场法自适应有限元模拟:[西北工业大学博士学位论文].西安:西北工业大学, 2005
    [182] Sekerka R F. Analytical Criteria for Missing Orientations on Three-Dimensional Equilibrium Shapes. J. Cryst. Growth, 2005, 275(1/2):77-82
    [183] Takaki T, Hasebe T, Tomita Y. Two-Dimensional Phase-Field Simulation of Self-assembled quantum dot formation. J. Cryst. Growth, 2006, 287(2):495-499
    [184] Burton W K, Cabrera N, Frank F C. The Growth of Crystals and the Equilibrium Structure of their Surfaces. Phil. Trans. R. Soc., 1951, 243(866):299-358
    [185] Aoyama T, Kuribayashi K. Influence of Undercooling on Solid/liquid Interface Morphology in Semiconductors. Acta Mater., 2000, 48(14):3739-3744
    [186] Aoyama T, Kuribayashi K. Rapid Solidification Processes of Semiconductors from highly undercooled melts. Mater. Sci. Eng.A, 2001, 304-306:231-234
    [187] Willnecker R, Herlach D M, Feuerbacher B. Evidence of Noneqilibrium Processes in Rapid Solidification of Undercooled Melts. Phy. Rev. Lett., 1989, 62(23):2707-2710
    [188]赵达文,李金富.相场模型模拟液固界面各向异性作用下自由枝晶生长.物理学报, 2009, 58(10):7094-7100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700