含AlN纳米多层膜的生长结构和超硬机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiN为代表的硬质陶瓷薄膜作为刀具涂层取得了巨大的成功,有力地推动了制造业的发展。高速、干式切削等加工技术的进步对刀具涂层提出了更高的要求。纳米多层膜的高硬度以及能够通过材料组合获得其它优异性能的可裁剪性,使其成为一类具有广泛应用潜力的涂层材料。而其通过微结构的设计获得高硬度的强化机制更具理论研究价值。
     已有的研究表明,在很多多层膜中,一种调制层在一定条件下会使另一调制层发生相转变,如TiN/SiO2多层膜中,非晶层的SiO2在厚度低于约1nm时在立方TIN膜板层的作用下晶体化为与TiN结构相同的赝晶。但目前关于非晶晶化的研究主要集中在以立方氮化物为模板的纳米多层膜体系中,对于以其他晶体结构调制层为膜板层的多层膜体系的研究却鲜有报道。
     本文采用反应溅射方法制备了TiN/AlON纳米多层膜,采用化合物靶溅射制备了AlN/TiB_2纳米多层膜。研究了原为非晶态的AlON和TiB_2调制层在立方结构TiN和六方结构AlN晶体层“模板作用”下的晶化条件,以及非晶层晶化对纳米多层膜生长结构和力学性能的影响。论文还提出了一种测量金属基体上硬质薄膜内应力的应力释放测量法。
     研究结果表明:
     1.在采用氧化物Al2O3靶在Ar、N2混合气氛中通过反应溅射制备TiN/AlON纳米多层膜的过程中,溅射的Al2O3分子中的氧原子会部分被氮原子所取代,形成非晶态的AlON化合物。
     2.TiN/AlON纳米多层膜中,AlON在层厚小于0.6 nm时被强制晶化并与TiN形成共格外延生长结构,多层膜产生硬度升高的效应,最高硬度达40.6GPa;进一步增加其层厚,AlON向非晶态转变,从而破坏多层膜的晶体生长,多层膜的硬度随之降低。由于具有很高的沉积速率,这种采用反应溅射制备高硬度TiN/AlON纳米多层膜的技术有望用于工业生产。
     3.AlN/TiB_2纳米多层膜中,由于AlN的膜板作用,原为非晶态的TiB_2层在小厚度时被强制晶化,并与h-AlN形成共格外延生长结构。多层膜的硬度获得提高,最高达到30.5GPa。厚度继续增加,TiB_2转变为以非晶态生长,多层膜的共格外延生长结构受到破坏,相应地,其硬度也随之降低。
     4.论文基于Stoney公式,提出了一种通过电火花切割金属基片释放薄膜应力的内应力测量方法,该方法可准确地测量金属基体上硬质薄膜内应力,同时因可以直接从金属零件上取样而更方便。
The application of hard ceramic thin films, such as TiN, as coatings of cutting tool have gained huge success and significantly promoted the development of manufacturing industry. The advancement of machining techniques, such as high speed, dry cutting, demands better properties for the coatings of cutting tools. The nano-multilayer makes itself a promising candidate coating for its high hardness and the diversity, from which various superior properties could be obtained. Meanwhile, of more theoretic value is its hardening mechanism, where high hardness is obtained by designing its microstructure.
     It is already known that in some multilayers, one modulation layer could be phase transformed and grow epitaxially with the other layer. In TiN/SiO2 mulitlayers, for example, when the thickness is less than 1nm, the amorphous SiO2 layer is transformed into the pseudo-crystal under the“template effects”of TiN modulation layer, which shares the structure with cubic TiN layer. However, current researches on crystallization of amorphous are mostly focused on the cubic nitride based nano-mulitlayers. Few, if any, investigations have been done on the multilayer series, whose template layers have different structures.
     A series of TiN/AlON nano-multilayers are synthesized with chemical sputtering method; a series of AlN/TiB2 nano-multilayers are synthesized with physical sputtering method. The crystallizing conditions are investigated, under which amorphous AlON and TiB2 modulation layers are crystallized for“the template effects”of cubic TiN and hexagonal AlN. The effects of the crystallization of amorphous layers on multilayers’microstructure and mechanical properties are also studied. A method of measuring internal stresses in the metal based hard thin films is proposed. Results are as follows:
     1. When using Al_2O_3 target to synthesize TiN/AlON multilayers in the gas mixture of Ar and N_2, the O atom in the Al_2O_3 will be partially replaced by N atom, forming amorphous AlON.
     2. When the thickness of AlON layer is less than 0.6nm, AlON is forced to crystallize and grow epitaxially with TiN and the hardness of multilayers are enhanced with the highest value reaching 40.6GPa. Further increasing the thickness, the AlON layer transformed into amorphous, destroying the crystal structure of multilayers, and the hardness also decreases. Due to the high deposition rate, this technique, which uses chemical sputtering method to synthesize TiN/AlON multilayer, is of potential industrial application.
     3. In AlN/TiB_2 nano-multilayers, due to the template effects of AlN, the amorphous TiB2 layers are forced to crystallized and grow epitaxially with h-AlN at small thickness. At the same time, the hardness of multilayers increases up to 30.5GPa. Further increasing the thickness of TiB2 layers, the TiB2 layers turn into amorphous, and destroying the epitaxial structure of multilayers, accordingly the hardness decreases.
     4. Based on Stoney equation, a method is proposed to measure the internal stresses in the metal based thin films, which releases the stresses by cutting metal substrate with eletro discharging machining (EDM). With this method, the internal stresses can be conveniently and rapidly measured.
引文
[1] 宋健,制造业的现代化,人民日报,2002.9.26,第六版
    [2] 赵海波,国内外切削刀具涂层技术发展综述,《工具技术》,2002 年 36 卷 2 期:3-7
    [3] 肖寿仁,刀具涂层材料的现状与发展趋势,《金属有色加工》,2006 年 35 卷 4 期:35-36,51
    [4] S A Barnett and Meenam Shinn, Plastic and Elastic Properties of Compositionally Modulated Thin Films. Annu. Rev. Mater. Sci., 1994, 24:481~511
    [5] U.Helmersson,S.Todorova, S.A.Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987;62(2):481-484
    [6] P.B.Mirkarimi, L.Hultman, S.A.Barnett, Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices, Appl. Phys Lett., 1990,57(25):2654~2656
    [7] J.O.Kim, J.D.Achenbach, M.Shinn, S.A. Barnett, Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices, J. Mater. Res., 1992;7(3):2248~2256
    [8] K.M.Hubbard, T.R.Jervis, P.B. Mirkarimi, S.A.Barnett, Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation, J. Appl. Phys., 1992; 72:4466~4468
    [9] M. Shinn, L.Hultman, S.A.Barnett, Growth, structure and microhardness of epitaxial TiN/NbN superlattices, .J Mater. Res., 1992;7(4):901-911
    [10] P.B.Mirkarimi, S.A.Barnett, K.M.Hubbard, T.R.Jervis, L.Hultman, Structure and mechanical properties of Epitaxial TiN/V0.3Nb0.7N (100) superlattice, J. Mater. Res., 1994;9(6):1456-1467
    [11] M.Shinn, S.A. Barnett, Effect of superlattice layer elastic moduli on hardness, Appl. Phys. Lett., 1994 ;64(1) :61-63
    [12] X. Chu, M.S.Wong, W.D. Sproul, S.L.Rohde, S.A. Barnett, Deposition and properties of polycrystalline TiN/NbN superlattice coatings, J. Vac. Sci. Technol. A, 1992;10(4):1604~1609
    [13] J. Musil, Hard and superhard nanocomposite coatings, Surf . coat . Technol., 2000, 125:322~330.
    [14] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, et al., Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering, Surf. Coat. Technol., 1996;86-87:351-356
    [15] H. Ljungcrantz, C. Engstrom, L.Hultman, et al., Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactivemagnetron sputtering, J. Vac.Sci. Tehnol. A, 1998;16(5):3104~3113
    [16] P.Yashar, S.A. Barnett, J.Rechner, W.D. Sproul, Structure and mechanical properties of polycrystalline CrN/TiN superlattices, J. Vac.Sci. Tehnol. A, 1998;16(5):2913-2918
    [17] U. Heister, J.Krempel-Hesse, J. Szczyrbowski, et al., TwinMagTMII: attempts to improve an excellent sputter tool, Thin Solid Films, 1999; 351 :27~31.
    [18] T. Tsakalakos, J E Hilliard, Elastic modulus in composition-modulated copper-nickel foils.Journal of Applied Physics,1983;54:734~737
    [19] M Setoyama, A Nakayama, M Tanaka, N Kitagawa, T Nomura. Formation of cubic-AlN in TiN/AlN superlattice. Surface and Coatings Technology. 1996, 86-87: 225~230
    [20] A Madan , I. W Kim , S C Cheng et al., Stabilization of Cubic AlN in Epitaxial AlN / TiN Superlattices , Phys. Review. Lett., 1997, 78(9): 1743~1746
    [21] M Setoyama, M Irie , H Ohara Tsujioka M, Takeda Y, Nomura T Kitagawa N., Thermal stability of TiN / AlN superlattices, Thin Solid Films, 1999, 341:126~131
    [22] M. Nordin and F. Eriscon Growth Characteristics of Multilayered Physical Vapor Deposited TiN/TaNx on high Speed Substrate. Thin Solid Films. 2001, 385:174~181
    [23] M. Larsson, P. Hollman, P. Hedengvist, S. Hogmark, U. Wahlstrom and L. Hultman. Deposition and Microstructure of PVD TiN-NbN Reactive Electron Beam Evaporation and DC Sputtering. Surf. Coat. Technol. 1996, 86-87:351~356
    [24] P. Yashar, X. Chx, S A Barnett, J. Rechner, Y. Wang, M S Wong, Sproul W D. Stablization of Cubic CrN0.6 in CrN0.6/TiN Superlattice. Appl. Phys. Lett., 1998, 72:987~989
    [25] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura. Formation of cubic-AlN in TiN/AlN superlattice. Surface and Coatings Technology. 1996, 86-87: 225~230
    [26] R. Pandey, A. Sutjianto, M. Seel, Jaffe Jone E. Elactronic Structure of high pressure phase of AlN. J Mate Res. 1993,8(8):1922~1927
    [27] N.E. Christensen, I. Gorczyca, Calculated structural phase transitions of aluminum nitride under pressure. Physical Review B 1993-II, 47(8): 4307~4314
    [28] M Ueno, A Onodera, Shimomura O,Takemura K, X-ray observation of the structural phase transition of aluminum nitride under high pressure. Physic Review B,1992-I, 45(17):10123~10126
    [29] B M Clemens, G L Eesley. Relationship Between Interface Strain and Elastic Response ofMultilayers Metal Films. Phys. Rev. Lett., 1988. 61:2356~2359
    [30] M Nordin and F. Eriscon. Growth Characteristics of Multilayered Physical Vapor Deposited TiN/TaNx on high Speed Substrate. Thin Solid Films. 2001, 385:174~181
    [31] M Larsson, P Hollman, P Hedengvist, S Hogmark, U Wahlstrom and L Hultman. Deposition and Microstructure of PVD TiN-NbN Reactive Electron Beam Evaporation and DC Sputtering. Surf. Coat. Technol. 1996, 86-87:351~356
    [32] P Yashar, X Chx, S A Barnett, J Rechner, Y Y Wang, M S Wong, W D Sproul. Stablization of Cubic CrN0.6 in CrN0.6/TiN Superlattice. Appl. Phys. Lett., 1998, 72:987~989
    [33] 吴大维, 付德君, 毛先唯, 叶明生, 彭友贵, 范湘军. C3N4/TiN交替复合膜的微结构研究,物理学报, 1999, 48:904~912
    [34] D Li, X Chu, S C Cheng, X W Lin, V P Dravid, Y W Chung, M S Wong and W D Sproul. Appl. Phys. Lett. 1995, 67 203~205
    [35] Lun Wei, Fanghua Mei, Nan Shao, Ming Kong, Geyang Li, Jianguo Li. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Applied Physics Letters, 2005, 86(2):021919(1-3).
    [36] 岳建岭, 孔明,赵文济,李戈扬.反应溅射 VN/SiO2 纳米多层膜的微结构与力学性能. 物理学报 2006 年 9 月接收。
    [37] Yunshan Dong, Wenji Zhao, Jianling Yue, and Geyang Li. Crystalization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN/Si3N4 nanomultilayers. Applied Physics Letters, 89(2006):121916.
    [38] J S Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551
    [39] M A Grinfeld, Hazzledine P M, Shoykhet B, Dimiduk D M. Coherency Stresses in Lamellar Ti-Al. Matallurgical and Materials transactions A. 1998, 29A(3): 937~942
    [40] W.D. Sproul,. New routes in the preparation of mechanically hard films, Science,1996;273(16):889-892
    [41] W.D. Sproul, High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings, Vacuum, 1998 ;51(4) :641-646
    [42] P.Yashar, S.A.Barnett, L. Hultman, W.D. Sproul, Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices, J. Mater. Res., 1999;14(9):3614-3622
    [43] Jianling Yue, Yan Liu, Wenji Zhao, Geyang Li. Crystalization of AlON and its effects on thegrowth and hardness of reactively synthesized VN/AlON nanomultilayer. Scripta Materialia, 55(2006):895-898.
    [44] Yunshan Dong,Jianling Yue,Yanliu, Geyang Li Crystallization of AlON layers and its effects on the microstructure and hardness of reacting synthesized ZrN/AlON nanomultilayer Journal of Physics D: Applied Physics, 39(2006): 4838-4842.
    [45] Soichiro Okubo, Noriyoshi Shibata, Tomohiro Saito Yuichi Ikuhara., Formation of cubic-AlN layer on MgO (100) substrate, Journal of Crystal Growth, 1998,189/190: 452~456
    [46] R Pandey, A Sutjianto, M Seel, Jone E Jaffe. Elactronic Structure of high pressure phase of AlN. J Mate Res. 1993,8(8):1922~1927
    [47] N.E. Christensen, I. Gorczyca, Calculated structural phase transitions of aluminum nitride under pressure. Physical Review B 1993-II, 47(8): 4307~4314
    [48] M Ueno, A Onodera, Shimomura O,Takemura K, X-ray observation of the structural phase transition of aluminum nitride under high pressure. Physic Review B,1992-I, 45(17):10123~10126
    [49] I Ivanov , L Hultman , K Jarrendahl, Matensson P, Sudgren J –E, Hjorvasson B, Greene J E, Growth of epitaxial AlN (0001) on Si (111) by reactive magnetron sputter deposition, J. Appl. Phys., 1995, 78 (9): 5721~5726
    [50] D.N. Talwar, Dispersion of optical and acoustical phonons in the zinc-blende group III-nitride superlattices, Microelectronic Engineering,1998, 43-44: 309~318
    [51] Shih-Kang Tien, Jenq-Gong Duh, Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings, Thin Solid Films 494 (2006) 173 – 178
    [52] F. Vaz, L. Rebouta, B. Almeicla, et al. Structural analysis of Ti1-xSixNy nano-composite films prepared by magnetron sputtering. Surface and Coatings Technology, 1999, 120-121: 166~172
    [53] F. Vaz, L. Rebouta, S. Ramous, et al. Physical, structural and mechanical characterization of Ti1-xSixNy nanocomposite films. Surface and Coatings Technology, 1998, 108-109: 236~240
    [54] S. PalDey and S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering A, 2003, 342: 58~79
    [1] 韩增虎, 张俊秋, 劳技军等. 材料力学性能的微压入测试方法. 理化检验(物理分册), 2001, 37(8): 3338~3341
    [2] J.W. Tian, Z.H. Han, Q.X. Lai, et al. Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings. Surface and Coatings Technology, 2004, 176(3): 267~271
    [3] W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research, 1992, 7(6): 1564~1583
    [1]. A A Layyous, D M Freinkel, R Israel, Al2O3-caoted cemented carbides: optimization of structure, number of layers and type of interlayer, Surf. Coat. Technol. 1992 ,56: 89-95
    [2]. U.Helmersson,S.Todorova, S.A.Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987;62(2):481-484
    [3]. W.D.Sproul,. New routes in the preparation of mechanically hard films, Science,1996;273(16):889-892
    [4]. W D Sproul, Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings Sur. Coat. Technol. 1996, 86-87 170-176
    [5]. P.Yashar, S.A.Barnett, L. Hultman, W.D. Sproul, Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices, J. Mater. Res., 1999;14(9):3614-3622
    [6]. 魏仑、梅芳华、邵楠、李戈扬、李建国, TiN/SiO2 纳米多层膜的晶体生长与超硬效应,物理学报 2005, 54:1742-1748
    [7]. L Wei, M Kong, Y Dong S et al, Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers J. Appl.Phys. 2005, 028519
    [8]. W D Xiao, X Jiang, Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings, J. Cryst. Grow,2004 264: 165
    [9]. X D Wang, F M Wang, W C Li, Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review, Mater. Sci. Eng,. 2003 A342: 245
    [10]. C Kim, S B Qadri, M R Scanlon et al, Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films Thin Solid Films, 1994 240: 52-55
    [11]. Z Y Zhang and M G Lagally, Effect of superlattice layer elastic moduli on hardness, Science,1997 276: 377
    [12]. J S Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551Kato M, Mori T , Schwartz L H 1980 Acta Metall . 28: 285
    [13]. M. Kato, T. Mori, L.H. Schwartz. Hardening by spinodal modulated structure. Acta Metall., 1980,28(3):285-290
    [14]. P.M. Anderson, C. Li. Hall-Petch relations for multilayered materials. Nanostructure Mater., 1995, 5(3):349-362
    [15]. A Madan , I. W Kim , S C Cheng et al., Stabilization of Cubic AlN in Epitaxial AlN / TiN Superlattices , Phys. Review. Lett., 1997, 78(9): 1743~1746
    [1] U.Helmersson,S.Todorova, S.A.Barnett et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, J.Appl. Phys., 1987;62(2):481-484
    [2] W.D. Sproul,. New routes in the preparation of mechanically hard films, Science,1996;273(16):889-892
    [3] S. PalDey and S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering A, 2003, 342: 58~79
    [4] T.Shikama, Y. Sakai, M. Fukutomi, M. Okada, Deposition of TiB2 films by a co-sputtering method, Thin solid films, 1988; 156 (2):287-294
    [5] W.herr, B. Matthes, E. Broszeit, K.H.Kloos, Fundamental properties and wear resistance of r.f.-sputtered TiB2 and Ti(B,N) coatings, Mater. Sci. Eng. A, 1991; 616-624
    [6] C.Kim, S.B.Qadri, M.R.Scanlon, R.C.Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994; 240:52~55
    [7] 田家万, 韩增虎, 赖倩茜, 虞晓江, 李戈扬. 两步压入法—薄膜力学性能的可靠测量方法. 机械工程学报, 2003, 39(6): 71-74.
    [8] Germany Normal. DIN 50359-1: 1997-10. Universal h?rteprüfung [S]
    [9] W.C. Oliver, G.M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. J. Mater. Res., 1992, 7(6): 1564-1583.
    [10] M. Kato, T. Mori, L.H. Schwartz. Hardening by spinodal modulated structure. Acta Metall., 1980,28(3):285-290.
    [11] P.M. Anderson, C. Li. Hall-Petch relations for multilayered materials. Nanostructure Mater., 1995, 5(3):349-362.
    1,Stoney G G.The tension of metallic films deposited by electrolysis.London:Proc Roy Soc,1909,9:172
    2, Fischer K., Oettel H. Microstructure gradients in thin hard Coatings-tailor-made. Surf Coat Technol, 1997,97:308-312
    3, 戴嘉维 张惠娟 李戈扬, 基片与膜厚对硬质薄膜力学性能的影响, 真空科学与技术, 2003, 23(3):147-151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700