VC基纳米多层膜的微结构与超硬效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质薄膜是一类在现代工业中具有重要应用的表面涂层材料。纳米多层膜的超硬效应以及材料组合的多样性和性能可裁剪性,使其具有广阔的应用前景。而这类材料通过人工设计微结构而获得高硬度的强化机制则具有更为重要的理论研究价值。
     经过二十多年的研究,在高硬度纳米多层膜的微结构特征和材料体系拓展等方面都已取得了明显的进展。然而强化机制和设计准则等基础性研究的滞后成为了这类材料进一步发展的障碍。
     本论文研究了VC、HfC单层膜以及VC/TiC、VC/TiN、VC/TiB_2、VC/SiC、VC/AlN、VC/Si_3N_4和HfC/Si_3N_4等多种碳化物为基的纳米多层膜。主要的内容包括:碳化物为基的纳米多层膜中的生长结构和超硬效应;立方结构碳化物对非晶材料晶体化的模板效应;采用反应溅射方法获得高硬度碳化物基纳米多层膜的制备技术;讨论了纳米多层膜中的强化机制和调制结构参数对多层膜性能的影响。论文在纳米多层膜材料体系的新拓展、设计准则的新补充和制备技术的新方法三个方面取得了一些创新性的成果,得出的主要结论如下:
     1.单相VC薄膜可以在Ar气体中磁控溅射VC陶瓷靶制备获得。溅射气压对薄膜的化学成分、相组成、微结构、沉积速率以及相应的力学性能有较大的影响,通过调整VC靶材的化学计量比也可以显著改变所得薄膜的生长结构和力学性能。等化学计量比VC靶所得薄膜的结晶程度较差,最高硬度为28.0GPa;而富金属元素的VC靶所得薄膜在低的溅射气压下即可获得良好的结晶和较高的力学性能,最高硬度可达31.5GPa。
     2. VC/TiC纳米多层膜在小调制周期时可获得硬度的显著升高。其中由富金属元素VC和TiC组成的纳米多层膜形成了良好的共格外延生长结构,并获得了硬度增量为40%的超硬效应,其最高硬度达到41.9GPa;而由等化学计量比VC和TiC组成的纳米多层膜形成的共格界面结构则相对较差,多层膜的硬度增量仅约为19%,其最高硬度为31.0GPa。
     3.不同VC、TiN层厚的VC/TiN纳米多层膜均可以在小调制周期时获得共格外延的生长结构和硬度显著升高的超硬效应。其中,固定调制比的VC/TiN纳米多层膜获得了硬度增量高达62%的超硬效应,其最高硬度达到45.8GPa;而固定VC层厚和固定TiN层厚的VC/TiN纳米多层膜也分别取得了41%和42%的硬度增量。调制周期或可变调制层厚度增大后,多层膜的共格界面结构遭到破坏,其硬度也逐步降低。
     4. VC/TiB_2纳米多层膜也可以在合适的调制结构下获得硬度明显升高的超硬效应。立方结构VC和六方结构TiB_2在小调制周期或可变调制层厚度很小时形成了共格界面结构,其共格关系为:{111}VC// {0001 }TiB< 110 >VC //<1120>TiB。在不同调制结构参数的VC/TiB_2纳米多层膜中,固定调制比的多层膜获得了硬度增量为26%的超硬效应,其最高硬度为38.3GPa;而固定VC层厚和固定TiB_2层厚的多层膜则分别取得了39%和41%的硬度增量。调制周期或可变调制层厚度增大后,多层膜的共格生长逐渐遭到破坏,硬度也逐步降低。
     5.由立方晶体的VC和非晶态的SiC或AlN组成的纳米多层膜也能获得超硬效应。在模板层VC的模板作用下,沉积态为非晶的SiC和AlN都在厚度小于约0.7nm时被强制晶化成NaCl结构的亚稳晶体,多层膜呈现共格外延的生长结构并获得硬度的明显升高。其中VC/SiC纳米多层膜获得的最高硬度为36.0GPa;VC/AlN纳米多层膜获得的最高硬度可达40.1GPa。SiC或AlN层随厚度增大后又重新转变为以非晶态生长,多层膜的共格界面迅速遭到破坏,其硬度随即降低。
     6.在Ar-C_2H_2混合气体中,利用溅射金属V和Hf靶材的反应溅射方法可以高效率地合成碳化钒和碳化铪薄膜。薄膜的化学成分、相组成、微结构以及力学性能对C_2H_2分压非常敏感。在C_2H_2分压为混合气体总压的约3%时可以获得力学性能较高的立方结构VC薄膜,其硬度可达35.5GPa;在C_2H_2分压为混合气体总压约2.5~3.0%的范围内才可获得力学性能较高的单相HfC薄膜,其最高硬度为27.9GPa。
     7.由于在Ar-C_2H_2的混合气氛中,溅射的Si_3N_4粒子不与C_2H_2气体发生反应,因而采用反应磁控溅射技术可以高效地制备VC/Si_3N_4和HfC/Si_3N_4纳米多层膜。在VC或HfC的模板作用下,原为非晶态的Si_3N_4在层厚小于1nm时被强制晶化,并与模板层形成共格外延生长结构,相应多层膜获得了硬度显著升高的超硬效应。其中VC/Si_3N_4获得的最高硬度达45.8GPa,而HfC/Si_3N_4获得的最高硬度为38.2GPa。Si_3N_4层随厚度增加超过1nm后又转为以非晶态生长,多层膜的共格生长结构随即遭到破坏,其硬度亦相应降低。由于反应溅射具有很高的沉积速率,这种采用反应溅射技术制备高硬度纳米多层膜的方法在工业上具有很好的应用前景。
     8.根据VC/TiN、VC/TiB_2和VC/SiC纳米多层膜的实验结果总结出了立方晶体/立方晶体、立方晶体/六方晶体、立方晶体/非晶体三种典型结构组合纳米多层膜的调制结构参数与薄膜硬度的具体关系图。由于这三种结构类型组合涵盖了大多数陶瓷纳米多层膜的结构类型,该参数图在纳米多层膜的调制结构设计中具有普遍的指导价值。
Hard ceramic films, which play an important role in the development of modern manufacturing industry, have been widely used in the field of surface modification and protection. Nanomultilayer shows promising potential practical application in these fields, for it can achieve high hardness due to the superhardness effect and obtain special physical or mechanical properties through tailorability of component properties. Furthermore, the strengthening mechanism of obtaining high hardness through proper microstructure design shows more significant theoretical research value.
     Over the past two decades, numerous experimental studies have been conducted leading to significant progress in the extending of high hardness nanomultilayer systems and understanding of their microstructure characterization. However, in contrast to experimental research, relatively slow progress has been achieved in theoretical studies to explain the strengthening mechanism of these nanomultilayers, which impedes the further development of this kind of material.
     In this thesis, VC, HfC films and VC/TiC, VC/TiN, VC/TiB_2, VC/SiC, VC/AlN, VC/Si_3N_4, HfC/Si_3N_4 nanomultilayers were prepared by magnetron sputtering. The microstructure and superhardness effect in carbide-based nanomultilayers have been investigated, and the template-induced crystallization phenomenon of naturally amorphous materials on different template materials has also been studied. Besides, this thesis also developed a new method of reactive sputtering to synthesize high hardness carbide-based multilayers. Finally the strengthening mechanism and the effect of modulation structure parameters in nanomultilayer have also been researched.
     Some innovative results of this thesis can be summarized as below: first, extending high hardness nanomultilayer systems from nitride-based to carbide-based. Second, elaborating the modulation structure parameters to supplement the design criterion. The third, coming up with a new method to synthesize high hardness carbide-based nanomultilayers. The main conclusions drawn from these studies are listed as follows:
     1. Vanadium carbide films can be easily synthesized by direct VC compound target sputtering in Ar atmosphere. The Ar pressure significantly affected the composition, phase, microstructure and mechanical properties of the films. The growing structure and mechanical properties hold close connection with the chemical composition of sputtering targets either. The films prepared by equal stoichiometry VC target showed poor crystallization and gained the highest hardness of 28.0GPa, while the films synthesized by metal enriched VC target could obtain good crystallization and mechanical properties under low sputtering pressure, whose highest hardness was 31.5GPa.
     2. Superhardness effect has been found in VC/TiC nanomultilayers. The multilayers combining with metal enriched VC and TiC exhibited excellent epitaxial growing structure and obtained highest hardness of 41.9GPa which was 40% higher than the rule-of-mixture hardness of components. While in the multilayer with equal stoichiometry VC and TiC, the highest hardness of 31.0GPa with only 19% enhancement had been obtained as a result of relatively poor coherent interface.
     3. VC/TiN nanomultilayers with small modulation periods exhibit epitaxial growth and superhardness effect, too. The multilayers with fixed modulation ratio obtained the highest hardness of 45.8GPa, which was 62% higher than rule-of-mixture hardness of components. In the multilayers with fixed VC layer thickness or TiN layer thickness, 41% and 42% hardness enhancement had also been achieved respectively. With the increase of modulation period or variable layer thickness, the coherent interface of multilayer was disrupted, resulting in a quick decline of hardness.
     4. Superhardness effect has also been found in VC/TiB_2 nanomultilayers. When the modulation or the variable layer thickness in multilayers were very small, cubic VC and hexagonal TiB_2 formed coherent interface with orientation relationship of {111}VC// {0001 }TiB< 110 >VC //<1120>TiB_2< 110 >VC //<1120>TiB. The VC/TiB_2 nanomultilayers with fixed modulation ratio achieved the highest hardness of 38.3GPa, which was 26% higher than the rule-of-mixture hardness. While in the multilayer with fixed VC layer thickness or TiB_2 layer thickness, 39% and 41% hardness enhancement had been achieved respectively. When further slightly increasing the modulation or variable layer thickness, film’s hardness decreased gradually because of the disruption of coherent interface.
     5. Superhardness effect also appears in the multilayers synthesized by VC and naturally amorphous SiC or AlN. Under the template effect of cubic VC, as-deposited amorphous SiC and AlN were forced to crystallize when their layer thicknesses were less than about 0.7nm. The crystallized SiC or AlN formed a metastable structure identical to that of VC and grew epitaxially with VC layer. Consequently, film’s hardness was enhanced significantly to a maximum of 36.0GPa in VC/SiC multilayers and 40.1GPa in VC/AlN multilayers. A further increase in SiC or AlN layer thickness resulted in the amorphization of SiC or AlN, which caused the destruction of coherent interface. The film’s hardness dropped quickly accordingly.
     6. Vanadium carbide and hafnium carbide films can be synthesized conveniently with reactive magnetron sputtering method in Ar and C_2H_2 mixture. The composition, phase, microstructure and mechanical properties of the films showed the sensitivity to the partial pressure of C_2H_2. The single phase VC films with optimistic hardness could be obtained when the proportion of C_2H_2 partial pressure was only about 3.0% of the mixture, the highest hardness was 35.5GPa. When C_2H_2 partial pressure was only about 2.5~3.0% of the mixture, single phase HfC films with high mechanical properties could be synthesized with the highest hardness of 27.9GPa.
     7. VC/Si_3N_4 and HfC/Si_3N_4 nanomultilayers can be prepared efficiently by multi-target reactive magnetron sputtering as Si_3N_4 does not react with C_2H_2 in the sputtering condition. Under the template effect of VC or HfC layers in the nanomultilayers, as-deposited amorphous Si_3N_4 was crystallized at the layer thickness of less than about 1nm and grew coherently with VC or HfC. Correspondingly the multilayer achieved significantly enhanced hardness with maximum values of 45.8GPa in VC/Si_3N_4 multilayers and 38.2 GPa in HfC/Si_3N_4 multilayers. Further increasing the thickness, Si_3N_4 layers transformed into amorphous and then blocked the coherent growth of multilayers, resulting in a rapid decrease in hardness. The expected high deposition rate resulting from the reactive sputtering technology provided this kind of high hardness nanomultilayers promising application in the industrial mass productions.
     8. Based on the experiment results of VC/TiN, VC/TiB_2 and VC/SiC multilayers, the hardness distribution maps in three typical structure combination multilayers had been concluded. As including the main structure types in ceramic multilayers (cubic/cubic, cubic/hexagonal, cubic/amorphous), these maps could provide a practical reference for the actual modulation structure parameters designing.
引文
[1]宋健,制造业的现代化,人民日报,2002.9.26,第六版.
    [2]国际金属加工,第六期, 2005, 6, 15-17.
    [3] Cselle T, Barimani A, Today’s applications and future developments of coatings for drills and rotating cutting tools, Surface and Coatings Technology, 1995, 76-77, 712-718.
    [4] Fischmeister H, Jehn H, Hartstoffschichten zur Verschleissminderung, GM Informations gesell -schaft, Stuttgart, 1987.
    [5] Stephenson DA, Agapiou JS, Metal cutting theory and practice. Edition 2, Michigan USA, CRC Press, 2006, pp. 158-159.
    [6] Sung CM, Sung M, Carbon nitride and other speculative superhard materials, Material Chemistry and Physics, 1996, 43, 1-6.
    [7] Ronkainen H, Varjus S, Holmberg K, Tribological performance of different DLC coatings in water-lubricated conditions, Wear, 2001, 249(3-4), 267-271.
    [8] Keunecke M, Wiemann E, Weigel K, et al., Thick c-BN coatings– Preparation, properties and application tests, Thin Solid Films, 2006, 515(3), 967-972.
    [9] Zhang Y, Zhou Z, Li H, Crystalline carbon nitride films formation by chemical vapor deposition. Applied Physics Letter, 1996, 68, 634-636.
    [10] Broitman E, Neidhardt J, Hultman L, Fullerene-like carbon nitride: A new carbon-based tribological coating, Springer US, 2007, 620-653.
    [11] Schedler W, Hartmetall fur den Praktiker (VDI.Dusseldorf),1998.
    [12] Metals Handbook, 10th ed, edited by Davis JR. Allen P, Lampman SR et al.(ASM International, Metals Park, OH,1990),Vol.2.pp.950.
    [13] Chen Y, Guo LP, Chen F, Wang EG, Synthesis and characterization of C3N4 crystalline films on silicon, Journal of Physics Condensed Matter, 1996, 8, 685-690.
    [14] Johnson DJ, Chen Y, He Y et al., Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition, Diamond and Related Materials, 1997, 6, 1799-1805.
    [15] Chen Y, Guo L, Wang EG, alpha beta Experimental evidence for alpha - and beta -phases of pure crystalline C3N4 in films deposited on nickel substrates, Philosophical Magazine Letters, 1997, 75, 155-162.
    [16] Mayrhofer PH, Mitterer C, Musil J, Structure–property relationships in single- and dual-phase nanocrystalline hard coatings, Surface and Coatings Technology, 2003, 174/175, 725-731.
    [17] Veprek S, The search for novel, superhard materials, Journal of Vacuum Science and Technology A, 1999, 17(5), 2401-2420.
    [18] Li SZ, Shi YL, Pen HR, Plasma Chemistry and Plasma Processing, 1992, 12, 287-291.
    [19] Veprek S, Reiprich S, A concept for the design of novel superhard coatings, Thin Solid Films,1995, 268, 64-71.
    [20] Veprek S, Reiprich S, Li SZ, Superhard nanocrystalline composite materials: the TiN/Si_3N_4 system. Applied Physics Letters, 1995, 66, 2640-2642.
    [21] Niederhofer A, Nesladek P, Mannling HD, et al., Structural properties, internal stress and thermal stability of nc-TiN/a-Si_3N_4, nc-TiN/TiSix and nc-(Ti1-yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond, Surface and Coatings Technology, 1999, 120/121, 173-178.
    [22] Veprek S, Conventional and new approaches towards the design of novel superhard materials, Surface and Coatings Technology, 1997, 97, 15-22.
    [23] Veprek S, Niederhofer A, Moto K, et al., Nanocomposites nc-TiN/a-Si_3N_4/a- and nc-TiSi2 with hardness exceeding 100 GPa and high fracture toughness, Materials Research Society Symposium - Proceedings, 2000, 581, 321-326.
    [24] Nose M, Chiou WA, Zhou M, et al., Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering, Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, 2002, 20 (3), 823-828.
    [25] Mae T, Nose M, Zhou M, et al., The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f. reactive sputtering method, Surface and Coatings Technology, 2001, 142/144, 954-958.
    [26] Veprek S, Haussmann M, Reiprich S, Superhard nanocrystalline W2N/amorphous Si_3N_4 composite materials, Journal of Vacuum Science and Technology A, 1996, 14(1), 46-51.
    [27] Carvalho S, Rebouta L, Cavaleiro A, et al., Mechanical and adhesion behaviors of superhard (Ti, Si, Al)N nanocomposite films Grown by Reactive Magnetron Sputtering, Key Engineering Materials, 2002, 230/232, 185-188.
    [28] Koehler JS, Attempt to Design a Strong Solid, Physical Review B, 1970, 2, 547-551.
    [29] Lehoczky SL, Strength Enhancement in Thin-layered Al-Cu Laminates, Journal of Applied Physics, 1978, 49, 5479-5485.
    [30] Helmersson U, Todorova S, Barnett SA, et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, Journal of Applied Physics, 1987, 62(2), 481-484.
    [31]吴义政,丁海峰,郭敬超等, Co在GaAs(001)表面的分子束外延及其结构研究,物理学报, 1998, 47, 461-466.
    [32]何贤昶,沈荷生,张志明等,在硅(001)上预沉积β-SiC定向层后金刚石薄膜的定向生长,物理学报, 2000, 49, 532-537.
    [33] Li GY, Xu JH, Zhang LQ, et al. Growth, microstructure, and microhardness of W/Mo nanostructured multilayers [J]. Journal of Vacuum Science and Technology B, 2001, 19(1):94-97.
    [34] Li GY, Han ZH, Tian JW, et al., Alternating stress field and superhardness effect in TiN/NbN superlattice films, Journal of Vacuum Science and Technology A, 2002, 20(3), 674-677.
    [35] Chu X, Wong MS, Sproul WD, et al., Deposition and properties of polycrystalline TiN/NbNsuperlattice coatings, Journal of Vacuum Science and Technology A, 1992, 10(4), 1604-1609.
    [36] Barshilia HC and Rajam KS. Deposition of TiN/CrN hard superlattices by reactive d.c. magnetron sputtering, Material Science, 2003, 26, 233-237.
    [37] Xu JH, Li GY, Kamiko M, et al. Superhardness effects of heterostructure NbN/TaN nanostructured multilayers, Journal of Applied Physics, 2001, 89(7), 3674-3678.
    [38] Xu JH, Kamiko M, Zhou YM, et al., Structure transformations and superhardness effects in V/Ti nanostructured multilayers, Applied Physics Letters, 2002, 81(7), 1189-1191.
    [39] Veno M, Onodera A, Shimomura O, et al., X-ray observation of the structural phase transition of aluminum nitride under high pressure, Physics Review B, 1992, 45, 10123-10126.
    [40] Ravindra P, Amin S, Max S, et al., Electronic structure of high pressure phase of AlN, Journal of Material Reseatch, 1993, 8, 1922-1927.
    [41] Kim IW, Li Q, Marks LD, et al. Critical Thickness for Transformation of Epitaxially Stabilized Cubic AlN in Superlattices. Applied Physics Letters. 2001, 78(7), 892-894.
    [42] Wong S, Hsiao GY, Yang SY, Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings. Surface and Coating Technology, 2000, 133-134, 160-165.
    [43] Li D, Chu X, Cheng SC, et al., Synthesis of superhard carbon nitride composite coatings, Applied Physics Letters, 1995, 67(2), 203-205.
    [44] Li D, Lin XW, Cheng SC, et al., Structure and hardness studies of CNx/TiN nanocomposite coatings, Applied Physics Letters, 1996, 68(9), 1211-1213.
    [45] Wu ML, Lin XW, Dravid VP, et al., Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering, Thin Solid Films, 1997, 308/309, 113-117.
    [46] Wu ML, Qian WD, Chung YW, et al., Preparation and characterization of superhard CNx/ZrN multilayers, Journal of Vacuum.Science and Tehnology A, 1997, 15, 946-950.
    [47] Dong Yunshan, Zhao Wenji, Yue Jianling, et al. Crystallization of Si_3N_4 Layers and Its Influences on the Microstructure and Mechanical Properties of ZrN/Si_3N_4 Nanomultilayers, Applied Physics Letters. 2006, 89, 121916.
    [48] Kong Ming, Dai Jiawei, Lao Jijun, et al. Crystallization of Amorphous SiC and Superhardness Effect in TiN/SiC Nanomultilayers, Applied Surface Science, 2007, 253, 4734-4739.
    [49] Wei L, Mei FH, Shao N, et al. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, Applied Physics Letters, 2005, 86, 021919.
    [50] Kong Ming, Zhao Wenji, Wei Lun, et al., Investigations on microstructure and hardening mechanism of TiN/Si_3N_4 nanocomposite coatings, Journal of Physics D: Applied Physics, 2007, 40, 2858-2863.
    [51] Anderson PM, Li C, Hall-petch Relations for Multilayered materials, Nanostructure Materials, 1995, 5(3), 349-362.
    [52] Madan A, Chu X, Barnett SA, Growth and characterization of epitaxial Mo/NbN superlattices,Applied Physics Letters, 1996, 68(16), 2198-2200.
    [53] Mirkarimi PB, Barnett SA, Hubbard KM, et al., Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N (100) superlattices, Journal of Material Research, 1994, 9, 1456-1467.
    [54] Kato M, Mori T, Schwartz LH, Hardening by Spinodal Modulated Structure, Acta Metallurgica, 1980, 28(3), 285-290.
    [55] Courtney TH, Mechanical behavior of materials, New York: McGraw-Hill, Inc., 1990.
    [56] Pacheco ES, Mura T, Interaction between a screw dislocation and a bimetallic interface, Journal of the Mechanics and Physics of Solids, 1969, 17, 163-170.
    [57] Krzanowski JE, The effect of composition profile sharp on the strength of metallic multilayer stuuctures. Scripta Metall. Meter., 1991, 25, 1465-1470.
    [58] Sevillano JG, Haasen P, Gerold V, et al., Strength of metals and alloys. Oxford: Pergamon 1980, 819.
    [59] Mirkarimi B, Hultman L, Barnett SA, Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices, Appied Physics Letters, 1990, 57(25), 2654-2656.
    [60] Shinn M, Barnett SA, Effect of superlattice layer elastic moduli on hardness, Appied Physics Letters, 1994, 64(1), 61-63.
    [61] Chu X and Barnett SA. Model of superlattice yield stress and hardness enhancements, Journal of Applied Physics, 1995, 77(9), 4403-4411.
    [62] Hall EO, Proc. Phys. Soc. London, 1951, 25, 1465.
    [63] Dieter GE, Mechanical metallurgy, New York: McGraw-Hill, Inc., 1986.
    [64] Anderson PM, Foeckw T, Hazzledine PM, Dislocation-based deformation mechanisms in metallic nanolaminates, MRS Bulletin, 1999, 24(2), 27-33.
    [65] Madan A, Wang YY, Barnett SA, et al., Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices, Journal of Applied Physics, 1998, 84(2), 776-785.
    [66] Song HW, Guo SR, Hu ZQ, A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials, Nanostructured Materials, 1999, 11(2), 203-210.
    [67] Li GY, Han ZH, Tian JW, et al., Alternating stress and superhardness effect in TiN/NbN superlattice films, Journal of Vacuum Science and Technology A, 2002, 20(3), 674-677.
    [68] Grinfeld MA, Hazzledine PM, Shoykhet B, et al., Coherency Stresses in Lamellar Ti-Al, Matallurgical and Materials transactions A, 1998, 29A(3), 937-942.
    [69] Lebouvier D, Gilormini P, Felder E, A kinematic model for plastic indentation of a bilayer, Thin Solid Films, 1989, 172(2), 227-231.
    [70] Yang WMC, Tsakalakos T, Hilliard JE, Enhanced elastic modulus in composition-modulated gold-nikel and copper-palladium foils. Journal of Applied Physics, 1977, 48(1), 876-879.
    [71] Tsakalakos T, Hilliard JE, Elastic modulus in composition-modulated copper-nickel foils, Journal of Applied Physics, 1983, 54(1), 734-737.
    [72] Cammarata RC, Schlesinger TE, Kim C, Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films, Applied Physics Letters, 1990, 56(19), 1862-1864.
    [73] Shih KK, Dove DB, Ti/TiN, Hf/HfN and W/WN multilayer films with high mechanical hardness, Applied Physics Letters, 1992,61(6), 654-656.
    [74] Kang Y, Lee C, Lee J, Effects of processing variables on the mechanical properties of Ta/TaN multilayer coatings, Materials Science and Engineering B, 2000, 75(1), 17-23.
    [75] Wang J, Li WZ, Li HD, Mechanical properties of nanoscaled TiC/Fe multilayers deposited by ion beam sputtering technique, Thin Solid Films, 2001, 382(1), 190-193.
    [76] Chou TC, Nieh TG, McAdams SD, et al., Mechanical properties and microstruceures of Metal/ceramic microlaminates:Part1.Nb/MoSi2 Systems. Journal of Material Research, 1992, 7(10), 2774-2784.
    [77] Kim JO, Achenbach JD, Shinn M, et al., Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices. Journal of Material Research, 1992, 7(3), 2248-2256.
    [78] Hubbard KM, Jervis TR, Mirkarimi PB, et al., Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation, Journal of Applied Physics, 1992,72, 4466-4468.
    [79] Shinn M, Hultman L, Barnett SA, Growth, structure and microhardness of epitaxial TiN/NbN superlattices, Journal of Applied Physics, 1992, 7(4), 901-911.
    [80] Lim JW, Lee JJ, Ahn H, et al., Mechanical properties of TiN/TiB_2 multilayers deposited by plasma enhanced chemical vapor deposition, Surface and Coating Technology, 2003, 174/175, 720-724.
    [81] Martin KJ, Madan A, D Hoffman, et al., Mechanical properties and thermal stability of TiN/TiB_2 nanolayered thin films, Journal of Vacuum Science and Technology A, 2005, 23(1), 90-98.
    [82] Mei FH, Shao N, Wei L, et al., Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB_2 nanomultilayers, Applied Physics Letters, 2005, 87, 011906.
    [83] Martin K, Madan A, Kim IW, et al., Effect of annealing on the mechanical properties and microstructure of ZrN/ZrB_2 films, MRS Bulletin, 2003, 28,169-173.
    [84] Wei L, Kong M, Dong YS, et al., Crystallization of Al2O3 and its effects on the mechanical properties in TiN?Al2O3 nanomultilayers, Journal of Applied Physics, 2005, 98, 074302.
    [85] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering, Journal of Applied Physics, 2005, 97, 114327.
    [86] Yue Jianling, Zhao Wenji, Li Geyang, et al. Microstructure and Mechanical Properties of VN/SiO2 Nanomultilayers Synthesized by Reactive Sputtering. Materials Letters, 2008, 62, 1621-1623.
    [87] Dong Yunshan, Yue Jianling, Liu Yan, et al. Crystallization of AlON Layers and Its Effects on the Microstructure and Hardness of Reactively Synthesized ZrN/AlON Nanomultilayers, Journalof Physics D: Applied Physics, 2006, 39, 4838-4842.
    [88] Wendler BG, Kula P, Jakubowski K, et al., In: Proc. 36th Tagung der Deutschen Gesellschaft für Obrfl?chen- und Galvanotechnik, Schwabisch Gmünd, Germany, 1998, 10(6-9), 6–11.
    [89] Norin L, Hogberg H, Lu J, et al., Deposition of transition metal carbide superlattices using C60 as a carbon source, Applied physics letters, 1998,73(19), 2754.
    [90] Wendler BG and Molinaro M, In: Proc. 10th Int. Summer School on Modern Plasma Surface Technology, Mielno, Poland, 1998, 5(10–14), 423–436.
    [91] Sekkal W, Zaoui A and Schmauder S,Nanoindentation study of the superlattice hardening effect at TiC(110)/NbC(110) interfaces, Applied physics letters, 2005, 86, 163108.
    [92] Zhao YH, Lin GQ, Xiao JQ, et al., TiN/TiC multilayer films deposited by pulse biased arc ion plating, Vacuum, 2010, 85, 1–4.
    [93] Lee KW, Chen YH, Chung YW, et al., Hardness, internal stress and thermal stability of TiB_2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation, Surface and Coatings Technology, 2004, 177-178, 591-596.
    [94] Lee KW, Chung YW, Korach C, et al., Tribological and dry machining evaluation of superhard TiB_2/TiC multilayer coatings deposited on Si(001), M2 steel, and C3 WC cutting tool inserts using magnetron sputtering, Surface and Coatings Technology, 2005, 194, 184–189.
    [95] Eklund P, H?gberg H, Hultman L, Epitaxial TiC/SiC multilayers, physica status solidi (RRL) - Rapid Research Letters, 2007, 1(3), 113-115.
    [96] Leiste H, Dambacher U, Ulrich S, et al., microstructure and properties of multilayer coating with covalent bonded hard materials, Surface and coatings technology, 1999, 116-119, 313-320.
    [97] Phani AR, Krzanowski JE, Nainaparampil JJ, Structural and mechanical properties of TiC/Ti and TiC/B4C multilayers deposited by pulsed laser deposition, Journal of Materials Research, 2002, 17(6), 1390-1398.
    [98] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering, Journal of Applied Physics, 2005, 97, 114327.
    [99]岳建岭,硬质纳米多层膜的微结构与超硬效应[学位论文],上海,上海交通大学,2008.
    [100]孔明,两相纳米结构薄膜中的模板效应与超硬效应[学位论文],上海,上海交通大学,2009.
    [1] Kim C, Qadri SB, Scanlon MR, et al., Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52-55.
    [2] Oliver WC, Pharr GM, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment, Journal of material research, 1992, 7(6), 1564-1583.
    [3] Tian JW, Han ZH, Lai QX, et al., Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings, Surface and Coatings Technology, 2004, 176(3), 267-271.
    [1] Sundgren JE, Hentzell TG, A review of the present state of art in hard coatings grown from the vapor phase, Journal of vacuum science and technology, A, 1986, 4(5), 2259-2279.
    [2] Robinson GM, Jackson MJ, A review of micro and nanomachining from a materials perspective, Journal of materials processing technology, 2005, 167(2-3), 316-337.
    [3] Berg G, Friedrich C, Broszeit E, et al., Development of chromium nitride coatings substituting titanium nitride, Surface and coatings technology, 1996, 86-87(Part 1), 184-191.
    [4] Liu F, Meng YD, Ren ZX, et al., Microstructure, hardness and corrosion resistance of ZrN films prepared by inductively coupled plasma enhanced RF magnetron sputtering, Plasma science and technology, 2008, 10(2), 170-175.
    [5] Derflinger VH, Schutze A, Ante M, Mechanical and structural properties of various alloyed TiAlN-based hard coatings, Surface &coatings technology, 2006, 200(16-17), 4693-4700.
    [6] Woydt M, Skopp A, Dorfel I, et al., Wear engineering oxides/anti-wear oxides. Wear, 1998, 218(1), 84-95.
    [7] Chen JG, Kirn CM, Fruhberger B, et al., A NEXAFS determination of the oxidation state of vanadium carbide on V(110): observation of charge transfer from vanadium to carbon, Surface Science, 1994, 321(1-2), 145-155.
    [8] Aouni A, Weisbecker P, Tran Huu Loi, Search for new materials in sputtered V1-xCx films, Thin Solid Films, 2004, 315, 469-470,
    [9] Ferro D, Rau JV, Generosi A, Electron beam deposited VC and NbC thin films on titanium: Hardness and energy-dispersive X-ray diffraction study, Surface and Coatings Technology, 2008, 202, 2162-2168.
    [10] Liao MY, Gotoh Y, Tsuji H, et al., Deposition of vanadium carbide thin films using compound target sputtering and their field emission, Journal of Vacuum Science and Technology A, 23(5), 1379-1383.
    [11] Okamoto H, Caibon-vanadium, Journal of Phase Equilibria, 1991, 12, 699.
    [12] Mania A, Auberta P, Mercierb F, et al., Effects of residual stress on the mechanical and structural properties of TiC thin films grown by RF sputtering, Surface and Coatings Technology, 2005, 194, 190-195.
    [1] Helmersson U, Todorova S, Barnett SA, et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, Journal of Applied Physics, 1987, 62(2), 481-484.
    [2] Wong MS, Hsiao GY, Yang SY, Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings, Surface and Coatings Technology, 2000, 133-134, 160-165.
    [3] Shinn M, Barnett SA, Effect of superlattice layer elastic moduli on hardness, Appied Physics Letters, 1994, 64(1), 61-63.
    [4] Sekkal W, Zaoui A, and Schmauder S, Nanoindentation study of the superlattice hardening effect at TiC(110)/NbC(110) interfaces, Applied physics letters, 2005, 86, 163108.
    [5] Norin L, H?gberg H, Lu J, et al., Deposition of transition metal carbide superlattices using C60 as a carbon source, Applied physics letters, 1998, 73(19), 2754-2756.
    [6] Kim C, Qadri SB, Scanlon MR, et al., Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52-55.
    [7] Madan A, Yashar P, Shinn M, et al., An X-ray diffraction study of epitaxial TiN/NbN superlattices, Thin Solid Films, 1997, 302, 147-154.
    [8] Zhang ZY, Lagally G, Atomistic Processes in the Early Stages of Thin-Film Growth, Science, 1997, 276(5311), 377-383.
    [9] Dong Yunshan, Zhao Wenji, Yue Jianling, et al. Crystallization of Si_3N_4 Layers and Its Influences on the Microstructure and Mechanical Properties of ZrN/Si_3N_4 Nanomultilayers, Applied Physics Letters. 2006, 89, 121916.
    [10] Kong Ming, Dai Jiawei, Lao Jijun, et al. Crystallization of Amorphous SiC and Superhardness Effect in TiN/SiC Nanomultilayers. Applied Surface Science. 2007,253, 4734–4739.
    [11] Wei L, Mei FH, Shao N, et al. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, Applied Physics Letters, 2005, 86, 021919.
    [12] Koehler JS, Attempt to Design a Strong Solid, Physical Review B, 1970, 2, 547-551.
    [13] Kato M, Mori T, Schwartz LH, Hardening by Spinodal Modulated Structure, Acta Metallurgica, 1980, 28(3), 285-290.
    [14] Anderson PM, Foeckw T, Hazzledine PM, Dislocation-based deformation mechanisms in metallic nanolaminates, MRS Bulletin, 1999, 24(2), 27-33.
    [15] Anderson PM, Li C, Hall-petch for multilayered materials, Nanostructured materials, 1995, 5(3), 349-353.
    [1] Sundgren JE, Hentzell TG, A review of the present state of art in hard coatings grown from the vapor phase, Journal of vacuum science and technology A, 1986, 4(5), 2259-2279.
    [2]田敏波,刘德令,薄膜科学与技术手册(下册),北京,机械工业出版, 1991, 735-736.
    [3] Zhao Yanhui, Lin Guoqiang, Xiao Jinquan, et al., TiN/TiC multilayer films deposited by pulse biased arc ion plating, Vacuum, 2010, 85, 1-4.
    [4] Holleck H, Schier V, Multilayer PVD coatings for wear protection, Surface and Coatings Technology, 1995, 76-77, 328-336.
    [5] Romeroa J, Mart′?nez E, Esteve J, et al., Nanometric chromium nitrideychromium carbide multilayers by r.f. magnetron sputtering, Surface and Coatings Technology, 2004, 180-181, 335-340.
    [6] Liu Q, Wang XP, Liang FJ, et al., Hardness enhancement and oxidation resistance of nanocrystalline TiN/MoxC multilayer films, Materials Research Bulletin, 2006, 41, 1430-1436.
    [7] Kim C, Qadri SB, Scanlon MR, et al., Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52-55.
    [8] Zhang ZY, Lagally G, Atomistic Processes in the Early Stages of Thin-Film Growth, Science, 1997, 276(5311), 377-383.
    [1] Shikama T, Sakai Y, Fukutomi M, et al., Deposition of TiB_2 films by a co-sputtering method, Thin Solid Films, 1988, 156, 287-294.
    [2] Lee KW, Chen YH, Chung YW, et al., Hardness, internal stress and thermal stability of TiB_2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation, Surface and Coatings Technology, 2004, 177-178, 591-596.
    [3] Mei Fanghua, Shao Nan, Wei Lun, et al., Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB_2 Nanomultilayers, Applied Physics Letters, 2005, 87, 011906.
    [4] Lee KW, Chung YW, Korach C, et al., Tribological and dry machining evaluation of superhard TiB_2/TiC multilayer coatings deposited on Si(001), M2 steel, and C3 WC cutting tool inserts using magnetron sputtering, Surface and Coatings Technology, 2005, 194, 184-189.
    [5] Kim C, Qadri SB, Scanlon MR, et al., Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52-55.
    [6] Kim IW, Li Q, Marks LD, et al., Critical Thickness for Transformation of Epitaxially Stabilized Cubic AlN in Superlattices, Applied Physics Letters, 2001, 78(7), 892-894.
    [1] Kong Ming, Zhao Wenji, Wei Lun, et al., Investigations on microstructure and hardening mechanism of TiN/Si_3N_4 nanocomposite coatings, Journal of Physics D: Applied Physics, 2007, 40, 2858-2863.
    [2] Dong YS, Zhao WJ, Yue JL, et al., Crystallization of Si_3N_4 Layers and Its Influences on the Microstructure and Mechanical Properties of ZrN/Si_3N_4 Nanomultilayers, Applied Physics Letters, 2006, 89, 121916.
    [3]乌晓燕,孔明,赵文济等,Si_3N_4在h-AlN上的晶体化与AlN/Si_3N_4纳米多层膜的超硬效应,物理学报,2009, 58(4), 2654-2659.
    [4] Eklund P, H?gberg H, Hultman L, Epitaxial TiC/SiC multilayers, physica status solidi (RRL) - Rapid Research Letters, 2007,1(3), 113-115.
    [5] Phani AR, Krzanowski JE, Nainaparampil JJ, Structural and mechanical properties of TiC/Ti and TiC/B4C multilayers deposited by pulsed laser deposition, Journal of Materials Research, 2002, 17(6), 1390-1398.
    [6] Kim C, Qadri SB, Scanlon MR, et al., Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994; 240, 52-55.
    [7] Lao JJ, Shao N, Mei FH, et al., Mutual promotion effect of crystal growth in TiN/SiC nanomultilayers,Applied Physics Letters, 2005,86, 011902.
    [8] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering, Journal of Applied Physics, 2005, 97, 114327.
    [9] Li D, Chu X, Cheng SC, et al., Synthesis of superhard carbon nitride composite coatings, Applied Physics Letters, 1995, 67, 203-205.
    [10] Kong Ming, Dai Jiawei, Lao Jijun, et al., Crystallization of Amorphous SiC and Superhardness Effect in TiN/SiC Nanomultilayers, Applied Surface Science, 2007, 253, 4734-4739.
    [11] Wei L, Mei FH, Shao N, et al., Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, Applied Physics Letters, 2005,86, 021919.
    [12] Kim IW, Li Q, Marks LD, et al., Critical Thickness for Transformation of Epitaxially Stabilized Cubic AlN in Superlattices, Applied Physics Letters, 2001, 78(7), 892-894.
    [13] Zhang ZY, Lagally G, Atomistic Processes in the Early Stages of Thin-Film Growth, Science, 1997, 276(5311), 377-383.
    [14] Madan A, Kim IW, Cheng SC,et al., Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices, Physical Review Letters, 1997, 78, 1743-1746.
    [15] Li GY, Lao JJ, Tian JW, et al., Coherent growth and mechanical properties of AlN/VN multilayers, Journal of Applied Physics, 2004, 95(1), 92-96.
    [16] Koehler JS, Attempt to Design a Stronge Solid, Physical Review B, 1970, 2, 547-551.
    [17] Kato M, Mori T, and. Schwartz L H. Hardening by Spinodal Modulated Structure. Acta Metallurgica, 1980, 28(3), 285-290.
    [18] Anderson PM, Li C, Hall-petch for multilayered materials, Nanostructured materials, 1995, 5(3), 349-353.
    [1] Krajewski A, D'Alessio L, De Maria G, Physiso-Chemical and Thermophysical Properties of Cubic Binary Carbides, Crystal research and technology, 1998,33(3), 341-374.
    [2] Ferro D, Barinov SM, Rau JV, et al., Vickers and Knoop hardness of electron beam deposion ZrC and HfC thin films on titanium, Surface and coatings Technology, 2006, 200, 4701-4707.
    [3] Teghil R, Santagata A, Zaccagnino M, et al., Hafnium carbide hard coatings produced by pulsed laser ablation and deposition, Surface and coatings Technology, 2002, 151-152, 531-533.
    [4] Okamoto H, Caibon-vanadium, Journal of Phase Equilibria, 1991, 12, 699.
    [5] Gurevitch, Omont. Dokl. Akad. Nauk SSSR, 1954, 116, 9.
    [1] Chen YH, Guruz M, Chung YW, et al., Thermal Stability of Hard TiN/SiNx Multilayer Coatings with an Equiaxed Microstructure, Surface and Coatings Technology, 2002, 154, 162-166.
    [2] Dong YS, Zhao WJ, Yue JL, et al., Crystallization of Si_3N_4 Layers and Its Influences on the Microstructure and Mechanical Properties of ZrN/Si_3N_4 Nanomultilayers, Applied Physics Letters, 2006, 89, 121916.
    [3] Veprek S, Haussmann M, Reiprich S, et al., Novel Thermodynamically Stable and Oxidation Resistant Superhard Coating Materials, Surface and Coating Technology, 1996, 394, 86-87.
    [4] Kim C, Qadri SB, Scanlon MR, et al., Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films, Thin Solid Films, 1994, 240, 52-55.
    [5] Hultman L, Bare?o J, Flink A, et al., Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations, Physical Review B, 2007, 75, 155437.
    [6] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering, Journal of Applied Physics, 2005, 97,114327.
    [7] Madan A, Kim IW, Cheng SC, et al., Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices, Physical Review Letters, 1997, 78(9), 1743-1746.
    [8] Kong Ming, Zhao Wenji, Wei Lun, et al., Investigations on microstructure and hardening mechanism of TiN/Si_3N_4 nanocomposite coatings, Journal of Physics D: Applied Physics, 2007, 40, 2858-2863.
    [1] Koehler JS, Attempt to Design a Strong Solid, Physical Review B, 1970, 2, 547-551.
    [2] Xu Junhua, Yu Lihua, Azuma Yasushi, et al., Thermal stress hardening of a-Si_3N_4/nc-TiN nanostructured multilayers, Applied Physics Letters, 2002, 81(22), 4139-4141.
    [3] Kato M, Mori T, Schwartz LH, Hardening by Spinodal Modulated Structure, Acta Metallurgica, 1980, 28(3), 285-290.
    [4] Anderson PM, Foeckw T, Hazzledine PM, Dislocation-based deformation mechanisms in metallic nanolaminates, MRS Bulletin, 1999, 24(2), 27-33.
    [5] Anderson PM, Li C, Hall-petch for multilayered materials, Nanostructured materials, 1995, 5(3), 349-353.
    [6]孔明,岳建岭,李戈扬,陶瓷硬质纳米多层膜研究进展,无机材料学报, 2010, 25(2), 113-119.
    [7] Helmersson U, Todorova S, Barnett SA, et al., Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness, Journal of Applied Physics, 1987, 62(2), 481-484.
    [8] Andrievski RA, Properties of Multilayer and Alloyed PVD Films on the Base of TiN, International Journal of Refractory Metals and Hard Materials, 1996, 14, 105-107.
    [9] Xu XM, Wang J, An J, et al., Effect of modulation structure on the growth behavior and mechanical properties of TiN/ZrN multilayers, Surface and Coatings Technology, 2007, 201, 5582-5586.
    [10]李广泽,TiN/ZrN纳米多层膜的微结构与力学性能分析[学位论文],上海,上海交通大学,2010.
    [11] Jankowski AF and Tsakalakos T, The effect of strain on the elastic constants of noble metals, Journal of Phycics F: Metal Physics, 1985, 15, 1279-1292.
    [12] Cammarata RC and Sieradzki K, Effects of surface stress on the elastic moduli of thin films and superlattices, Physical Review Letters, 1989, 62, 2005-2008.
    [13]龚江宏,陶瓷材料断裂力学,北京,清华大学出版社,2001,126-154.
    [14]金宗哲,岳雪梅,张国军,黎晓瑞,含缺陷陶瓷材料的强度,硅酸盐学报,1997,25(3),264-268.
    [15] Sproul WD, New routes in the preparation of mechanically hard films, Science, 1996, 273(16), 889-892
    [16] Sproul WD, High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings, Vacuum, 1998, 51(4), 641-646.
    [17] Yashar PC, Sproul WD, Nanometer scale multilayered hard coatings. Vacuum, 1999, 55, 170-190.
    [18] Yashar P, Barnett SA, Hultman L, et al., Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices, Jounal of Materials Research, 1999, 14(9), 3614-3622.
    [19] Yue Jianling, Liu Yan, Li Geyang, Template-induced coherent growth and mechanical propertiesof ZrO_2/TiN nano-multilayers, Scripta Materialia, 2009, 60, 240-243.
    [20] Wong MS, Hsiao GY, Yang SY, Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings, Surface and Coatings Technology, 2000,133-134, 160-165.
    [21] Tavares CJ, Rebouta L, Andritschky M, et al., Mechanical characterisation of TiN/ZrN multi-layered coatings, Journal of Materials Processing Technology, 1999, 93, 177-183.
    [22] Shinn M, Hultman L, Barnett SA, Growth, structure and microhardness of epitaxial TiN/NbN superlattices, Journal of Applied Physics, 1992, 7(4), 901-911.
    [23] Selinder TI, Sjostrand ME, Nordin M, et al., Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining. Surface and Coatings Technology, 1998, 105, 51-55.
    [24] Yang Q, He C, Zhao LR, et al. Preferred orientation and and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering, Scripta Materialia, 2002, 46, 293-297.
    [25] Hsieh JH, Liang C, Yu CH, et al., Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering, Surface and Coatings Technology, 1998, 108-109, 132-137.
    [26] Xu JH, Li GY, Kamiko M, et al., Superhardness effects of heterostructure NbN/TaN nanostructured multilayers, Journal of Applied Physics, 2001, 89(7), 3674-3678.
    [27] Mirkarimi PB, Hultman L, Barnett SA, Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices, Applied Physics Letters, 1990, 57(25), 2654-2656.
    [28] Hubbard KM, Jervis TR, Mirkarimi PB, et al., Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation, Journal of Applied Physics, 1992, 72, 4466~4468.
    [29] Yoon JS, Myung HS, Han JG et al., A study on the synthesis and microstructure of WC-TiN superlattice coating, Surface and Coatings Technology, 2000, 131, 372-377.
    [30] Sekkal W, Zaoui A, Schmauder S, Nanoindentation study of the superlattice hardening effect at TiC(110)/NbC(110) interfaces, Applied physics letters, 2005, 86, 163108.
    [31] Lim JW, Lee JJ, Ahn H, et al., Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition, Surface and Coating Technology, 2003, 174/175, 720-724.
    [32] Martin K, Madan A, Kim IW, et al., Effect of annealing on the mechanical properties and microstructure of ZrN/ZrB2 films. MRS Bulletin, 2003, 28, 169-173.
    [33] Lee KW, Chen YH, Chung YW, et al., Hardness, internal stress and thermal stability of TiB2/TiC multilayer coatings synthesized by magnetron sputtering with and without substrate rotation, Surface and Coatings Technology, 2004,177-178, 591-596.
    [34] Lao Jijun, Shao Nan, Mei Fanghua, et al., Mutual promotion effect of crystal growth in TiN/SiC nanomultilayers, Applied Physics Letters, 2005, 86, 011902.
    [35] Kong Ming, Zhao Wenji, Wei Lun, et al., Investigations on microstructure and hardening mechanism of TiN/Si_3N_4 nanocomposite coatings, Journal of Physics D: Applied Physics, 2007, 40,2858-2863.
    [36] Dong YS, Zhao WJ, Yue JL, et al., Crystallization of Si_3N_4 layers and its influences on the microstructure and mechanical properties of ZrN/Si_3N_4 nanomultilayers, Applied Physics Letters, 2006, 89 (12), 121916.
    [37] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering, Journal of Applied Physics, 2005, 97, 114327.
    [38] Wu ML, Lin XW, Dravid VP, et al. Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering, Thin Solid Films, 1997, 308/309, 113-117.
    [39] Dong Yunshan, Yue Jianling, Liu Yan, et al., Crystallization of AlON Layers and Its Effects on the Microstructure and Hardness of Reactively Synthesized ZrN/AlON Nanomultilayers, Journal of Physics D: Applied Physics, 2006, 39, 4838-4842.
    [40] Jianling Yue, Yan Liu, Wenji Zhao, et al., Crystallization of AlON and its effects on the growth and hardness of reactively synthesized VN/AlON nanomultilayer Scripta Materialia,2006, 55, 895-898.
    [41] Kong Ming, Dai Jiawei, Lao Jijun, et al., Crystallization of Amorphous SiC and Superhardness Effect in TiN/SiC Nanomultilayers, Applied Surface Science, 2007, 253, 4734-4739.
    [42] Koskinen J, Ronkainen H, Hirvonen JP, et al., Characterization of the mechanical properties of carbon metal multilayered films, Diamond and Related Materials, 1995, 4, 843-847.
    [43] Mei FH, Shao N, Wei L, et al., Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB2 nanomultilayers, Applied Physics Letters, 2005, 87, 011906.
    [44] Wei L, Mei FH, Shao N, et al., Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers, Applied Physics Letters, 2005, 86, 021919.
    [45] Yue Jianling, Zhao Wenji, Li Geyang, et al., Microstructure and Mechanical Properties of VN/SiO2 Nanomultilayers Synthesized by Reactive Sputtering, Materials Letters, 2008, 62, 1621-1623.
    [46] Wei L, Kong M, Dong YS, et al., Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers, Journal of Applied Physics, 2005, 98 (7), 074302.
    [47] Zhao YH, Lin GQ, Xiao JQ, et al., TiN/TiC multilayer films deposited by pulse biased arc ion plating, Vacuum, 2010, 85, 1-4.
    [48] Leiste H, Dambacher U, Ulrich S, et al., Microstructure and properties of multilayer coatings with covalent bonded hard materials, Surface and Coatings Technology, 1999, 116-119, 313-320.
    [49]孔明,两相纳米结构薄膜中的模板效应与超硬效应[学位论文],上海,上海交通大学,2009.
    [50]岳建岭,孔明,赵文济等,反应溅射VN/SiO2纳米多层膜的微结构与力学性能,物理学报,2007, 56(3), 1568-1573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700