TiC基纳米多层膜的微结构和超硬效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米多层膜可因超硬效应获得高硬度,材料组合的多样性则可使这类材料同时兼具优异的综合性能。早期具有超硬效应的纳米多层膜主要由两种晶体氮化物组成。基于模板效应的非晶晶化技术路线,不同种类的非晶材料已被用于高硬度的纳米多层膜,然而作为晶体模板层的调制层仍主要由氮化物组成,较少涉及晶体态的碳化物、硼化物或氧化物,材料体系的拓展仍是高硬度纳米多层膜研究的重要方面。
     为将高硬度纳米多层膜的材料体系由氮化物基拓展至碳化物基。论文在研究TiC薄膜制备技术的基础上,设计并制备了TiC与立方结构氮化物组成TiC/TiN纳米多层膜、混合结构碳化物组成TiC/WC纳米多层膜、非晶氮化物、碳化物组成TiC/Si_3N_4和TiC/SiC纳米多层膜、以及可反应碳化物组成TiC/B_4C纳米多层膜。研究了这些不同类型纳米多层膜的微结构和力学性能,并进一步揭示了纳米多层膜调制结构对其力学性能影响规律。
     论文的主要结论如下:
     1、采用反应溅射制备TiC薄膜时,通过调节C_2H_2分压可以控制TiC薄膜的成分、相组成、微结构和力学性能,合适的C_2H_2分压下可获得结晶好、硬度高的单相TiC薄膜,实验获得TiC薄膜最高硬度为31.6GPa。采用化合物靶溅射制备TiC时,薄膜的沉积速率、微结构、化学成分及力学性能皆受基片温度和溅射气压(Ar)的影响。其中溅射气压的影响较为明显,而基片温度在150℃-450℃间时对TiC薄膜结晶性能和硬度的影响有限。
     陶瓷靶溅射制备TiC薄膜中,在TiC靶中增加Ti含量形成的富Ti靶(Ti:C=11:9)可获得结晶良好的单相TiC薄膜;化学计量比的TiC靶由于其成分处于相图TiC+C两相区,游离的C原子降低了薄膜的结晶程度和力学性能;而高富Ti的TiC靶(Ti:C=2:1)所得薄膜因产生Ti相而形成Ti+TiC两相结构。由于可避免反应溅射中反应气体与其他组成物的反应,采用富Ti的TiC靶(Ti:C=11:9)的直接溅射法更有益于与其他材料匹配制备纳米多层膜。
     2、对由TiN分别与富钛和化学计量比的TiC靶制备的同晶体结构TiC_(0.8)/TiN和TiC_(1.0)/TiN纳米多层膜的研究发现,TiC_(0.8)/TiN纳米多层膜形成的共格外延生长结构可保持至14.4nm的调制周期,并获得最高硬度为38.6GPa的超硬效应。而TiC_(1.0)/TiN纳米多层膜虽也可在3.0nm的调制周期下获得共格外延生长结构,并获得超硬效应,但其最高硬度仅为30.9GPa。这一对比性结果揭示了组成物调制层的结晶状态对纳米多层膜的共格结构和超硬效应的重要影响。
     3、对TiC与混合结构WC组成的TiC/WC纳米多层膜的研究表明,在TiC调制层的模板作用下,且WC层厚度小于约1.2nm时,多层膜将形成共格外延生长结构,此时WC层形成与TiC完全相同的立方结构调制层,多层膜的晶体完整性也因互促效应而得到显著提高,并在lWC=0.5nm时获得41.5GPa的最高硬度。当WC层因厚度的进一步增加时,其又转变为以混合结构形式生长,因而破坏了多层膜的共格外延结构,与其对应的多层膜硬度也随之降低。
     4、在TiC与非晶态的Si_3N_4和SiC组成TiC/Si_3N_4、TiC/SiC的纳米多层膜中,由于TiC模板层作用,非晶态的SiC和Si_3N_4层均在厚度较薄时(约0.5nm)被晶化为与TiC相同的立方结构并与TiC层共格外延生长,两类多层膜都取得了硬度增高的超硬效应(其最高硬度分别为36.9GPa和37.0GPa)。随着SiC层和Si_3N_4层厚度的增加,多层膜的共格结构逐渐遭到破坏,硬度也逐渐降低。
     5、对具有界面反应的TiC/B_4C纳米多层膜的研究发现,B_4C层在厚度约为0.5nm时全部反应生成TiB_2的调制层,多层膜转变为具有共格生长的TiCx/TiB_2纳米多层膜,并获得硬度异常增高的超硬效应,最高硬度达到40GPa。当B_4C调制层厚度进一步增加时,多层膜的共格外延生长结构因存在剩余未参与反应的非晶B_4C调制层而被破坏,多层膜形成TiCx/TiB_2/B_4C的三层结构,其硬度则相应显著降低。并基于实验结果提出了两调制层具有界面反应特征纳米多层膜获得超硬效应的设计要点:1、组成纳米多层膜的两调制层中至少一层需为晶体层,以作为界面反应层晶体生长的模板层;2、另一调制层(可为非晶层)的厚度应较小(≤1nm),以使其能够通过界面反应全部形成新的调制层;3、界面反应生成物与晶体模板层间应不具互溶性,以获得明锐的层间界面;4、较厚的晶体模板层应具有较大的固溶度,以能够吸收反应生成物中多余的游离原子。
     6、对TiC/TiN纳米多层膜调制结构参数与力学性能关系的研究表明,只有当纳米多层膜的调制周期和各调制层的厚度均较小,调制层形成了清晰界面的层状结构并具有共格外延生长的结构特征时,多层膜才能产生硬度异常升高的超硬效应;而随调制结构参数的改变,减少调制层厚度将导致多层膜的界面混合区比例增大,增大调制层厚度则使界面数量减少,共格外延生长结构也会遭到破坏,这些结构的改变都使纳米多层膜的硬度明显降低。本文所建立的纳米多层膜调制结构参数与硬度的关系图可为纳米多层膜获得超硬效应的设计提供参考和借鉴。
     基于以上研究结果,论文获得了一批具有超硬效应TiC基纳米多层膜的新体系;揭示了调制层结晶状态对纳米多层膜结构和超硬效应的影响规律;提出了具有界面反应的纳米多层膜体系材料和结构设计的要点;提出了纳米多层膜调制结构设计图。
The superhardness effect and diverse material combinations endowthe nanomultilayers with both high hardness and splendidcomprehensive properties. Widening the system of hard nanomultilayersis an important research aspect, and the multilayer systems have alreadybeen extended based on the technical route of amorphous crystallizationoriginated from template effect, however, the nanomultilayers are mostlynitride based, rarely involving with carbides, bordides or oxides.
     In order to extend the material systems from nitride to carbide basednanomultilayer, several TiC based nanomultilayers were designed on thebasis of TiC film preparation techniques, and these nanomultilayers areTiC/TiN multilayers composed of TiC and cubic nitride, TiC/WCmultilayers consisted by TiC and hybrid-structure carbide, TiC/Si_3N_4andTiC/SiC multilayers made of TiC and amorphous nitride, carbide,TiC/B_4C multilayers made up with TiC and B_4C which can react witheach other. The microstructure along with mechanical properties has beenstudied for the template effect of TiC with different types of materials andstructures, and the impact of modulation structure on mechanicalproperties of the multilayers has also been further studied. The research results not only reflect the extension of multilayer system, also promotethe understanding of the regulations between multilayer structure andsuperhardness effect.
     1. For the TiC films prepared by reactive sputtering techniques,modulating the partial pressure of C_2H_2can control the film’scomposition, phase formation, microstructure as well as mechanicalproperties, and single phase, high hardness TiC films with bettercrystalline quality can be obtained in certain partial pressure, the highesthardness is31.6GPa. When TiC films are sputtered by compound target,the sputtering pressure (Ar) and substrate temperature can both influencecontent composition, deposition rate as well as film’s microstructure andmechanical properties, and the sputtering pressure has more obviouseffect on TiC films over substrate temperature.
     Modulating the composition of TiC targets is an effective measure forobtaining single phase TiC films with better crystalline quality: TiC filmsprepared by stoichiometric TiC target, of which the content is located inTiC+C two phase region in phase diagram, may get poor crystallinity andmechanical properties owing to free carbon; TiC films, which wereprepared by substoichiometric TiC target with higher Ti content, wouldform double phase structure owing to high Ti content in TiC targets; TiCfilms, which were prepared by substoichiometric TiC target with a bit of overdosed Ti content,could obtain single phase TiC with higher hardnessand crystalline quality. By avoiding the reaction with other components inreactive atmosphere, preparing TiC films by substoichiometric TiC targetwith a bit of overdosed Ti is beneficial to match other components toform nanomultilayers.
     2. The research of TiC_(0.8)/TiN and TiC_(1.0)/TiN nanomultilayers preparedby TiC targets using stoichiometric TiC target, substoichiometric TiCtarget with a bit of overdosed Ti content and TiN targets shows, theepitaxial growth structure formed in TiC_(0.8)/TiN nanomultilayers can beretained to the modulation period of14.4nm, and the multilayer can gainsuperhardness effect with highest hardness of38.6GPa. Athough theepitaxial growth structure formed in TiC_(1.0)/TiN nanomultilayers can beretained to the modulation period of3nm, the highest hardness inTiC_(1.0)/TiN nanomultilayers is only30.9GPa.
     3. The investigation of TiC/WC nanomultilayers consisted of TiC andhybrid-structure WC shows that TiC layer can generate template effectthat can confine WC layer transiting to cubic structure, and undertemplate effect, WC layers can growth coherently with TiC layer in thesame structure when WC layer thickness is less than1.2nm. Meanwhile,crystal perfection is promoted by the mutual effect in the multilayer, andthe multilayer achieved its highest hardness of41.5GPa at0.5nm WC layer thickness. Further increasing the layer thickness, WC layers willturn back to the growth in multi-structure leading to the disruption ofcoherent growth structure and the decrease of hardness.
     4. The investigation of TiC/Si_3N_4、TiC/SiC nanomultilayers consistedof TiC and amorphous Si_3N_4, SiC shows that, under the template effect ofTiC layers, amorphous Si_3N_4, SiC were forced to crystallized and growcoherently with TiC layers in the same structure when SiC and Si_3N_4layers is quite thin (about0.5nm), and the multilayers all appear hardnessincreased phenomenon with their highest of36.9GPa and37GPa,separately. Further increasing the layer thickness, the coherent growthstructure will be disrupted, and the hardness will decrease accordingly.
     5. The research of TiC/B_4C nanomultilayers with interface reactionshows that when B_4C layer thickness is about0.5nm, the layer will allreact into TiB_2modulation layers, and the multilayer obtainsuperhardness effect with the highest hardness of40GPa. Furtherincreasing B_4C layer thickness, the non-reactive amorphous B_4C willdisrupt the coherent growth of the multilayers, the multilyers will formTiCx/TiB_2/B_4C triple layered structure, and the hardness will dropdramatically.Based on the research results, design requirements of thiskind of multilayers for achieving high hardness have been proposed:1.At least one modulation layer should be crystalline layer which is used as template layer for the new building layers;2. The other layer(amorphous layer included) should be as thin as possible (≤1nm) so thatthe interface reaction layers would all turn to the new building layers.3.The new building layers should be immiscible with the template layers;4. The template layers should have quiet large solid solubility to absorbthe excessive atoms generated in the reaction.
     6. A series of nanomultilayers with different TiC and TiN layerthickness were used to reveal the impact regulation of modulationparameters on multilayers’ microstructure and mechanical properties.The results show that the multilayer can achieve high hardness onlywhen the multilayers can form sharp interface coherent growth structurewith modulation period and modulation layer thickness is quiet small;When modulation structure parameters change, decreasing themodulation layer thickness will lead to the increase of mixing layerthickness, increasing the layer thickness will lose the the amount ofinterface, especially when the coherent growth structure was disrupted,the hardness of the nanomultilayer will drop down quickly. The relationdiagram between modulation structure parameters and hardnessestablished in this paper can provide reference for designingnanomultilayers with superhardness effect.
     Based on the research results above, new systems with superhardness effect have been obtained in TiC based nanomultilayers; The effect ofcrystallinity state in nanomultilayers has been revealed on the relationshipbetween microstructure and superhardness effect; The requirements fordesigning interface reactive nanomultilayers with superhardness effecthave been proposed; The design map of multilayer modulation structurehas been established.
引文
[1]国际金属加工,第六期,2005,6:15-17.
    [2] Cselle T, Barimani A. Today’s Applications and Future Developments of Coatings for Drillsand Rotating Cutting Tools [J]. Surface and Coatings Technology,1995,76-77:712-718.
    [3]岳建岭,硬质纳米多层膜的微结构、力学性能和高温稳定性[学位论文],上海,上海交通大学,2008.
    [4] Mayrhofer PH, Mitterer C, Hultman L, et al. Microstructural Design of Hard Coatings [J].Progress in Materials Science,2006,51:1032-1114.
    [5] Broitman E, Neidhardt J, and Hultman L. Fullerene-like carbon nitride: A New Carbon-basedTribological Coating [M]. Springer US,2007,620-653.
    [6] Musil J. Hard and Superhard Nanocomposite Coatings [J]. Surface and Coatings Technology,2001,25:322-330.
    [7] Liu AY, Cohen ML. Structural Properties and Electronic Structure of Low-compressibilityMaterials:-Si3N4and Hypothetical-C3N4[J]. Physical Review B,1990,41(15):10727-10734.
    [8] Denisov VN, Mavrin BN, Vinogradov EA, et al. Structure of TiAlN Reactive SputteredCoatings [J]. Journal of Nano-and Electronic Physics,2012,4(1):1-4.
    [9] Lee DB. TEM Study on Oxidized TiCrN Coatings Ion-plated on a Steel Substrate [J]. Surfaceand Coatings Technology,2003,173:81-86.
    [10]Li Z, Munroe P, Jiang Z-T, et al. Designing Superhard, Self-toughening CrAlN Coatingsthrough Grain Boundary Engineering [J]. Acta Materialia,2012,60(16):5735-5744.
    [11] Veprek S. The search for novel, superhard materials [J]. Journal of Vacuum Science andTechnology A: Vacuum, Surfaces and Films,1999,17(5):2401-2420.
    [12] Veprek S, Argon AS, Zhang RF. Design of Ultrahard Materials: Go nano![J]. PhilosophicalMagzaine,2010,90(31-32):4104-4115.
    [13] Li SZ, Shi YL, Peng HR. Ti-Si-N films Prepared by Plasma-Enhanced Chemical VaporDeposition [J]. Plasma Chemistry and Plasma Processing [J].1992,12(3):287-291.
    [14] Niederhofer A, Nesládek P, M nnling H-D, et al. Structrual Properties, Internal Stress andThermal Stablility of nc-TiN/a-Si3N4, Nc-TiN/TiSixand nc-(Ti1-yAlySix)N SuperhardNanocomposite Coatings Reaching the Hardness of Diamond [J]. Surface and CoatingsTechnology,1999,120-121:173-178.
    [15] Nesládek P, Veprek S. Superhard Nanocrystalline Composites with Hardness of Diamond [J].Physica Status Solidi (a),2000,177:53-62.
    [16] Meng WJ, Zhang XD, Shi B, et al. Structure and Mechanical Properties of Ti-Si-N CeramicNanocomposite Coating [J]. Surface and Coatings Technology,2003,163-164:251-259.
    [17] Kauffmann F, Dehm G, Schier V, et al. Microstructural Size Effects on the Hardness ofNanocrystalline TiN/Amorphous-SiNx Coatings Prepared by Magnetron Sputtering [J]. Thin SolidFilms,2005,473:114-122.
    [18] Niederhofer A, Bolom T, Nesladek P, et al. The Role of Percolation Threshold for the Controlof the Hardness and Thermal Stability of Super-and Ultrahard Nanocomposites [J]. Surface andCoatings Technology,2001,146-147:183-188.
    [19] Hultman L, Bareno J, Flink A, et al. Interface Structure in Superhard TiN-SiN Nanolaminatesand Nanocomposites: Film Growth Experiments and Ab initio Calculations [J]. Physical Review B,2007,75:155437.
    [20] Argon, AS, Demkowicz MJ, Veprek S. Role of Plastic Resistance of Amorphous CovalentCompounds in the Superior Performance of Superhard Nano-structured Ceramic CompositeCoatings for Cutting tools[J]. Materials Processing and Design: Modeling, Simulation andApplications, Pts1and22004,712:3-13.
    [21] Fischer-Cripps AC, Bull SJ, Schwarzer N. Critical Review of Claims for Ultra-hardness inNanocomposite Coatings [J]. Philosophical Magazine,2012,92(13):1601–1630
    [22] Bendavid A, Martin PJ, Cairney J, et al. Depostion of Nanocomposite TiN-Si3N4Thin Filmsby Hybrid Cathodic Arc and Chemical Vapor Process [J]. Applied Physics A: Materials Scienceand Processing,2005,81(1):151-158.
    [23] Belous VA, Zadneprovskiy YA, Lomino NS, et al. Influnce of Argon on Structure andProperties Ti-Si-N of the Coating Receive at Vacuum-arc Deposition in gas mixture"nitrogon+argon"[J]. Problems of Atomic Science and Technology,2012,5:114-122.
    [24] Veprek S and Reiprich S. A Concept for the Design of Novel Superhard Coatings [J]. ThinSolid Films,1995,268:64-71.
    [25] Veprek S, Reiprich S, and Li SZ. Superhard Nanocrystalline Composite Materials: theTiN/Si3N4System. Applied Physics Letters,1995,66:2640-2642.
    [26] Veprek S. Conventional and New Approaches Towards the Design of Novel SuperhardMaterials [J]. Surface and Coatings Technology,1997,97:15-22.
    [27] Veprek S, Niederhofer A, Moto K, et al. Nanocomposites nc-TiN/a-Si3N4/a-and nc-TiSi2withHardness Exceeding100GPa and High Fracture Toughness [J]. Materials Research SocietySymposium-Proceedings,2000,581:321-326.
    [28]胡晓萍,Me-Si-N纳米复合膜的制备及其超硬机制研究[学位论文],上海,上海交通大学,2004.
    [29]孔明,两相纳米结构薄膜中的模板效应与超硬效应[学位论文],上海,上海交通大学,2009.
    [30] Zhang RF, Argon AS, Veprek S.Friedel Oscillations are Limiting the Strength of SuperhardNanocomposites and Heterostructures [J]. Physical Review Letters2009,102:015503.
    [31] Marten T, Alling B, Isaev EI, et al. First-principles study of the SiNx/TiN(001) Interface [J].Physical Review B,85(10):104106.
    [32] DuMond J, Youtz JP. An X-ray Method of Determining Rates of Diffusion in the Solid State[J].Journal of Applied Physics,1940,11:357-368.
    [33] Palatnik LS, Ilinskii AI, Sapelkin NP. Strength of Multilayered Vacuum Condensates [J].Soviet Physics-Solid State,1967,8:2016-2017.
    [34] Koehler JS. Attempting to Design a Strong Solid [J]. Physical Review B,1970,2:547~551.
    [35] Helmersson U, Todorova S, Barnett SA, et al. Growth of Single-crystal TiN/VN Stained-layerSuperlattice with Extremely High Mechanical Hardness [J]. Journal of Applied Physics,1987,62(2):481-484.
    [36] Chu X, Barnett SA, Wong MS, et al. Reactive Unbalanced Magnetron Sputter Deposition ofPolycrystalline TiN/NbN Superlattice Coatings [J]. Surface and Coatings Technology,1997,53:13-18.
    [37] Kong Ming, Dai Jiawei, Lao Jijun, et al. Crystallization of Amorphous SiC andSuperhardness Effect in TiN/SiC Nanomultilayers [J]. Applied Surface Science,2007,253:4734-4739.
    [38] Hovsepian PEh, Mu¨nz W-D. Recent Progress in Large-scale Production of NanoscaleMultilayer/Superlattice Hard Coatings [J]. Vacuum,2003,96:27–36.
    [39] Pankov V, Evstigneev M, Prince RH. Enhanced Stability of Rocksalt-type AlN Phase inAIN/TiN Superlattices Synthesized by Room-temperature Pulsed Laser Deposition [J]. Journal ofApplied Physics,2002,92:4255-2460.
    [40]徐晓明,王娟,赵阳, et al.界面和择优取向对TiN/ZrN纳米多层膜硬度变化的影响[J].物理学报,2006,55(10):5380-5385.
    [41] Selinder TI, Sjostrand ME, Nordin M, et al. Performance of PVD TiN/TaN and TiN/NbNSuperlattice Coated Cemented Carbide Tools in Stainless Steel Machining [J]. Surface andCoatings Technology,1998,105:51-55.
    [42] Yang Q, He C, Zhao LR, et al. Preferred Orientation and Hardness Enhancement of TiN/CrNSuperlattice Coatings Deposited by Reactive Magnetron Sputtering [J]. Scripta Materialia,2002,46:293-297.
    [43] Li DJ, Liu, F, Wang MX, et al. Structural and Mechanical Properties of Multilayered GradientCrN/ZrN Coatings [J]. Thin Solid Films,2006,506-507:202-206.
    [44] Xu JH, Li GY, Kamiko M, et al. Superhardness Effects of Heterostructure NbN/TaNNanostructured Multilayers [J]. Journal of Applied Physics,2001,89(7),3674-3678.
    [45] Yoon JS, Myung HS, Han JG et al. A Study on the Synthesis and Microstructure of WC-TiNSuperlattice Coating [J]. Surface and Coatings Technology,2000,131:372-377.
    [46] Li Yuge, Li Guanqun, Yang Duo. The Relationship between Superhardness Effect andModulation Structure in VC/TiN Nanomultilayers [J]. Materials Letters,2012,80(1):155-157.
    [47] Belger A. Nanoindentierung als methode zur untersuchung des zusammenhangs zwischenstruktur und mechanischen eigenschaften, Thesis, Technical University of Dresden (Germany), inpreparation.
    [48] Mei FH, Shao N, Wei L, et al. Coherent Epitaxial Growth and Superhardness Effects ofc-TiN/h-TiB2Nanomultilayers [J]. Applied Physics Letters,2005,87:011906.
    [49] Martin K, Madan A, Kim IW, et al. Effect of Annealing on the Mechanical Properties andMicrostructure of ZrN/ZrB2Films [J]. MRS Bulletin,2003,28:169-173.
    [50] Andrievski RA. Properties of Multilayer and Alloyed PVD Films on the Base of TiN [J].International Journal of Refractory Metals and Hard Materials,1996,14(1-3):105-107.
    [51] Soe W-H, Yamamota R. Mechanical Properties of Ceramic Multilayers: TiN/CrN, TiN/ZrNand TiN/TaN [J]. Materials Chemistry and Physics,1997,50(2):176-181.
    [52] Li GY, Han ZH, Tian JW, et al., Alternating Stress and Superhardness Effect in TiN/NbNSuperlattice Films, Journal of Vacuum Science and Technology A,2002,20(3):674-677.
    [53] Rutherford KL, Hatto PW, Davies C, et al. Abrasive Wear Resistance of TiN/NbNMulti-layers: Measurement and Neural Network Modelling [J]. Surface and Coatings Technology,1996,86-87:472-479.
    [54] Zeng XT, Mridha S, Chai U. Properties of Unbalanced Magnetron Sputtered TiN/NbNMultialyer Coatings [J]. Journal of Materials Processing Technology,1999,90:528-531.
    [55] Setoyama M, Nakayama A, Tanaka M, et al. Formation of Cubic-A1N in TiN/A1NSuperlattice [J].Surface and Coatings Technology,1996,86-87:225.
    [56] Kim DG, Seong TY, Baik YJ. Effects of Annealing on the Microstructures and MechanicalProperties of TiN/AlN Nano-multilayer Films Prepared by Ion-beam Assisted Deposition. Surfaceand Coatings Technology[J],2002,153:79-83.
    [57] Wang YY, Wong MS, Chia WJ, et al. Synthesis and Characterization of Highly TexturedPolycrystalline AlN/TiN Superlattice Coatings [J]. Journal of Vacuum Science Technology A,1998,16:3341-3348.
    [58] Veno M, Onodere A, Shimomura O, et al. X-ray Observation of the Structural PhaseTransition of Aluminum Nitride Under High Pressure [J]. Physical Review B,1992,45:10123.
    [59] Ravindra P, Amin S, Max S, et al. Electronic Structure of High Pressure Phase of AlN [J].Journal of Materials Research,1993,8:1922-1927.
    [60] Madan A, Kim IW, Cheng SC, et al. Stablization of Cubic AlN in Epitaxial AlN/TiNSuperlattices [J]. Physical Review Letters,1997,78(9):1743-1746.
    [61] Kim IW, Li Quan, Marks LD, et al. Critical Thickness for Transformation of EpitaxiallyStabilized Cubic AlN in Superlattices [J]. Applied Physics Letters,2001,78(7):892-895.
    [62]劳技军,胡晓萍,虞晓江,et al. AlN在AlN/VN纳米多层膜中的相转变及其对薄膜力学性能的影响[J].物理学报,2003,52(9):2259-05.
    [63] Li D, Lin XW, Cheng SC, et al. Structure and Hardness Studies of CNx/TiN NanocompositeCoatings [J]. Applied Physics Letters,1996,68:1211-1213.
    [64] Devia D, Ospina R, Benavides V, et al. Study of TiN/BN Bilayers Produced by Pulsed ArcPlasma [J]. Vacuum,2005,78:67-71.
    [65] Dong L, Liu GQ, Sun YD, et al. Effect of Deposition Parameters on Structure andMechanical Properties of TiB2/Si3N4Nanomultilayers [J]. International Journal of Modern PhysicsB,2010,24(1-2):43-50.
    [66] Wei L, Mei FH, Shao N, et al. Template-induced Crystallization of Amorphous SiO2and itsEffects on the Mechanical Properties of TiN/SiO2Nanomultilayers [J]. Applied Physics Letters,2005,86:021919.
    [67] Wei L, Kong M, Dong YS, et al. Crystallization of Al2O3and its Effects on the MechanicalProperties in TiN/Al2O3Nanomultilayers [J]. Journal of Applied Physics,2005,98:074302.
    [68] Kong M, Wu X, Huang B, et al. Epitaxial Growth and Superhardness Effect of TiN/AlONNanomultilayers Synthesized by Reactive Magnetron Sputtering Technology [J]. Journal of Alloysand Compounds,2009,485:435-438.
    [69] Dong Yunshan, Yue Jianling, Liu Yan, et al. Crystallization of AlON Layers and its Effectson the Microstructure and Hardness of Reactively Synthesized ZrN/AlON Nanomultilayers [J].Journal of Physics D: Applied Physics,2006,39:4838-4842.
    [70] Yue Jianling, Zhao Wenji, Li Geyang, et al. Microstructure and Mechanical Properties ofVN/SiO2Nanomultilayers Synthesized by Reactive Sputtering [J]. Materials Letters,2008,62:1621-1623.
    [71] Yue Jianling, Liu Yan, Zhao Wenji, et al. Crystallization of AlON and its Effects on theGrowth and Hardness of Reactively Synthesized VN/AlON Nanomultilayer [J]. Scripta Materialia,2006,55:895-898.
    [72] Zhao Wenji, Kong Ming, Wu Ying, et al. Pseudocrystallization of SiO2and SuperhardnessEffects of AlN/SiO2Nanomultilayers [J]. Journal of Applied Physics,2008,103(4):043506.
    [73] Dong YS, Zhao WJ, Yue JL, et al. Crystallization of Si3N4Layers and its Influences on theMicrostructure and Mechanical Properties of ZrN/Si3N4Nanomultilayers [J]. Applied PhysicsLetters,2006,89(12):121916.
    [74] Sproul W D. New Routes in the Preparation of Mechanically Hard Films [J]. Science,1996,273:889-892.
    [75]刘艳,董云杉,曾豪, et al.非晶Si3N4在ZrN/Si3N4多层膜中的赝晶晶化和生长[J].电子显微学报,2006(B08):93-94.
    [76] Li Guanqun, Li Yuge, Li Geyang. Crystallization of Amorphous AlN and SuperhardnessEffect in VC/AlN Nanomultilayers [J]. Thin Solid Films,2012,520(6):2032-2035.
    [77] Li Guanqun, Li Yuge, Li Geyang. Crystallization of Amorphous Si3N4and SuperhardnessEffect in HfC/Si3N4Nanomultilayers [J]. Applied Surface Science,2011,257:5799–5802.
    [78] Dong L, Li DJ, Zhang S, et al. Microstructure and Mechanical Properties of As-deposited andAnnealed TiB2/BN Superlattice Coatings [J]. Thin Solid Films,2012,520(16):5328-5332.
    [79] Koskinen J, Ronkainen H, Hirvonen JP, et al. Characterization of the Mechanical Propertiesof Carbon Metal Multilayered films [J]. Diamond and Related Materials,1995,4:843-847.
    [80] Li Yuge, Li Guanqun, Yang Duo, et al. Microstructure Evolution and Mechanical Propertiesin VC/SiC Nanomultilayers [J].2012,258(24):9856-9858.
    [81] Lee KW, Chen YH, Chung YW, et al. Hardness, Internal Stress and Thermal Stability ofTiB2/TiC Multilayer Coatings Synthesized by Magnetron Sputtering with and without SubstrateRotation [J].Surface and Coatings Technology,2004,177-178:591-596.
    [82] Jin G, Xu BS, Wang HD, et al. Investigation on the formation and Wear Resistance of TiCcoatings [J]. Materials Science and Engineering: A2006,435-436:355-359.
    [83] Chaddha AK, Parsons JD, Kruaval G.B. Thermally Stable, Low Specific Resistance(1.30×105Ωcm2) TiC Ohmic Contacts to n-type6H‐SiC [J]. Applied Physics Letters,1995,66:760-763.
    [84] Wendler BG and Molinaro M, In: Proc.10th Int. Summer School on Modern Plasma SurfaceTechnology, Mielno, Poland,1998,5(10–14):423–436.
    [85] Zhao Yanhui, Lin Guoqiang, Xiao Jinquan, et al. TiN/TiC Multilayer Films Deposited byPulse Biased Arc Ion Plating [J]. Vacuum,2010,85:1-4.
    [86] Holleck H, Schier V. Multilayer PVD Coatings for Wear Protection [J]. Surface and CoatingsTechnology,1995,76-77:328-336.
    [87] Lee KW, Chung YW, Korach C, et al. Tribological and Dry Machining Evaluation ofSuperhard TiB2/TiC Multilayer Coatings deposited on Si(001), M2steel, and C3WC Cutting ToolInserts Using Magnetron Sputtering [J]. Surface and Coatings Technology,2005,194:184-189.
    [88] Phani AR, Krazanowski JE, Nainaparampil JJ. Structural and Mechanical Properties ofTiC/Ti and TiC/B4C Multilayer Deposited by Pulsed Laser Deposition [J]. Journal of MaterialsResearch,2002,17(6):1390-1398.
    [89]田敏波,刘德令.薄膜科学与技术手册(下册)[M].北京:机械工业出版社,1991:735-736.
    [90] Cammarata RC, Sieradzki K. Effects of Surface Stress on the Elastic Moduli of Thin Filmsand Superlattices [J].Physical Review Letters,1989,62:2005.
    [91] Jankowski AF, Tsakalakos T. The Effect of Strain on the Elastic Constants of Noble Metals[J].Journal of Phycics F: Metal Physics,1985,15:1279-1292.
    [92] Romanov AE. Continuum Theory of Defects in Nanoscaled Materials [J]. NanostructuredMaterials,1995,6:125–134.
    [93] Yang WMC, Tsakalakos T, Hilliard JE. Enhanced Elastic Modulus in Composition-ModulatedGold-nikel and Copper-palladium Foils [J]. Journal of Applied Physics,1977,48(1):876-879.
    [94] Chu X, Barnett SA. Model of Superlattice Yield Stress and Hardness Enhancements [J].Journal of Applied Physics,1995,77(9):4403-4411.
    [95] Anderson PM, Li C. Hall-petch Relations for Multilayered Materials. Nanostructure Materials,1995,5(3):349-362.
    [96] Madan A, Chu X, Barnett SA. Growth and Characterization of Epitaxial Mo/NbNSuperlattices [J]. Applied Physics Letters,1996,68(16):2198-2200.
    [97] Kato M, Mori T, Schwartz LH. Hardening by Spinodal Modulated Structure [J]. ActaMetallurgica,1980,28:285-290.
    [98] Mirkarimi PB, Barnett SA, Hubbard KM, et al. Structure and Mechanical Properties ofEpitaxial TiN/V0.3Nb0.7N (100) Superlattices [J]. Journal of Material Research,1994,9,1456-1467.
    [99] Cammarata RC. The Supermodulus Effect in Compositionally Modulated Thin Films [J].Scripta Metallurgica,1986,20:479~486.
    [100] Zhang RF, Argon AS, Veprek S. Understanding Why the Thinnest SiNxInterface inTransition-metal Nitrides is Stronger than the Ideal bulk Crystal [J]. Physical Review B,2010,81:245418.
    [101] Courtney TH, Mechanical Behavior of Materials [M]. New York: McGraw-Hill, Inc.,1990.
    [102] Tabor D, The hardness of metals [M]. Oxford: Clarendon Press,1951
    [103] Lehoczky SL. Strength Enhancement in Thin-layered Al-Cu Laminates [J]. Journal ofApplied Physics,1978,49:5479-5485.
    [104] Xu JH, Li GY, Kamiko M, et al. Superhardness Effects of Heterostructure NbN/TaNNanostructured Multilayers [J]. Journal of Applied Physics,2001,89(7):3674-3678.
    [105] Pacheco ES, Mura T. Interaction between a Screw Dislocation and a Bimetallic Interface [J].Journal of the Mechanics and Physics of Solids,1969,17:163-170.
    [106] Krzanowski JE. The Effect of Composition Profile Sharp on the Strength of MetallicMultilayer Structures [J]. Scripta Metallurgica et Materialia,1991,25:1465-1470.
    [107] Sevillano JG, Haasen P, Gerold V, et al. Strength of Metals and Alloys [M]. Oxford:Pergamon1980,819.
    [108] Mirkarimi B, Hultman L, Barnett SA. Enhanced Hardness in Lattice-matched Sigle-CrystalTiN/V0.6Nb0.4N Superlattices [J]. Appied Physics Letters,1990,57(25):2654-2656.
    [109] Shinn M, Barnett SA. Effect of Superlattice Layer Elastic Moduli on Hardness [J]. AppiedPhysics Letters,1994,64(1):61-63.
    [110] Chu X, Barnett SA. Model of Superlattice Yield Stress and Hardness Enhancements. Journalof Applied Physics,1995,77(9):4403-4411.
    [111] Chu X, Wong MS, Sproul WD, et al. Deposition and Properties of Polycrystalline TiN/NbNSuperlattice Coatings [J]. Journal of Vacuum Science and Technology A,1992,10(4):1604-1609.
    [112] Hall EO, Proc. Phys. Soc. London,1951,25,1465.
    [113] Shinn M. Nucleation, Structure, and Mechainical Properties of Epitaxial TitaniumNitride/Niobium Nitride and Vanadium (0.6) Niobium (0.4) Nitride/Niobium Nitride SuperlatticeThin Films [Doctor Dissertation]. Evanston, Illinois, Northwestern Univerisity,1993.
    [114] Anderson PM, Foeckw T, Hazzledine PM. Dislocation-based Deformation Mechanisms inMetallic Nanolaminates [J]. MRS Bulletin,1999,24(2):27-33.
    [115] Song HW, Guo SR, Hu ZQ. A Coherent Polycrystal Model for the Inverse Hall-PetchRelation in Nanocrystalline Materials [J]. Nanostructured Materials,1999,11(2):203-210.
    [116] Friedman LH, Chrzan DC. Scaling Theory of the Hall-Petch Relation for Multilayers [J].Physical Review Letters,1998,81(13):2715-2718.
    [117] Veprek S, Argon AS, Zhang RF. Origin of the Hardness Enhancement in Superhardnc-TiN/a-Si3N4and Ultrahard nc-TiN/a-Si3N4/TiSi2Nanocomposites [J]. Philosophical MagazineLetters,2007,87:955-966.
    [118] Yin Deqiang, Peng Xianghe, Qin Yi, et al. Electronic Property and Bonding Configuration atthe TiN(111)/VN(111) Interface [J]. Journal of Applied Physics,2010108:033714.
    [119] Kaner RB, Gilman JJ, Tolbert SH. Designing superhard materials [J]. Science,2005,308:1268-1269.
    [120] Petr Lazar, Josef Redinger, Johannes Strobl, et al. N-K electron Energy-loss Near-edgeStructures for TiN/VN Layers: an Ab ignition and Experimental Study [J]. Analytical andbioanalytical chemistry,2008,390:1447-1453.
    [121] Hao S, Delley B, Stampfl C. Structure and Properties of TiN(111)SixNyTiN(111) Interfacesin Superhard Nanocomposites: First-principles Investigations [J]. Physical Review B,2006,74:035402.
    [122] Lazar P, Redinger J, Podloucky R. Density Functional Theory Applied to VN/TiNMultilayers [J]. Physical Review B,2007,76:174112.
    [123] Zhang RF, Argon AS, Veprek S. Electronic Structure, Stability, and Mechanism of theDecohesion and Shear, of Interfaces in Superhard Nanocomposites and Heterostructures [J].Physical Review B,2009,79:245426.
    [124] Kim C, Qadri SB, Scanlon MR, et al. Low-dimension structural properties andmicroindentation studies of ion-beam-sputtered multilayers of Ag/Al films [J]. Thin Solid Films,1994,240,52-55.
    [125] Liu Y, Wang RB, Guo XQ, et al. A cross-sectional TEM sample preparation method forfilms deposited on metallic substrates [J]. Materials Characterization,2007,58(7):666-669.
    [126] Tian JW, Han ZH, Lai QX, et al. Two-step penetration: a reliable method of themeasurement of mechanical properties of hard coatings [J]. Surface and Coatings Technology,2004,176(3),267-271.
    [127] Oliver WC, Pharr GM. An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiment [J]. Journal of MaterialsResearch,1992,7(6),1564-1583.
    [128] Kumar N, Krishnan R, Dinesh K, et al. Tribological properties of nanostructured TiCcoatings deposited on steel and silicon substrates using laser deposition technique [J]. Tribology–Materials, Surface and Interfaces,2011,5(1):1-9.
    [129] Ali S, Ali RSR, Shahrokh A, et al. Effects of duty cycle on microstructure and corrosionbehavior of TiC coatings prepared by DC pulsed plasma CVD [J]. Applied Surface Science,2012,258(7):3051-3057.
    [130] Li F, Tang JK, Jeffrey SZ. Tribological properties of magnetron-sputtered TiC coatings [J].Materials Science and Engineering: A,1998,257(2):240-249.
    [131] Coronel E, Wiklund U, Olsson E. The effect of carbon content on the microstructure ofhydrogen-free physical vapour deposited titanium carbide films [J]. Thin Solid Films,2009,518(1-2):71-76.
    [132] Okamoto H. C-Ti (Carbon-Titanium)[J]. Journal of Phase Equilibria,1998,19(1):89.
    [133] Mania A, Auberta P, Mercierb F, et al. Effects of residual stress on the mechanical andstructural properties of TiC thin films grown by RF sputtering [J]. Surface and CoatingsTechnology,2005,194,190-195.
    [134] Kim C, Qadri SB, Scanlon MR, et al. Low-dimension structural properties andmicroindentation studies of ion-beam-sputtered multilayers of Ag/Al films [J]. Thin Solid Films,1994,240:52–55.
    [135]李冠群,VC基纳米多层膜的微结构与超硬效应[学位论文],上海,上海交通大学,2011.
    [136] Freund LB, Suresh S, Thin Film Materials: Stress, Defect Formation and Surface Evolution.New York: Cambridge University Press,2003.
    [137] Zhang RF, Argon AS, Veprek S. Understanding why the thinnest SiNxinterface intransition-metal nitrides is tronger than the ideal bulk crystal [J]. Physical Review B,2010,81,245418.
    [138] William DS. Reactive sputter deposition of polycrystalline nitride and oxide superlatticecoatings [J]. Surface and Coatings Technology,1196,86-87:225-230.
    [139] Lao JJ, Shao N, Mei F, et al. Mutual promotion effect of crystal growth in TiN/SiCnanomultilayers [J]. Applied Physics Letters,2005,86(1):011902.
    [140]乌晓燕,孔明,赵文济, et al. Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应[J].物理学报,2009,58(4):2654-2656.
    [141] Kong M, Zhao W, Wei L, et al. Investigations on the microstructure and hardeningmechanism of TiN/Si3N4nanocomposite coatings [J]. Journal of Physics-London-D: AppliedPhysics,2007,40(9):2858-2863.
    [142] Jeong JJ, Hwang SK, Lee C. Hardness and adhesion properties of HfN/Si3N4andNbN/Si3N4multilayer coatings [J]. Materials Chemistry and Physics,2003,77(1):27-33.
    [143] Veprek S, Niederfoher A, Moto K, et al. Composition, nanostructure and origin of theultrahardness in nc-TiN/a-Si3N4and nc-TiSi2nanocomposites with Hv=80to≥105GPa [J].Surface and Coatings Technology,2000.133:152-159.
    [144] Zhang ZY, Lagally G. Atomistic Processes in the Early Stages of Thin-Film Growth [J].Science.1997,276(5311):377-383.
    [145] Eklund P, Emmerlich J, H gberg, et al. Structrual, electrical, and mechanical properties ofnc-TiC/a-SiC nanocomposite thin films [J]. Journal of Vacuum Science&Technology B,2005,23:2486-2496.
    [146] Fan SW, Xu YD, zhang LT, et al. Three-demensional needled carbon/silicon carbidecomposites with high firction performance [J]. Materials Science and Engineering A,2007,467(1-2):53-58.
    [147] Lee S-K, Zetterling C-M, Danielsson E, et al. Electrical characterization of TiC ohmiccontacts to aluminium ion implanted4H-silicon carbide [J]. Applied Physics Letters,2000,77:1478-1481.
    [148] Sarro PM. Silicon carbide as a new MEMS technology [J]. Sensors and Actuators A:Physical,2000,82(1-3):210-218.
    [149] Eklund P, H gberg H, Hultman L. Epitaxial TiC/SiC multilayers [J]. Physica StatusSolidi-Rapid Research Letters,2007,1(3):113-115.
    [150] Barnett SA, Madan A, Kim IIwon, Martin Keith, Stability of Nanometer-Thick Layers inHard Coatings, MRS Bulletin,200328(3):169-172.
    [151] Hugh OP. Handbook of Refractory Carbides and Nitrides, Noyes Publications,1996.
    [152]孔明,岳建岭,李戈扬.陶瓷硬质纳米多层膜研究进展[J].无机材料学报,2010,25(2):1-6.
    [153] Hu ZH, Li GY, Tian JW, Gu MY. Microstructure and mechanical properties of boron carbidethin films [J]. Materials Letters,2002,57(4):899-903.
    [154] Deng JX, Zhou J, Feng Y, et al. Microstructure and mechanical properties of hot-pressedB4C/(W,Ti)C ceramic composites [J]. Ceramics International,2002,28(4):425-430.
    [155] Shinn M, Hultman L, Barnett SA. Growth, structure, and microhardness of epitaxialTiN/NbN superlattices [J].Journal of Materials Research19927901
    [156] Liu SP, Kang YB, Wang H, et al. Influence of modulation ration on the structure andmechanical properties of TiB2/TiAlN multilayered coatings [J]. Materials Letters,2008,62:3536-3538.
    [157] Ziebert C, Ulrich S. Hard multilayer coatings containing TiN and/or ZrN: a review andrecent progress in their nanoscale characterization [J]. Journal of Vacuum Science and TechnologyA2006,24(3):554-583.
    [158]李广泽, TiN/ZrN纳米多层膜的微结构与力学性能[学位论文],上海,上海交通大学,2010.
    [159]李玉阁,李冠群,李戈扬.调制结构参数对异结构VC/TiB2纳米多层膜超硬效应的影响[J].物理学报,2013,62(1):016801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700