两相纳米结构薄膜中的模板效应与超硬效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质薄膜是一类具有广泛用途的表面涂层材料。近年来的研究发现,陶瓷纳米多层膜和纳米复合膜均具有硬度异常升高的超硬效应。这些两相纳米结构薄膜因材料组合的多样性而带来的性能的可裁剪性,展示出广阔的应用前景,而它们通过纳米尺度微结构,而不是通过传统的原子间强键能获得高硬度的强化机制,更具理论研究价值。纳米多层膜和纳米复合膜已成为近年来超硬材料和薄膜材料的研究热点。
     本论文从二维结构纳米多层膜和三维结构纳米复合膜两方面研究了两相纳米结构薄膜产生超硬效应的微结构本质和强化原因。在纳米多层膜方面,论文设计、制备了TiN与非晶SiC、AlON以及AlN与非晶Si_3N_4组成的纳米多层膜,研究了立方结构TiN和六方结构AlN晶体对各非晶层晶体化的模板效应,以及非晶层生长模式的转变对纳米多层膜微结构与力学性能的影响。在纳米复合膜方面,论文揭示了TiN/Si_3N_4纳米复合膜的微结构特征,并进一步采用二维结构TiN/Si_3N_4纳米多层膜实验模拟的方法研究了非晶Si_3N_4在TiN晶体模板层上的晶化现象及其结构变化对薄膜微结构和力学性能的影响。
     论文得出的主要结论如下:
     1.立方结构的纳米晶TiN和非晶SiC组成的多层膜显示了一种晶体生长的互促效应:由于B1-NaCl结构的TiN晶体层的模板作用,SiC层在厚度小于0.6 nm时晶化为同样结构的晶体并与TiN共格外延生长;SiC晶化后对TiN层的晶体生长亦有促进作用,使TiN层晶体生长的完整性显著提高,TiN/SiC多层膜因而形成强烈(111)择优取向的柱状晶,并产生硬度异常升高的超硬效应,最高硬度值可达60.6 GPa。SiC层厚增大到0.8 nm后将逐步由晶体结构变为非晶结构,阻碍了纳米多层膜的共格外延生长,多层膜的硬度随之降低。在SiC晶化并与TiN形成共格外延生长结构的纳米多层膜中,TiN厚度的改变对多层膜的力学性能影响不甚明显。
     2.采用在Ar, N2混合气氛中溅射金属Ti靶和化合物Al2O3靶的反应溅射方法可以制备TiN/AlON纳米多层膜。在TiN/AlON纳米多层膜中,由于TiN晶体层的模板作用,原为非晶态的AlON层在厚度小于约0.6 nm时被强制晶化,并与TiN层形成共格外延生长结构,多层膜获得硬度显著升高的超硬效应,最高硬度达到40.8 GPa。AlON层随厚度的增加又转变为以非晶态生长,多层膜的共格外延生长结构受到破坏,其硬度也相应降低。由于反应溅射TiN有很高的沉积速率,这种采用反应溅射制备高硬度纳米多层膜的方法为超硬多层膜的工业化生产提供了新的思路。
     3.在AlN/Si_3N_4纳米多层膜中,非晶态的Si_3N_4当其层厚小于0.8 nm时在六方结构AlN晶体层的模板作用下晶化为六方结构的赝晶体,并与AlN形成以(0001)为择优取向的共格外延生长结构,多层膜产生硬度异常升高的超硬效应,最高硬度达32.8 GPa。Si_3N_4随层厚的增加又转变为以非晶态生长,多层膜的共格外延生长结构遭到破坏,其硬度也随之降低。这一六方结构的AlN也具有使非晶材料晶化的现象为纳米多层膜晶体生长模板效应的普遍性提供了新的例证。
     4.对高硬度TiN/Si_3N_4纳米复合膜的微结构分析发现,复合膜中的TiN呈直径约10 nm,高度约数百纳米的柱状晶,Si_3N_4界面相的厚度约为0.5-0.7 nm,呈现晶体态,并与相邻的TiN晶粒形成共格外延生长结构,复合膜具有若干TiN纳米柱状晶通过Si_3N_4界面相共格相连而形成集束柱状晶的微结构特征。
     5.二维结构TiN/Si_3N_4纳米多层膜的实验模拟表明,由于TiN晶体层的模板作用,非晶的Si_3N_4在厚度小于0.7 nm时被晶化,并与相邻的TiN晶体形成共格外延生长结构,多层膜获得38.5 GPa的高硬度,Si_3N_4随厚度的进一步增加又转变为非晶态,多层膜的共格生长结构遭到破坏,其硬度也随之迅速降低。
     6.通过对TiN/Si_3N_4纳米复合膜和多层膜微结构特征和力学性能的对比可以发现,两相纳米结构超硬薄膜中高硬度的获得都与非晶相晶体化并与模板相形成共格界面结构有关,而它们硬度的迅速降低也都与非晶界面相随厚度的增加由晶体态转变为非晶态而导致共格结构遭到破坏有关。
     论文基于以上研究,揭示了模板效应在两相纳米结构薄膜特殊微结构形成和产生超硬效应中的关键作用和普遍性;提出了TiN/Si_3N_4纳米复合膜微结构和强化机制的新观点;以及利用纳米多层膜中晶体生长的模板效应通过非晶体晶化的方法拓展高硬度两相纳米结构陶瓷薄膜材料组合范围的设计路线。
Hard ceramic films have been widely used as surface protection materials. It was found recently that ceramic nanomultilayers and nanocomposites exhibit superhardness effect, i.e. significant enhancement in hardness in contrast to their bulk counterpart. The virtue of investigating these two-phase nanostructured materials lies not only in the aspect of application in that their physical or mechanical properties can be specially tailored, but also in the aspect of theoretical as their high hardness has been achieved via proper design of microstructure in nanometer scale, rather than intrinsically exhibiting strong atomic bondings. Therefore, nanomultilayers and nanocomposites are being more and more popular nowadays.
     In this thesis, both 2-D laminar structured nanomultilayers and 3-D network structured nanocomposites were synthesized and studied to understand their unique microstructure and hardening mechanisms related to their superhardness effect. In the aspect of nanomultilayers, TiN/SiC, TiN/AlON as well as AlN/Si_3N_4 systems were designed and synthesized, with an aim to investigate the template-induced crystallization phenomenon of naturally amorphous materials (SiC, AlON, and Si_3N_4) on various template materials different in crystal structure (cubic crystalline TiN and hexagonal crystalline AlN), as well as how the change of microstructure in amorphous layer affect corresponding mechanical properties of nanomultilayers. In the aspect of nanocomposites, the microstructure and mechanical properties of superhard TiN/Si_3N_4 nanocomposites as well as its parallel 2-D laminar TiN/Si_3N_4 counterpart were subjected to a thorough scrutinize, with an aim to understand the existing state of Si_3N_4 interfacial phase in nanocomposites and its influence on the resultant film’s mechanical properties. The conclusions drawn from these studies are as follows:
     1. A mutual promotion effect that affects crystallinity of both TiN and SiC was found in TiN/SiC nanomultilayers: Due to the template effect of B1-NaCl structured TiN nanocrystals, SiC crystallized into the same structure and grew epitaxially with TiN when its thickness was less than 0.6 nm. Meanwhile, the formation of crystalline SiC reversely promoted the crystal integrity of TiN and nanomultilayers formed large columnar crystals with intense (111) preferred orientation. Correspondingly, the nanomultilayers showed a superhardness effect with highest hardness reaching 60.6 GPa. When SiC thickness was further increased to 0.8 nm, it turned into amorphous growth mode, resulting in the destruction of the coherent structure and a significant decrease in film’s hardness. However, the change of TiN thickness does not have a significant influence in mechanical properties of nanomultilayers.
     2. It is viable to synthesize TiN/AlON nanomultilayers through reactively sputtering the metallic Ti and ceramic Al2O3 targets in a mixture atmosphere of Ar and N2. Due to template effect of TiN layer, AlON layer was forced to crystallize when its thickness was less than 0.6 nm. The crystallized AlON formed a pseudomorphic structure identical to that of TiN and grew epitaxially with TiN layer. Consequently, film’s hardness was enhanced significantly to a maximum value of 40.8 GPa. A further increase in AlON thickness resulted in the amorphization of AlON and dramatic decline in multilayer’s hardness. The expected high deposition rate resulting from the adoption of reactive sputtering technology together with its superior mechanical properties provides this kind of nanomultilayers high promising in the industrial mass productions.
     3. For AlN/Si_3N_4 nanomultilayers synthesized by reactive magnetron sputtering, wurtzite-typed hexagonal AlN also showed‘template effect’. Under this effect, Si_3N_4 assumed hexagonal pseudo-crystal structure and grew epitaxially with AlN at an intense(0001)preferred orientation when its thickness was less than 0.8 nm. Superhardness effect with highest hardness reaching as high as 32.8 GPa appeared as a result. When further increasing its thickness, Si_3N_4 transformed into amorphous and destructed the coherent interfaces, resulting in the degradation of film’s mechanical properties. This study provides an example that hexagonal crystallization of amorphous structure is also possible when the template material is hexagonal structured, implying that template-induced crystallization in nanomultilayers is a universal phenomenon no matter what kind of template material is employed.
     4. Researches on superhard TiN/Si_3N_4 nanocomposites reveals that: TiN are columnar-like nanocrystals separated by Si_3N_4 interfacial phases, with dimensions of less than 10 nm in width and several hundred nanometers in height. The thin Si_3N_4 tissue with thickness of 0.5-0.7 nm exists in crystalline state and forms coherent interfaces with the adjacent TiN nanocrystals. Several TiN nanocrystalline columnar grains are glued by coherent Si_3N_4 interfaces and form a bundle-like columnar grain, making them primary structural units of TiN/Si_3N_4 nanocomposites with superhardness effect.
     5. Experimental simulation from parallel 2-D laminar TiN/Si_3N_4 nanomultilayers reveals that when Si_3N_4 thickness is less than 0.7 nm, affected by the template effect of TiN crystal layers, Si_3N_4 is forced to crystallize and grows epitaxially with TiN. Correspondingly, the hardness of nanomultilayers is significantly enhanced to a maximum value of 38.5 GPa. A further increase in Si_3N_4 thickness will, however, cause Si_3N_4 to return back into amorphous growth mode, as a result, epitaxial structure is destructed and film’s hardness is declined.
     6. The comparison between TiN/Si_3N_4 nanocomposites and nanomultilayers reveals that the achievement of superhardness effect in these two-phase nanostructured films is closely related to the crystallization of amorphous layer and the formation of epitaxial coherent interfaces. And the hardness degradation is caused primarily by the amorphization of interfacial phase and the destruction of coherent interface.
     Based on these results, the thesis revealed the key role that template effect plays and its universality feature in generating unique microstructure and superhardness in two-pahse nanostructured films; suggested a new opinion different from the well known nc-TiN/a-Si_3N_4 model on hardening mechanism of TiN/Si_3N_4 nanocomposites; and proposed a new design principle to strengthen two-phase nanostructured films: i.e. employing template effect to induce crystallization of naturally amorphous interfacial phase.
引文
[1] Veprek S. The search for novel, superhard materials [J]. J.Vac.Sci.Technol. A, 1999, 17(5):2401-2420.
    [2] Fischmeister H and Jehn H. Hartstoffschichten zur Verschleissminderung [M], GMInformationsgesell -schaft, Stuttgart, 1987.
    [3] Stephenson DA and Agapiou JS. Metal cutting theory and practice [M]. Edition 2, Michigan USA, CRC Press, 2006, pp. 158-159.
    [4] Sung CM and Sung M. Carbon nitride and other speculative superhard materials [J]. Mater. Chem. Phys.,1996, 43:1-6.
    [5] Ronkainen H, Varjus S, and Holmberg K. Tribological performance of different DLC coatings in water-lubricated conditions [J]. Wear, 2001, 249(3-4):267-271.
    [6] Keunecke M, Wiemann E, Weigel K, et al. Thick c-BN coatings– Preparation, properties and application tests [J]. Thin Solid Films, 2006, 515(3): 967-972.
    [7] Zhang Y, Zhou Z, and Li H. Crystalline carbon nitride films formation by chemical vapor deposition [J]. Appl. Phys. Lett., 1996, 68:634-636.
    [8] Broitman E, Neidhardt J, and Hultman L. Fullerene-like carbon nitride: A new carbon-based tribological coating [M]. Springer US, 2007, 620-653.
    [9] Schedler W, Hartmetall fur den Praktiker [M]. VDI.Dusseldorf, pp.1998.
    [10] Musil J. Hard and superhard nanocomposite coatings [J]. Surf.Coat. Technol., 2001, 25:322-330.
    [11] Liu AY and Cohen ML. Prediction of new low compressibility solids [J]. Science, 1989, 245:841-842.
    [12] Chen Y, Guo LP, Chen F, et al. Synthesis and characterization of C3N4 crystalline films on silicon [J]. J.Phys.: Condens. Mater, 1996, 8:685-690.
    [13] Chen Y, Guo L, and Wang EG. Experimental evidence for alpha - and beta -phases of pure crystalline C3N4 in films deposited on nickel substrates [J]. Philos. Mag. Lett., 1997, 75:155-162.
    [14] Lu CS, Mai YW, and Shen YG. Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review [J]. J Mater. Sci., 2006, 41:937-950.
    [15] Mayrhofer PH, Kunc F, Musil J, et al. A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings [J]. Thin Solid Films, 2002, 415:151-159.
    [16] Mayrhofer PH, Mitterer C, and Musil J. Structure–property relationships in single- and dual-phase nanocrystalline hard coatings [J]. Surface and Coatings Technology, 2003, 174/175:725-731.
    [17] Koehler JS. Attempt to design a strong solid [J]. Physical Review B, 1970, 2:547-551.
    [18]康昌鹤,杨树人.半导体超晶格材料及其应用[M].国防工业出版社,中国北京, 1995:128.
    [19] Barnett SA and Shinn Meenam. Plastic and elastic properties of compositionally modulated thin films [J]. Annu. Rev. Mater. Sci., 1994, 24:481-551.
    [20] Helmersson U, Todorova S, Barnett SA, et al. Growth of single-crystal TiN/VN strained-lay superlattice with extremely high mechanical hardness [J]. J. Appl. Phys, 1987, 62:481-484.
    [21] Li SZ, Shi YL and Pen HR. Plasma Chem. Plasma Process. 12(1992):287-291.
    [22] Veprek S and Reiprich S. A concept for the design of novel superhard coatings [J]. Thin Solid Films, 1995, 268:64-71.
    [23] Veprek S, Reiprich S, and Li SZ. Superhard nanocrystalline composite materials: the TiN/Si3N4 system. Appl. Phys. Lett., 1995, 66:2640-2642.
    [24] Niederhofer A, Nesladek P, Mannling H D, et al. Structural properties, internal stress and thermalstability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1-yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond [J]. Surface and Coatings Technology, 1999, 120/121:173-178.
    [25] Veprek S. Conventional and new approaches towards the design of novel superhard materials [J]. Surf. Coat. Technol., 1997, 97:15-22.
    [26] Veprek S. The search for novel, superhard materials [J]. J. Vac. Sci. Technol. A, 1999, 17: 2401-2420.
    [27] Veprek S, Niederhofer A, Moto K, et al. Nanocomposites nc-TiN/a-Si3N4/a- and nc-TiSi2 with hardness exceeding 100 GPa and high fracture toughness [J]. Materials Research Society Symposium - Proceedings, 2000, 581:321-326.
    [28] Nose M, Chiou WA, Zhou M, et al. Microstructure and mechanical properties of Zr-Si-N films prepared by rf-reactive sputtering [J]. Journal of Vacuum Science and Technology, Part A: Vacuum, Surfaces and Films, 2002, 20 (3): 823-828.
    [29] Mae T, Nose M, Zhou M, et al. The effects of Si addition on the structure and mechanical properties of ZrN thin films deposited by an r.f. reactive sputtering method [J]. Surface and Coatings Technology, 2001, 142/144: 954-958.
    [30] Veprek S, Haussmann M, and Reiprich S. Superhard nanocrystalline W2N/amorphous Si3N4 composite materials [J], J. Vac. Sci. Technol. A, 1996, 14(1):46-51.
    [31] Carvalho S, Rebouta L, Cavaleiro A, et al. Mechanical and adhesion behaviors of superhard (Ti, Si, Al)N nanocomposite films Grown by Reactive Magnetron Sputtering [J]. Key Engineering Materials, 2002, 230/232:185-188.
    [32] CNKI学术趋势,中国学术期刊网,中国北京,http://trend.cnki.net/.
    [33] Madan A, Chu X, and Barnett SA. Growth and characterization of epitaxial Mo/NbN superlattices [J]. Appl. Phys. Lett., 1996, 68(16):2198-2200.
    [34] Mirkarimi PB, Barnett SA, Hubbard KM, et al. Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7 (100) superlattices [J]. J. Mater. Res., 1994, 9:1456-1467.
    [35] Xu JH, Li GY, Kamiko M, et al. Superhardness effects of heterostructure NbN/TaN nanostructured multilayers [J]. J. Appl. Phys., 2001, 89(7):3674-3678.
    [36] Courtney TH. Mechanical behavior of materials [M]. New York: McGraw-Hill, Inc., 1990.
    [37] Chu X and Barnett SA. Model of superlattice yield stress and hardness enhancements [J]. J. Appl Phys, 1995, 77(9):4403-4411.
    [38] Pacheco ES and Mura T. Interaction between a screw dislocation and a bimetallic interface [J]. J Mech Phys Solids, 1969, 17:163-170.
    [39] Sevillano JG. In: Haasen P, Gerold V, Kowtorzs G, editors. Strength of metals and alloys [M]. Oxford: Pergamon, 1980, pp. 819.
    [40] Krzanowski JE. The effect of composition profile on the strength of metallic multilayer structures [J]. Scripta Metall Mater, 1991, 25:1465-1470.
    [41] Mirkarlmi PB, Hultman L, and Barnett SA. Enhanced hardness in lattice-matched single-crystal TiN/V0.6Nb0.4N superlattices [J]. Appl. Phys. Lett., 1990, 57(25):2654-2656.
    [42] Chu X, Wong MS, Sproul WD, et al. Deposition and properties of polycrystalline TiN/NbN superlattice coatings [J]. J. Vac. Sci. Technol. A, 1992, 10(4):1604-1609.
    [43] Hall EO. The deformation and aging of mild steel.3 discussion of results [J]. Proc Phys Soc., 1951, 64B:747-753.
    [44] Hertzberg RW. Deformation and fracture mechanics of engineering materials [M]. 3 rd ed., Wiley, New York,1989.
    [45] Madan A, Wang YY, Barnett SA, et al. Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices [J]. J. Appl.Phys., 1998, 84(2):776-785.
    [46] Song HW, Guo SR, and Hu, ZQ. A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials [J]. Nanostructured Materials, 1999, 11(2):203-210.
    [47] Cahn JW. Hardening by spinodal decomposition [J]. Acta Metall., 1963, 11:1275-1282.
    [48] Kato M, Mori T, and Schwarz LH. Hardening by spinodal modulated structure [J]. Acta Metall., 1980, 28:285-290.
    [49] Lebouvier D, Gilormini P, and Felder E. A kinematic model for plastic indentation of a bilayer [J]. Thin Solid Films, 1989, 172:227-231.
    [50] Grinfeld MA, Hazzledine PM, Shoykhet B, et al. Coherency Stresses in Lamellar Ti-Al [J]. Matallurgical and Materials transactions A., 1998, 29A(3): 937-942.
    [51] Shin KK and Dove DB. Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness [J]. Appl. Phys. Lett, 1992, 61(6):654-656.
    [52] Chu X, Wong MS, Sproul WD, et al. Mechanical properties and microstructures of polycrystalline ceramic/metal superlattices: TiN/Ni and TiN/Ni0.9 Cr0.1 [J], Surf. Coat. Technol., 1993, 61:251-256.
    [53] Abadias G, Pailloux F, and Dub SN, Epitaxial growth and mechanical properties of (001) ZrN/W nanolaminates [J], Surf. Coat. Technol., 2008, 202(15):3683-3687.
    [54] Barnett SA, Madan A, Kim I, et al. Stability of nanometer-thick layers in hard coatings [J]. MRS Bulletin, 2003, 28(3):169-172.
    [55] Abadias G, Tse YY, Michel A, Jaouen C, et al. Nanoscaled composite TiN/Cu multilayer thin films deposited by dual ion beam sputtering: growth and structure characterization [J]. Thin Solid Films, 2003, 433:166 -173.
    [56] Hsieh JH, Liang C, Yu CH, et al. Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering [J]. Surf. Coat. Technol., 1998, 108-109:132-137.
    [57] Zhou YM, Asaki R, Higashi K, et al. Slideing wear behavior of polycrystalline TiN/CrN multilayers against and alumina ball [J], Surf. Coat. Technol., 2000, 130(1):9-14.
    [58] Cunha L, Andritschky M, Pischow K, et al. Performance of Chromium nitrode and titanium nitride coatings during plastic injection moulding [J]. Surf. Coat. Technol., 2002, 153:160-165.
    [59] Yang Q, He C, Zhao LR, et al. Preferred orientation and and hardness enhancement of TiN/CrN superlattice coatings deposited by reactive magnetron sputtering [J]. Scripta Materialia, 2002, 46:293-297.
    [60] Ducros C, Benevent V and Sanchette E. Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools [J]. Surf. Coat. Technol., 2003, 163:681-688.
    [61] Barshilia HC and Rajam KS. Deposition of TiN/CrN hard superlattices by reactive d.c. magnetron sputtering [J]. Mater. Sci., 2003, 26:233-237.
    [62] Yang Q and Zhao LR. Thermal stability of polycrystalline TiN/CrN superlattice coatings [J]. J. Vac. Sci. Technol. A, 2003, 21:534-538.
    [63] Yang Q, Seo DY and Zhao LR. Multilayered coatings with alternate pure Ti and TiN/CrN superlattice [J]. Surf. Coat. Technol., 2004, 177/178:204-208.
    [64] Nordin M and Larsson M. Deposition and characterization of multilayered PVD TiN/CrN coatings on cemented carbide [J]. Surf. Coat. Technol., 1999, 116/119:108-115.
    [65] Nordin M, Larsson M, and Hogmark S. Mechanical and tribological properties of multilayered PVD TiN/CrN [J]. Wear, 1999, 232(2), 221-225.
    [66] Li GY, Han ZH, Tian JW, et al. Alternating stress field and superhardness effect in TiN/NbN superlattice films [J]. J. Vac. Sci. Technol. A, 2002, 20(3):674-677.
    [67] Wrzesinska H, Grabiec P, Rymuza Z, et al. Influence of substrate on mechanical properties of TiN/NbN superlattices [J]. Microelectron. Eng., 2002, 61/62:1009-1014.
    [68] Molina-Aldareguia JM, Lloyd SJ, Oden M, et al. Deformation structures under indentation in TiN/NbN single-crystal multilayer deposited by magnetron sputtering at different bombarding ion energies [J]. Philos. Mag. A, 2002, 82:1983-1992.
    [69] Barshilia HC and Rajam KS. Raman spectroscopy studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings [J]. J. Mater. Res. 2004, 19:3196-3202.
    [70] Kin SH, Baik YJ, and Kwon DG.. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings [J]. Surf. Coat. Technol., 2004, 187(1):47-53.
    [71] Holzschuh H. Deposition of Ti-B-N (singal and multilayer) and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools [J]. Thin solid films, 2004, 469-470:92-98.
    [72] Leonhardt A, Bartsch K, and Endler I. Preparation and characterization of hard mono- and multilayer plasma-assisted chemically vapour deposited coatings [J]. Surf. Coat. Technol., 1995, 76(1-3):225-230.
    [73] Zhao XA, Ong CW, Tsang YC, et al. Structure and mechanical properties of dual-ion-beam deposited CNxTiy/TiN multilayers [J]. J. Vac. Sci. Technol. A, 1997, 15(1):99-106.
    [74] Su YL and Kao WH. Optimum multilayer TiN-TiCN coatings for wear resistance and actual application [J]. Wear, 1998, 223(1-2):119-130.
    [75] Bemporad E, Pecchio C, DeRossi S, et al. Characterization and hardness modeling of alternate TiN/TiCN multilayer cathodic arc PVD coating on tool steel [J]. Surf. Coat. Technol., 2001, 146/147: 363-370.
    [76] Morant C, Prieto P, Forn A, et al. Hardness enhancement by CN/TiCN/TiN multilayer films [J]. Surf. Coat. Technol., 2004, 180/181:512-518.
    [77] Huq MZ, Celis JP, Meneve J, et al. Oscillating sliding wear of mono- and multilayer ceramic coatings [J]. Surf. Coat. Technol., 1999, 113(3):242-250.
    [78] Huq MZ and Ceils JP. Fretting wear of multilayered (Ti,AL)N/TiN coatings in air of different relative humidity [J]. Wear, 2002, 225-229(1):53-64.
    [79] Andersen KN, Bienk EJ, Schweitz KO, et al. Deposition, microstructure and mechanical and tribological properties of magnetron sputtered TiN/TiAlN multilayers [J]. Surf. Coat. Technol., 2000, 123(2-3): 219-226.
    [80] Imbeni V, Martini C, Lanzoni E, et al. Tribological behaviour of multi-layered PVD nitride coatings [J]. Wear, 2001, 250/251:997-1002.
    [81] Carvalho NJM., Zoestbergen E, Kooi BJ, et al. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings [J]. Thin solid films, 2003, 429(1-2):179-189.
    [82] Lee DK, Lee SH, and Lee JJ. The structure and mechanical properties of multilayer TiN/(Ti0.5Al0.5)N coatings deposited by plasma enhanced chemical vapor deposition [J], Surf. Coat. Technol., 2003, 169/170:433-437.
    [83] Weber FR, Fontaine F, Scheib M., et al. Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings—correlation between lifetime of coated cutting tools, structural and mechanical film properties [J]. Surf. Coat. Technol., 2004, 177/178:227-232.
    [84] Andrievski RA. Properties of multilayer and alloyed PVD films on the base of TiN [J]. International Journal of Refractory Metals and Hard Materials, 1996, 14(1-3):105-107.
    [85] Wadsworth I, Lewis DB and Williams G. Structural studies of TiN/ZrN multilayer coating deposited by physical vapour deposition [J]. J. Mater. Sci., 1996, 31(22):5907-5914.
    [86] Tavares CJ, Rebouta L, Almeida B, et al. Deposition and characterization of multilayered TiN/ZrN coatings [J]. Thin solid films, 1998, 317(1-2):124-128.
    [87] Tavares CJ, Rebouta L, Almeida B, et al. Structural characterization of multilayered sputtered TiN/ZrN coatings [J]. Surf. Coat. Technol., 1998, 101:65-71.
    [88] Tavares CJ, Rebouta L, Alves EJ, et al. Interfacial roughness of multilayered TiN/ZrN coatings [J]. Nucl. Instrum. Methods Phys. Res. B, 1998, 138:278-282.
    [89] Bae HJ, Lee CM, Hwang SK, et al. Effects of processing variables on the mechanical properties of multilayer coatings of TiN/ZrN on a high-speed tool-steel substrate [J]. Korean Phys. Soc., 1998, 33:689 -695.
    [90] Tavares CJ, Rebouta L, Andritschky M, et al. Mechanical characterisation of TiN/ZrN multi-layered coatings [J]. J. Mater. Process. Technol, 1999, 93:177-183.
    [91] Ulrich S, Ziebert C, Stüber M, et al. Correlation between constitution, properties and machining performance of TiN/ZrN multilayers [J]. Surf. Coat. Technol., 2004, 188/189:331-337.
    [92] Selinder TI, Sjostrand ME, Nordin M, et al. Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining [J]. Surf. Coat. Technol., 1998, 105:51-55.
    [93] Nordin M, Larsson M, and Hogmark S. Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide [J]. Surf. Coat. Technol., 1998, 106:234-241.
    [94] Nordin M, Larsson M, and Hogmark S. Wear resistance of multilayered PVD TiN/TaN on HSS [J]. Surf. Coat. Technol, 1999, 121:528-534.
    [95] Wiklund U, Wanstrand O, Larsson M, et al. Evaluation of new multilayered physical vapour deposition coatings in sliding contact [J]. Wear, 1999, 236:88-95.
    [96] Xu JH, Li GY, and Gu MY. The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films [J]. Thin Solid Films, 2000, 370:45-49.
    [97] Nordin M and Ericson F. Growth characteristics of multilayered physical vapour deposited TiN/TaNx on high speed steel substrate [J]. Thin Solid Films, 2001, 385:174-181.
    [98] Holleck H and Schulz H. Preparation and behaviour of wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries [J]. Surf. Coat. Technol., 1988, 36:707-714.
    [99] Lim JW, Lee JJ, Ahn H, et al. Mechanical properties of TiN/TiB2 multilayers deposited by plasma enhanced chemical vapor deposition [J]. Surf. Coat. Technol., 2003, 174/175:720-724.
    [100] Martin KJ, Madan A, Hoffman D, et al. Mechanical properties and thermal stability of TiN/TiB2 nanolayered thin films [J], J. Vac. Sci. Technol. A, 2005, 23(1): 90-98.
    [101] Mei FH, Shao N, Wei L, et al, Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB2 nanomultilayers [J], Appl. Phys. Lett., 2005, 87: 011906.
    [102] Martin K, Madan A, Kim IW, et al. Effect of annealing on the mechanical properties and microstructure of ZrN/ZrB2 films [J]. MRS Bull., 2003, 28:169-173.
    [103] Sproul WD. New routes in the preparation of mechanically hard films [J]. Science, 1996, 273(16):889-892.
    [104] Sproul WD. High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings [J]. Vacuum, 1998, 51(4):641-646.
    [105] Yashar P, Barnett SA, Hultman L, et al. Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices [J]. J. Mater. Res., 1999, 14(9):3614-3622.
    [106] Lattemann M, Ulrich S, Holleck H, et al. Characterization of silicon carbide and silicon nitride thin films and Si3N4/SiC multilayers [J]. Diamond and Related Materials, 2002, 11:1248-1253.
    [107] M. Setoyama, A. Nakayama, M. Tanaka, et al. Formation of cubic-A1N in TiN/A1N superlattice [J]. Surf. Coat. Technol., 1996, 86/87:225-230.
    [108] Madan A, Kim IW, Cheng SC, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattice [J]. Phys Rev Lett, 1997, 78(9):1743-1746.
    [109] Jensen H, Sobota J, and G. Sorensen. Multilayer film deposition of TiN/AlN on a rotating substrate holder from reactive sputtering of elemental targets of titanium and aluminum [J]. J. Vac. Sci. Technol A , 1997, 15: 941-945.
    [110] Wang YY, Wong MS, Chia WJ, et al. Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings [J]. J. Vac. Sci. Technol. A, 1998, 16:3341-3347.
    [111] Manika I, Muktepavela F, Jensen H, et al. Microhardness and adhesion measurements of reactively sputtered TiN/AlN multilayer coatings deposited as function of mass-flow of nitrogen [J]. Surf. Coat. Technol., 1998, 101:333-337.
    [112] Rawdanowicz TA, Godbole V, Narayan J, et al. The hardnesses and elastic moduli of pulsed laser deposited multilayer AlN/TiN thin films [J]. Composites, Part B, 1999, 30: 657-665.
    [113] Pankov V, Evstigneev M, and Prince RH. Enhanced stability of rocksalt-type AIN phase in AIN/TiN superlattices synthesized by room-temperature pulsed laser deposition [J]. J. Appl. Phys. 2002, 92:4255-4260.
    [114] Kim DG, Seong TY, and Baik YJ. Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition [J]. Surf. Coat. Technol., 2002, 153:79-83.
    [115] Lim JW, Lee SH, and Lee JJ. Preparation and properties of nanoscale multilayered TiN/AlN coatings deposited by plasma enhanced chemical vapor deposition [J]. Surf. Coat. Technol., 2003, 169/170:460-463.
    [116] Zhang X, Wu X, Yi Z, et al. The TiN/AlN multilayers deposited by filtered vacuum arc deposition [J]. Nucl. Instrum. Methods Phys. Res. B, 2003, 206:382-385.
    [117] Yao SH, Kao WH, Su YL, et al. On the micro-drilling and turning performance of TiN/AlN nano-multilayer films [J]. Mater. Sci. Eng., A, 2005, 392:340-347.
    [118] Li D, Chu X, Cheng SC, et al. Synthesis of superhard carbon nitride composite coatings [J]. Appl. Phys. Lett., 1995, 67(2):203-205.
    [119] Li D, Lin XW, Cheng SC, Dravid VP, et al. Structure and hardness studies of CNx/TiN nanocomposite coatings [J]. Appl. Phys. Lett. 1996, 68(9):1211-1213.
    [120] Jensen H, Sobota J, and Sorensen G.. A study of film growth and tribological characterization of nanostructured C-N/TiNX multilayer coatings [J]. Surf. Coat. Technol., 1997, 94/95:174-178.
    [121] Jensen H, Sobota J, and Sorensen G. Film growth of nanostructured C-N/TiNx multilayers reactively sputtered in pure nitrogen [J]. J. Vac. Sci. Technol. A, 1998, 16:1880-1884.
    [122] Lacerda MM, Chen YH, Zhou B, et al. Synthesis of hard TiN coatings with suppressed columnar growth and reduced stress [J]. J. Vac. Sci. Technol. A, 1999, 17:2915-2919.
    [123] Liu CS, Wu DW, Fu DJ, et al. Multilayer CNx/TiN composite films prepared by multi-arc assisted DC reactive magnetron sputtering [J]. Surf. Coat. Technol., 2000, 128:144-149.
    [124] Sobota J, Bochnicek Z, and Holy V. Friction and wear properties of C-N/MeNx nanolayer composites [J]. Thin Solid Films, 2003, 433: 155-159.
    [125] Wu ML, Lin XW, Dravid VP, et al. Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering [J]. Thin Solid Films, 1997, 308/309:113-117.
    [126] Wu ML, Qian WD, Chung YW, et al. Preparation and characterization of superhard CNx/ZrN multilayers [J]. J. Vac. Sci. Technol. A, 1997, 15:946-950.
    [127] Widlow I and Chung YW. Recent progress in the synthesis and characterization of amorphous and crystalline carbon nitride coatings [J]. Braz. J. Phys., 2000, 30:490-498.
    [128] Leiste H, Dambacher U, Ulrich S, et al. Microstructure and properties of multilayer coatings with covalent bonded hard materials [J]. Surf. Coat. Technol., 1999, 116–119:313-320.
    [129] Chen YH, Lee KW, Chiou WA, et al. Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure [J]. Surf. Coat. Technol., 2001, 146:209-214.
    [130] Chen YH, Polonsky IA, Chung YW, et al. Tribological properties and rolling-contact-fatigue lives of TiN/SiNx multilayer coatings [J]. Surf. Coat. Technol., 2002, 154:152-161.
    [131] Xu JH, Yu LH, Azuma Y, et al. Thermal stress hardening of a-Si3N4/nc-TiN nanostructured multilayers [J]. Appl. Phys. Lett., 2002, 81:4139-4141.
    [132] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering [J]. J. Appl. Phys., 2005, 97:114327.
    [133] Koskinen J, Ronkainen H, Hirvonen JP, et al. Characterization of the mechanical properties of carbon metal multilayered films [J]. Diamond Relat. Mater., 1995, 4:843-847.
    [134] Wei L, Mei FH, Shao N, et al. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers [J]. Applied Physics Letters, 2005, 86:021919.
    [135] Wei L, Kong M, Dong YS, et al. Crystallization of Al2O3 and its effects on the mechanical properties in TiN?Al2O3 nanomultilayers [J]. Journal of Applied Physics, 2005, 98:074302.
    [136]吴义政,丁海峰,郭敬超等. Co在GaAs(001)表面的分子束外延及其结构研究[J].物理学报, 1998, 47:461-466.
    [137]何贤昶,沈荷生,张志明等.在硅(001)上预沉积β-SiC定向层后金刚石薄膜的定向生长[J].物理学报, 2000, 49:532-537.
    [138] Li GY, Xu JH, Zhang LQ, et al. Growth, microstructure, and microhardness of W/Mo nanostructured multilayers [J]. J. Vac. Sci. Technol. B, 2001, 19(1):94-97.
    [139] Yoon JS, Myung HS, Han JG et al. A study on the synthesis and microstructure of WC-TiN superlattice coating [J]. Surf. Coat. Technol., 2000, 131:372-377.
    [140] Xu JH, Kamiko M, Zhou YM, et al., Structure transformations and superhardness effects in V/Ti nanostructured multilayers [J], Appl. Phys. Lett., 2002, 81(7):1189-1191.
    [141] Veno M, Onodera A, Shimomura O, et al., X-ray observation of the structural phase transition ofaluminum nitride under high pressure [J], Phys .Rev. B, 1992, 45:10123-10126.
    [142] Ravindra P, Amin S, Max S, et al., Electronic structure of high pressure phase of AlN [J], J. Mater. Res., 1993, 8:1922-1927.
    [143] Kim IW, Quan L, Marks LD, et al., Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices [J], Appl Phys Lett, 2001, 78(7):892-894.
    [144] Yashar P, Chu X, Barnett SA, et al. Stabilization of cubic CrN0.6 in CrN0.6/TiN superlattices [J]. Applied Physics Letters, 1998, 72:987-989.
    [145] Wong MS, Hsiao GY, and Yang SY. Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings [J]. Surf. Coat. Technol., 2000, 133-134:160-165.
    [146] Dong YS, Yue JL, Liu Y, et al. Crystallization of AlON layers and its effects on the microstructure and hardness of reactively synthesized ZrN/AlON nanomultilayers [J]. Journal of Physics D: Applied Physics, 2006, 39(22):4838-4842.
    [147] Yue JL, Liu Y, Zhao WJ, et al. Crystallization of AlON and its effects on the growth and hardness of reactively synthesized VN/AlON nanomultilayers [J]. Scripta Materialia, 2006, 55(10):895-898.
    [148] Yue JL, Zhao WJ, Li GY, et al. Microstructure and mechanical properties of VN/SiO2 nanomultilayers synthesized by reactive sputtering [J]. Materials Letters, 2008, 62(10-11):1621-1623.
    [149] Musil J, Zeman P, Hruby H, et al. ZrN/Cu nanocomposite film - a novel superhard material [J]. Surf. Coat. Tech, 1999, 120/121:179-183.
    [150] Musil J, Vlcek J, Zeman P, et al. Morphology and microstructure of hard and superhard Zr-Cu-N nanocomposite coatings [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2002, 41 (11):6529-6533.
    [151] He JL, Setsuhara Y, Shimizn I, et al. Structure refinement and hardness enhancement of titanium nitride films by addition of copper [J]. Surf. Coat. Technol., 2001, 137:38-42.
    [152] Zeman P, Cerstry R, Mayhofer PH, et al. Structure and propertiers of hard and superhard Zr-Cu-N nanocomposite coatings [J]. Materials Science and Engineering A, 2000, 289:189-197.
    [153]张晨辉,雒建斌,李文治等. TiN和Ti1-xSixNy薄膜的微结构分析[J].物理学报, 2004, 53:182-189.
    [154] Veprek S, Maritza GJ, Heijman V, et al. Different approaches to superhard coatings and nanocomposites [J]. Thin Solid Films, 2005, 476:1-29.
    [155] Niederhofer A, Bolom T, Nesladek P, et al. The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites [J]. Surf. Coat. Technol. 2001, 146-147:183-188.
    [156] Hu XP, Han ZH, Li GY, et al. Microstructure and properties of Ti-Si-N nanocomposite films [J]. J. Vac. Sci. Technol. A, 2002, 20:1921-1926.
    [157] Patscheider J. Nanocomposite hard coatings for wear protection [J]. MRS Bulletin, 2003, 23:180-183.
    [158] Meng WJ, Zhang XD, Shi B, et al. Structure and mechanical properties of Ti-Si-N ceramic nanocomposite coating [J]. Surface and Coatings Technology, 2003, 163/164:251-259.
    [159] Kauffmann F, Dehm G, Schier V, et al. Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiNx coatings prepared by magnetron sputtering [J]. Thin Solid Films, 2005, 473:114-122.
    [1] Pankov V, Evstigneev M, and Prince RH. Enhanced stability of rocksalt-type AIN phase in AIN/TiN superlattices synthesized by room-temperature pulsed laser deposition [J]. J. Appl. Phys., 2002, 92:4255-4260.
    [2] PalDey S and Deevi SC. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review [J]. Mater. Sci. Eng., A , 2003, 342:58-79.
    [3] Kim C, Qadri SB, Scanlon M R, et al. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films [J]. Thin Solid Films, 1994, 240(1-2):52-55.
    [4] Oliver WC and Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment [J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
    [5]田家万,韩增虎,赖倩茜等.两步压入法——薄膜力学性能的可靠测量方法[J].机械工程学报, 2003, 39(6): 71-74.
    [1] Li D, Chu X, Cheng SC, et al. Synthesis of superhard carbon nitride composite coatings [J]. Applied Physics Letters, 1995, 67:203-205.
    [2] Li D, Lin X W, Cheng S C, et al. Structure and hardness studies of CNx/TiN nanocomposite coatings [J]. Applied Physics Letters, 1996, 68:1211-1213.
    [3]吴大维,付德君,毛先唯等. C3N4/TiN交替复合膜的微观结构[J].物理学报, 1999, 48:904-912.
    [4] Wu ML, Lin XW, David VP, et al. Preparation and characterization of superhard CNx/ZrN multilayers [J]. Journal of Vacuum Science and Technology A, 1997, 15:946-950.
    [5] Wu ML, Qian WD, Chung YW, et al. Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering [J]. Thin Solid Films. 1997, 308/309:113-117.
    [6] Tsakalakos T, Hilliard JE. Elastic modulus in composition-modulated copper-nickel foils [J]. Journal of Applied Physics, 1983, 54:734-737.
    [7] Madan A, Yashar P, Shinn M, et al. Stabilization of cubic AlN in epitaxial AlN/TiN supperlattices [J]. Thin Solid Films, 1997, 302:1743-1746.
    [8] Cammarata RC, Schlesinger TE, Kim C, et al. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films [J]. Applied Physics Letters., 1990, 56(19):1862-1864.
    [9] Kim C, Qadri SB, Scanlon MR, et al. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films [J]. Thin Solid Films, 1994, 240:52-55.
    [10]李戈扬,许俊华,田家万等. X射线能量色散谱表征纳米多层膜的调制结构[J].上海交通大学学报2000, 34:1097-1100.
    [11] Oliver WC and Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment [J]. Journal of Materials Research, 1992, 7(6):1564-1583.
    [12] William DS. Reactive sputter deposition of polycrystalline nitride and oxide supperlattice coatings [J]. Surface and Coatings Technology, 1996, 86/87:170-176.
    [13] Madan A, Kim IW, Cheng SC, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattice [J]. Physical Review Letters, 1997, 78:1743-1746.
    [14] Setoyama M, Nakayama A, Tanaka M, et al. Formation of cubic-AlN in TiN/AlN superlattice [J]. Surface and Coatings Technology, 1996, 86/87:225-230.
    [15] Nordin M and Eriscon F. Growth characteristics of multilayered physical vapour deposited TiN/TaNx on high speed steel substrate [J]. Thin Solid Films, 2001, 385:174-181.
    [16] Larsson M, hollman P, Hedengvist P, et al. Deposition and microstructure of PVD TiN-NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering [J]. Surface and Coatings Technology, 1996, 86/87:351-356.
    [17] Yashar P, Chu X, Barnett SA, et al. Stabilization of cubic CrN0.6 in CrN0.6/TiN superlattices [J]. Applied Physics Letters, 1998, 72:987-989.
    [18] Xu JH, Masao K, Zhou YM, et al. Structure transformation and superhardness effects in V/Ti multilayers [J]. Applied Physics Letters, 2002, 81(7):1189-1191.
    [19] Wang YY, Wong MS, Chia WJ, et al. Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings [J]. Journal of Vacuum Science and Technology A, 1998, 10:3341-3347.
    [20]胡晓萍,李戈扬,顾明元. c-AlN的生长对AlN/(Ti,Al)N纳米多层膜力学性能的影响[J].材料研究学报, 2003, 17:326-331.
    [21] Kim IW, Quan L, Marks LD, et al. Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices [J]. Applied Physics Letters, 2001, 78:892-894.
    [1] Layyous AA, Freinkel DM, and Israel R. Al2O3-coated cemented carbides: optimization of structure, number of layers and type of interlayer [J]. Surface and Coatings Technolology, 1992, 56:89-95.
    [2] Helmersson U, Todorova S, and Barnett SA. Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness [J]. Journal of Applied Physics, 1987, 62:481-484.
    [3] Sproul WD. New routes in the preparation of mechanically hard films [J]. Science, 1996, 273:889-892.
    [4] Sproul WD. Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings [J]. Surface and Coatings Technology, 1996, 86-87:170-176.
    [5] Yashar P, Barnett SA, Hultman L, et al. Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattice [J]. Journal of Materials Research, 1999, 14:3614-3622.
    [6]魏仑,梅芳华,邵楠等. TiN/SiO2纳米多层膜的晶体生长与超硬效应[J].物理学报, 2005, 54:1742-1748.
    [7] Wei L, Kong M, Dong YS, et al. Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers [J]. Journal of Applied Physics, 2005, 98:074302.
    [8] Xiao WD and Jiang X. Optical and mechanical properties of nanocrystalline aluminum oxynitride films prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition [J]. Journal of Crystal Growth, 2004, 264:165-171.
    [9] Wang XD, Wang FM, and Li WC. Synthesis, microstructures and properties ofγ-aluminum oxynitride [J]. Materials Science and Engineering A, 2003, 342:245-250.
    [10] Kim C, Qadri SB, Scanlon MR, et al. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films [J]. Thin Solid Films, 1994, 240:52-55.
    [11] Zhang ZY and Lagally MG. Atomistic processes in the early stages of thin-film growth [J]. Science, 1997, 276:377-383.
    [12] Koehler JS. Attempt to design a strong solid [J]. Physical Review B, 1970, 2:547-551.
    [13] Kato M, Mori T, and Schwartz LH. Hardening by spinodal modulated structure [J]. Acta Metallurgica, 1980, 28:285-290.
    [14] Anderson PM, Li C. Hall-Petch relations for multilayered materials [J]. Nanostructured Materials, 1995 5:349-353.
    [1] Chen YH, Lee KW, Chiou WA, et al. Thermal stability of hard TiN/SiNx multilayer coating with an equiaxed microstructure [J]. Surface and Coatings Technology, 2002, 154:162-166.
    [2] Hultman L, Bare?o J, Flink A, et al. Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculation[J]. Physical Review B, 2007, 75:155437.
    [3]赵文济,孔明,乌晓燕等. TiN/Si_3N_4纳米多层膜硬度对Si_3N_4厚度敏感性的研究[J].金属学报, 2007, 43:154-158.
    [4] Dong YS, Zhao WJ, Yue JL, et al. Crystallization of Si_3N_4 layers and its influences on the microstructure and mechanical properties of ZrN/Si_3N_4 nanomultilayers [J]. Applied Physics Letters, 2006; 89:121916.
    [5] Xu JH, Hattori K, Seino Y, et al. Microstructure and properties of CrN/Si_3N_4 nano-structured multilayer films [J]. Thin Solid Films, 2002, 414:239-245.
    [6] Jeong JJ, Hwang SK, Lee CM. Hardness and adhesion properties of HfN/Si_3N_4 and NbN/Si_3N_4 multilayer coatings [J]. Materials Chemistry and Physics, 2002, 77:27-33.
    [7] Jeong JJ, Lee CM. Effects of post-deposition annealing on the mechanical and chemical properties of Si_3N_4/NbN multilayer coatings [J]. Applied Surface Science, 2003, 214:11-19.
    [8] Kim C, Qadri SB, Scanlon MR, et al, Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films [J]. Thin Solid Films, 1994, 240:52-55.
    [9] Tian JW, Han ZH, Lai QX, et al. Two-step penetration: a reliable method for the measurement of mechanical properties of hard coatings [J]. Surface and Coatings Technology, 2004, 176: 267-271.
    [10] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7:1564-1570.
    [11] Zhang ZY and Lagally MG. Atomistic processes in the early stages of thin-film growth[J]. Science, 1997, 276:377-383.
    [12] Koehler JS. Attempt to design a strong solid [J]. Physical Review B, 1970, 2:547-551.
    [13] Kato M, Mori T, Schwartz LH. Hardening by spinodal modulated structure [J]. Acta Metallurgica, 1980, 28:285-290.
    [14] Anderson PM, Li C. Hall-Petch relations for multilayered materials [J]. Nanostructured Materials, 1995, 5:349-353.
    [1] Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si_3N_4 and nc-TiSi2 nanocomposites with Hv=80 to≥105 GPa [J]. Surface and Coatings Technology, 2000, 133/134:152-159.
    [2] Veprek S, Reiprich S, Li SZ. Superhard nanocrystalline composite materials: the TiN/Si_3N_4 system [J]. Applied Physics Letters, 1995, 66:2640-2642.
    [3] Proch?zka J, Karvánková, Martiza GJ, et al. Conditions required for achieving superhardness≥45 GPa in nc-TiN/a-Si_3N_4 nanocomposites [J]. Materials Science and Engineering A, 2004, 384:102-116.
    [4] Christiansen S, Albrecht M, Strunk, HP, et al. Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy [J]. Journal of Vacuum Science and Technology B, 1998, 16:19-22.
    [5] Meng WJ, Zhang XD, Shi B, et al. Structure and mechanical properties of Ti-Si-N ceramic nanocomposite coating [J]. Surface and Coatings Technology, 2003, 163/164:251-259.
    [6] Kauffmann F, Dehm G, Schier V, et al. Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiNx coatings prepared by magnetron sputtering [J]. Thin Solid Films, 2005, 473:114-122.
    [7]张晨辉,雒建斌,李文治等. TiN和Ti1-xSixNy薄膜的微结构分析[J].物理学报, 2004, 53:182-189.
    [8] Veprek S, Maritza GJ, Heijman V, et al. Different approaches to superhard coatings and nanocomposites [J]. Thin Solid Films, 2005, 476:1-29.
    [9] Niederhofer A, Bolom T, Nesladek P, et al. The role of percolation threshold for the control of the hardness and thermal stability of super- and ultrahard nanocomposites [J]. Surf. Coat. Technol., 2001, 146/147:183-188.
    [10] Hu XP, Han ZH, Li GY, et al. Microstructure and properties of Ti-Si-N nanocomposite films [J]. Journal of Vacuum Science and Technology A, 2002, 20:1921-1926.
    [11]劳技军,孔明,张惠娟等. TiN/SiC纳米多层膜的生长结构与力学性能[J].物理学报, 2004, 53(6):1961-1967.
    [12]魏仑,梅芳华,邵楠等. TiN/SiO2纳米多层膜的晶体生长与超硬效应[J].物理学报, 2005, 54(4):1742-07.
    [13]吴大维,付德君,毛先唯等. C3N4/TiN交替复合膜的微结构研究[J].物理学报1999, 48(5):904-912.
    [14] Zhang ZY and Lagally MG. Atomistic processes in the early stages of thin-film growth [J]. Science, 1997, 276:377-383.
    [15] Koehler JS. Attempt to Design a Strong Solid [J]. Physical Review B, 1970, 2:547-551.
    [16] Kato M, Mori T, and Schwartz LH. Hardening by spinodal modulated structure [J]. Acta Metallurgica,1980, 28:285-290.
    [17] Anderson PM and Li C. Hall-Petch relations for multilayered materials [J]. Nanostructured Materials, 1995, 5:349-353.
    [18] S?derberg H, Odén M, Molina-Aldareguia JM, et al. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive two magnetron sputtering [J]. Journal of Applied Physics, 2005, 97:114327.
    [18] Kong M, Zhao W J, Wei L, et al. Investigations on the microstructure and hardening mechanism of TiN/Si_3N_4 nanocomposite coatings. Journal of Physics D: Applied Physics, 2007, 40:2858-2863.
    [19] Hultman L, Bare?o J, Flink A, et al. Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculation [J]. Physical Review B, 2007, 75:155437.
    [20] S?derberg H, Odén M, Larrson T, et al. Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers [J]. Applied Physics Letters, 2006, 88:191902.
    [21] Veprek S, Argon AS, Zhang RF. The origin of the hardness enhancement in superhard nc-TiN/a-Si_3N_4 and ultrahard nc-TiN/a-Si_3N_4/TiSi2 nanocomposites [J]. Philosophical Magazine Letters, 2007, 87(12):955-966.
    [1] Song HW, Guo SR, and Hu ZQ. A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials [J]. Nanostructured Materials, 1999, 11(2):203-210.
    [2] Madan A, Kim IW, Cheng SC, et al. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices [J]. Physical Review Letters, 1997, 78(9):1743-1746.
    [3]冯端,师昌绪,刘治国.材料科学导论[M], 2002,化学工业出版社,北京, pp. 588.
    [4] Nordin M and Eriscon F. Growth characteristics of multilayered physical vapour deposited TiN/TaNx on high speed substrate [J]. Thin Solid Films, 2001, 385:174-181.
    [5] Larsson M, Hollman P, Hedegvist P, et al. Deposition and microstructure of PVD TiN-NbN multilayered coatings by combined reactive electron beam evaporation and DC sputtering [J]. Surface and Coatings Technology, 1996, 86/87:351-356.
    [6] Yashar P, Chu X, Barnett SA, et al. Stabilization of cubic CrN0.6 in CrN0.6/TiN superlattices [J]. Applied Physics Letter, 1998, 72:987-989.
    [7] Yue JL, Liu Y, and Li GY. Template-induced coherent growth and mechanical properties of ZrO2/TiN nano-multilayers [J]. Scripta Materialia, 2009, 60(4):240-243.
    [8] Zhang ZY and Lagally MG. Atomistic processes in the early stages of thin-film growth [J]. Science, 1997, 276:377-383.
    [9] Wei L, Mei FH, Shao N, et al. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers [J]. Applied Physics Letters, 2005, 86:021919-3.
    [10] Wei L, Kong M, Dong YS, et al. Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultilayers [J]. Journal of Applied Physics, 2005, 98 (7):074302.
    [11] Li D, Lin XW, Cheng SC, et al. Structure and hardness studies of CNx/TiN nanocomposite coatings [J]. Applied Physics Letter, 1996, 68(9):1211-1213.
    [12] Mei FH, Shao N, Wei L, et al. Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB2 nanomultilayer [J]. Applied Physics Letters, 2005, 87:011906.
    [13] Dong YS, Zhao WJ, Yue JL, et al. Crystallization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN/Si3N4 nanomultilayers [J]. Applied Physics Letters, 2006, 89 (12):121916.
    [14] Dong YS, Yue JL, Liu Y, et al. Crystallization of ALON layers and its effects on the microstructure and hardness of reactively synthesized ZrN/ALON nanomultilayers [J]. Journal of Physics D: Applied Physics, 2006, 39 (22):4838-4842.
    [15] Wu ML, Qian WD, Chung YW, et al. Superhard coatings of CNx/ZrN multilayers prepared by DC magnetron sputtering [J]. Thin Solid Films, 1997, 308-309:113-117.
    [16] Yue JL, Zhao WJ, Li GY, et al. Microstructure and mechanical properties of VN/SiO2 nanomultilayers synthesized by reactive sputtering [J]. Materials Letters, 2008, 62:1621-1623.
    [17] Yue JL, Liu Y, Zhao WJ, et al. Crystallization of AlON and its effects on the growth and hardness of reactively synthesized VN/AlON nanomultilayers [J]. Scripta Materialia 2006, 55(10): 895-898.
    [18] Yue JL and Li GY. Microstructure and mechanical properties of TiAlN/Si3N4 nano-multilayers synthesized by reactive magnetron sputtering [J]. Journal of Alloys and Compounds 2009, 481(1-2): 710-713.
    [19] Jeong JJ, Hwang SK, Lee C. Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings [J]. Materials Chemistry and Physics, 2003, 77(1):27-33.
    [20] Zhao WJ, Kong M, Wu Y, et al. Pseudocrystallization of SiO2 and superhardness effects of AlN/SiO2 nanomultilayers [J]. Journal of Applied Physics, 2008, 103(4):043506.
    [21] Xu JH, Yu LH, Dong SR, et al. Structure transition of BN layers and its influences on the mechanical properties of AlN/BN nanomultilayers [J]. Thin Solid Films, 2008, 516:8640-8645.
    [22] Lebouvier D, Gilormini P, and Felder E. A kinematic model for plastic indentation of a bilayer [J]. Thin Solid Films, 1989, 172:227-231.
    [23] Grinfeld MA, Hazzledine PM, Shoykhet B, et al. Coherency Stresses in Lamellar Ti-Al [J]. Matallurgical and Materials transactions A, 1998, 29A(3): 937-942.
    [24] Mirkarlmi PB, Hultman L, and Barnett SA. Enhanced hardness in lattice-matched single-crystal TiN/V0.6Nb0.4N superlattices [J]. Appl. Phys. Lett., 1990, 57(25):2654-2656.
    [25] Mirkarimi PB, Barnett SA, Hubbard KM, et al. Structure and mechanical properties of epitaxial VN/V0.3Nb0.7N (100) superlattice [J]. Journal of Materials Research, 1994, 9:1456-1467.
    [26] Chu X and Barnett SA. Model of superlattice yield stress and hardness enhancements [J]. J. Appl Phys, 1995, 77(9):4403-4411.
    [27] McHargue CJ and Williams JM. Ion implantation effects in silicon carbide [J]. Nucl. Instrum. Methods B,1993,80/81:889-894.
    [28] Weber WJ, Yu N, Wang LM, et al. Temperature and dose dependence of ion-beam-induced amorphization in c -SiC [J], Journal of Nuclear Materials, 1997, 244:258-265.
    [29] Chuang WH, Luger T, Fettig RK., et al. Characterization of Mechanical Properties of Silicon Nitride Thin Films for Space Applications [J]. MRS Proceedings, 2003, 782 A:521-525.
    [30] Vila M, Ca′ceres D, and Prieto C. Mechanical properties of sputtered silicon nitride thin films [J]. J. Appl. Phys. 2003, 94:7868-7873.
    [31] Quinn GD, Patel PJ, and Lloyd I. Effect of loading rate upon conventional ceramic microindentation hardness [J]. J. Res. Natl. Inst. Stand. Technol. 2002, 107:299-306.
    [32] Goodrich S and Surmet DA. ALON equibiaxial flexure test [J]. University of Dayton Res. Inst., Doc., 2004, No. SMG-04-2-59.
    [33] Wahla JM, Hartnetta TM, Goldmana LM, et al. Recent advances in ALON optical ceramic [J]. Proc. of SPIE, 2005, 5786:71-82.
    [34] Courtney TH. Mechanical behavior of material [J]. New York:McGraw-Hill, Inc.,1992
    [35] Koehler JS. Attempt to design a strong solid, Phys. Rev. B, 1970, 2(2):547-551. [36 ] Shinn M and Barnett SA. Effect of superlattice layer elastic moduli on hardness [J]. Appl. Phys. Lett., 1994, 64(1):61-63.
    [37] Cammarata RC and Sieradzki K. Effects of surface stress on the elastic moduli of thin films and superlattices [J]. Physical Review Letters, 1989, 62:2005-2008.
    [38] Jankowski AF and Tsakalakos T. The effect of strain on the elastic constants of noble metals [J]. Journal of Phycics F: Metal Physics, 1985, 15:1279-1292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700