ZrO_2基纳米多层膜中的赝晶生长与超硬效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiN为代表的氮化物硬质薄膜作为刀具涂层取得了巨大的成功,有力地推动了制造业规模化加工的发展,高速切削与干式切削等加工技术的发展,又对刀具涂层提出了更高的硬度和高温抗氧化性方面的要求,高硬度的氮化物薄膜因抗氧化能力不佳而难以满足此要求。Sproul基于纳米多层膜的超硬效应,提出采用两种氧化物制备兼具高硬度和高抗氧化性纳米多层膜的技术路线,但按此路线所制备的多层膜未能得到硬度的提高。
     本论文基于纳米多层膜晶体生长的模板效应,设计并制备了在ZrO_2中插入TiN层形成的ZrO_2/TiN纳米多层膜。研究了TiN在四方ZrO_2模板效应下晶体化并形成赝晶体的条件,以及纳米多层膜生长结构的改变及其对多层膜力学性能的影响,结合现有强化理论,讨论了四方结构体系纳米多层膜的超硬机制。论文还发展了一种金属基体上制备薄膜截面TEM样品的实验技术。
     本论文关于纳米多层膜的研究在材料体系的拓展,理论研究的深入以及实验方法的创新三个方面取得了一些进展。本论文主要研究结果如下:
     1.对ZrO_2/TiN纳米多层膜的生长结构的研究发现,与NaCl结构氮化物一样,四方结构的ZrO_2也存在模板效应,在此效应下,仅以NaCl结构存在的TiN层在厚度小于1.8nm时被强制形成与ZrO_2相同的四方结构赝晶体,并与ZrO_2形成共格外延生长的柱状晶。这种结构上连续而成分周期变化的柱状晶呈现远高于ZrO_2单层膜的强烈(111)择优取向,显示了氧化物/氮化物纳米多层膜生长的相互促进效应。TiN层随厚度的进一步增加,又改变为以NaCl结构晶体生长,多层膜的共格外延生长结构遭到破坏,多层膜呈现四方结构ZrO_2和立方结构TiN交替生长的特征。
     2.力学性能研究发现,共格外延生长的ZrO_2/TiN多层膜的硬度和弹性模量随TiN层厚度的增加而迅速上升,并在TiN层厚为1.1nm时达到最高值19.4GPa和235GPa。随TiN层厚的继续增加和多层膜共格外延生长结构的消失,ZrO_2/TiN纳米多层膜的硬度和弹性模量迅速下降,当TiN层厚达到2.2nm时,多层膜的硬度和弹性模量已经降低到与ZrO_2单层膜相当的水平,分别为11.4GPa和181GPa。
     3.采用现有纳米多层膜超硬机制理论对以四方结构为模板的ZrO_2/TiN纳米多层膜研究发现,多层膜共格外延生长时因晶格失配所产生的交变应力场是多层膜获得超硬效应的必要条件和主要因素。并对其他多层膜体系的理论计算与分析发现,多层膜共格外延生长并产生的交变应力场同样是它们的共同特征。由此得出结论,交变应力场很有可能是产生超硬效应的本质及关键所在。
     4.针对目前多数薄膜TEM截面样品制备技术的报道以硅片为基底的现状,论文发展了一种金属基体上薄膜TEM截面样品的制备方法,详细归纳并优化了各道制样工序。
Nitrides hard thin films, representatived by TiN, have achieved a big success,which strongly boost the development of modern manufacturing and the processing technology of high-speed cutting and dry machining.Meanwhile,there comes more request for high hardness and good high- temperature resistance as well in cutting coatings.However,nitrides itself can’t meet such needs due to its low-temperature resistance.Based on the super-hardness effect in nanomultilayers, Sproul proposed a route to prepare nanomultilayers utlizing two oxides in order to obtain both high hardness and good oxidation resistance .Unfortunately,it failed.
     On the basis of the superlattice growth and template effect in nanomultilayers,the paper designed and prepared ZrO_2/TiN nanomultilayers by adding TiN into ZrO_2 thin film.And the condition of the form of pseudocrystal under the template effect of ZrO_2 and the rule of hardening mechanism in tetragonal structure nanomultilayers combined with existing harderning theories were studied.In addition,the paper also developed an experimental technology for TEM sample preparation from thin films deposited on metallic substrates.
     The results come as follows in three areas including extending in nanomultilayers system, deeper research in existing hardening mechanism theory and innovation in experimental methods.
     Compared with NaCl-structure nitrides, ZrO_2 with tetragonal structure shows the template effect as well. Influenced by the template effect of tetragonal structured ZrO_2 layers, TiN layers grew in a tetragonal pseudocrystal the same structure as ZrO_2, rather than the face centred cubic they used to be under the sputtering conditions and coherent interfaces formed between the neighbor layers when TiN layer thickness was less than 1.8nm.And this kind of column crystals with continual structure and periodical variation in composition present a much more intensive (111) preferred orientation than ZrO_2 monolithic,which shows a mutual-promotion effect in the crystal growth of oxide/nitride thin films.And with the further increase in the thickness of TiN layer,TiN changed to NaCl-structure and the coherent epitaxial structure was broken.The nanomultilayers were characterized as alternative growth by tetragonal ZrO_2 and cubic TiN layers after then.
     With the study of mechanical properties,the hardness and elastic modulus of ZrO_2/TiN nanomultilayers with coherent epitaxial structure increase remarkablely with the increase of TiN layer thickness,and reach a maximum to 19.4GPa and 235GPa,respectively when TiN layer is 1.1nm thick.With the further increase of TiN layer thickness and disappearing of coherent epitaxial structure,the hardness and elastic modulus of ZrO_2/TiN decrease abruptly.When the thickness of TiN layer is 2.2nm, the hardness and elastic modulus decrease to the same level of ZrO_2 monolithic as 11.4Gpa and 181Gpa,respectively.
     Based on the existing theory about hardening mechanism, the thesis studied the superhardness mechanism in ZrO_2/TiN thin film where tetragonal structure plays as a template.When there is a coherent epitaxial growth, the alternate stress field due to the lattice dismatch leads to a high hardness.Actually, according to other multilayers with high hardness, alternate stress field is the shared feature of the multilayer systems that have high hardness enhancements. And it is not only the essential qualification, but also the main factor for the superhardness effects.
     Aimed at the situation that the technique about cross-sectional TEM sample preparation mostly focuses on films deposited on silicon wafer, the thesis developed a new method for thin films deposited on metallic substrates. And each step of the procession is described in detail.
引文
[1] 宋健. 制造业的现代化. 人民日报,2002.9.26,第六版
    [2] Fischmeister H,Jehn H.,Hartstofschicht en zur Verschleissminderung,DGM Informationsgesellschaft,Stuttgart.1987
    [3] Holleck H. Material selection for hard coatings,J.Vac.Sci.Technol.A..1986
    [4] Sproul W D. New routes in the preparation of mechanically hard films, Science.. 1996, 273(5277): 889-89.
    [5] 田民波, 刘德会. 薄膜科学与技术手册. 机械工业出版社, 1991, 735-736
    [6] Liu X J, Wang H C, Li D W, Wu Y X. Study on kinetics of carbide coating growth by thermal diffusion process, Surf. Coat. Technol.. 2006, 201: 2414-2418
    [7] Holleck H. Material selection for hard coatings, J. Vac. Sci. Technol. A.. 1986, 4: 2661-2669
    [8] Schedler W. Hartmetall fur den Praktiker VDI.Dusseldorf,1998.
    [9] Veprek S. The search for novel, superhard materials, J. Vac. Sci. Technol. A.. 1999, 17(5): 2401-2420
    [10] Christiansen S, Albrecht M, Strunk H P, Veprek S. Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy. J. Vac. Sci. Technol. B.. 1998, 16(1): 19-22
    [11] Veprek S, Haussmann M, Reiprich S. Superhard nanocrystalline W2N/amorphous Si3N4 composite materials. J. Vac. Sci. Technol. A.. 1996, 14(1): 46-51
    [12] Veprek S, Haussmann M, Reiprich S, Dian J, Li S Z. Novel thermodynamically stable and oxidation resistant superhard coating materials. Surf. Coat. Technol.. 1996, 86-87(1-3): 394-401
    [13] 康昌鹤, 杨树人. 半导体超晶格材料及其应用. 国防工业出版社, 1995
    [14] Barnett S A, Shinn M. Plastic and elastic properties of compositionally modulated thin films. Annual Review Material Science.. 1994, 24: 481-551
    [15] Koehler S. Attempt to design a strong solid. Phys. Rev. B.. 1970, 2(2): 547-551
    [16] Yang W M C, Tsakalakos T, Hilliard J E. Enhanced elastic modulus in composition-modulated gold-nikel and copper-palladium foils. J. Appl. Phys.. 1977, 48: 876~879
    [17] Lehoczky S L. Strength Enhancement in Thin-layered Al-Cu Laminates. J. Appl. Phys.. 1978,49: 5479~5485
    [18] Tsakalakos T, Hilliard J E. Elastic modulus in composition-modulated copper-nickel foils. J. Appl. Phys..1983;54:734~737
    [19] Madan A, Yashar P, Shinn M, Barnett S A. An X-ray study of epitaxial AlN/TiN supperlattices. Thin Solid Films..1997;302:147~154
    [20] Cammarata R C, Schlesinger T E, Kim C. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films. Appl. Phys. Lett.. 1990, 56(19):1862~1864
    [21] Kim C, Qadri S B, scanlon M R, Cammarata R C. Low-dimension Structural properties and microindentation studies of Ion-beam-sputtered multilayers of Ag/Al Films. Thin Solid Films.. 1994, 240: 52~55
    [22] Li G Y, Xu J H, Zhang L Q, Wu L, Gu M Y. Growth, Microstructure, and microhardness of W/Mo nanostructured multilayers. J. Vac. Sci. Technol. B.. 2001,19(1): 94~97
    [23] Shih K K, Dove D B. Ti/TiN, Hf/HfN and W/WN multilayer films with high mechanical hardness. Appl. Phys. Lett.. 1992,61(6):654~656
    [24] Kang Y, Lee C, Lee J. Effects of processing variables on the mechanical properties of Ta/TaN multilayer coatings. Materials Science and Engineering B.. 2000, 75: 17~23
    [25] Wang J, Li W Z, Li H D. Mechanical properties of nanoscaled TiC/Fe multilayers deposited by ion beam sputtering technique. Thin Solid Films.. 2001,382: 190~193
    [26] Chou T C, Nieh T G, McAdams S D, Pharr G M, Oliver W C. Mechanical properties and microstruceures of Metal/ceramic microlaminates:Part1.Nb/MoSi2 Systems. J. Mater. Res..1992, 7(10): 2774~2784
    [27] Shin M, Hultman L , Barnett S A. Growth, structure and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res.. 1992, 7(4): 901~911
    [28] Helmersson U, Todorova S, Barnett S A, Sundgren J.-E. Growth of single-crystal TiN/VN strained layer superlattices with extremely high mechanical hardness. J. Appl. Phys.. 1987, 62(2): 481~484
    [29] Setoyama M, Nakayama A, Tanaka M, Kitagawa N, Nomura T. Formation of cubic-AlN in TiN/AlN superlattice. Surf. Coat. Technol.. 1996, 86-87: 225~230
    [30] Mirkarimi P B, Barnett S A, Hubbard K M, et al. Structure and Mechanical Properties of epitaxial TiN/V0.3Nb0.7(100) superlattices. J Mater Res..1994,9(6):1456~1467
    [31] Chu X., Barnett S A. Model of superlattice yield stress and hardness enhancements.J. Appl. Phys.. 1995, 77(9): 4403-4411
    [32] Anderson P M., Li C.. Hall-petch relations for multilayered materials. Nanostructure Mater.. 1995, 5(3): 349
    [33] Kato M., Mori T., Schwartz L H. Hardening by spinodal modulated structure.Acta. Metall.. 1980, 28, 285
    [34] Cammarata R C. The supermodulus effect in compositionally modulated thin films. Scripta Matall..1986, 20: 479~480
    [35] Head A K. The interaction of dislocations and buoudaries, Phil. Mag.. 1953, 44: 92~94
    [36] Courtney T H. Mechanical behavior of material. New York: McGraw-Hill, Inc.. 1992
    [37] Pacheco E S, Mura T. Interaction between a screw dislocation and a bimetallic interface, J. Mech. Phys. Solids.. 1969, 17: 163-170
    [38] Krzanowski J E. The effect of composition profile sharp on the strength of metallic multilayer structures. Scripta Metall. Meter..1991, 25: 1465-1470
    [39] Mirkarimi P B, Hultman L, Barnett S A. Enhanced hardness in lattice-matchedSingle-Crystal TiN/V0.6Nb0.4N superlattices. Appl. Phys Lett.. 1990, 57(25): 2654~2656
    [40] Hall E. O Proc. Phys. Soc..London, 1951, 25:1465
    [41] Dieter G. E. Mechanical metallurgy. New York: McGraw-Hill, Inc.. 1986
    [42] Anderson P M, Foeckw T, Hazzledine P M. Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bulletin.. 1999, 24(2): 27
    [43] Xu J H., Li G.Y, Gu M Y. The microstructure and mechanical properties of TaN/TiN and TaWN/TiN superlattice films. Thin solid films.. 2000, 370 (1-2): 45-49
    [44] Grinfeld M A., Hazzledine P M, Shoykhet B, Dimiduk D M. Coherency Stresses in Lamellar Ti-Al. Matallurgical and Materials transactions A.. 1998, 29A(3): 937~942
    [45] Shinn M, Hultman L, Barnett S A. Growth, structure and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res..1992, 7(4): 901-911
    [46] Lebouvier D, Gilormini P, Felder E. A kinetic model for plastic indentation of a bilayer, Thin Solid Films..1989, 172(2): 227~231
    [47] Setoyama M, Nakayama A, Tanaka M, Kitagawa N, Nomura T. Formation of cubic-AlN in TiN/AlN superlattices.Surf. Coat. Technol.. 1996, 86-87: 225
    [48] Madan A, Kim I. W, Cheng S C, Yashar P. Stabilization of cubic AlN in epitaxial AlN/TiN superlattices. Phys. Rev. Lett.. 1997, 78(9): 1743~1746
    [49] Mei F H, Shao N, Dai J W, Li G. Y. Coherent growth and superhardness of AlN/TiN nanomultilayers. Mater. Lett.. 2004, 58(27-28): 3477-3480
    [50] Nordin M, Larsson M, Hogmark S. Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf. Coat. Technol.. 1998, 106(2-3): 234-241
    [51] Larsson M, Hollman P, Hedenqvist P, Hogmark S. Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering. Surf. Coat. Technol.. 1996, 86-87: 351-356
    [52] Chu X, Barnett S A., Wong M S, Sproul W D. Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice. Surf. Coat. Technol.. 1993, 57: 13-18
    [53] Yashar P, Chu X, Barnett S A, Rechner J, Wang Y Y. Stabilizatoin of cubic CrN0.6 in CrN0.6/TiN superlattice.Appl. Phys. Lett.. 1998, 72(8): 987~989
    [54] Lao J J, Shao N, Mei F H, Li G Y, Gu M Y. Mutual promotion effect of crystal growth in TiN/SiC nanomultilayers. Appl. Phys Lett..2005, 86(1): 011902
    [55] Mei F H, Shao N, Wei L, Dong Y S, Li G Y. Coherent epitaxial growth and superhardness effects of c-TiN/h-TiB2 nanomultilayers. Appl. Phys Lett.. 2005, 86(1): 011906
    [56] Dong Y S, Zhao W J, Yue J L, Li G Y. Crystallization of Si3N4 and its influences on the microstructure and mechanical properties of ZrN/Si3N4 nanomultilayers. Appl. Phys Lett.. 89(2006):121916.
    [57] Sproul W D. New routes in the preparation of mechanically hard films. Science..1996;273(16):889-892
    [58] Yashar P, Barnett S A, Hultman L, Sproul W D. Deposition and mechanicalproperties of polycrystalline Y2O3/ZrO2 superlattices.J. Mater. Res.. 1999;14(9):3614-3622
    [59] Sproul W D. High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings. Vacuum.. 1998 ;51(4) :641-646
    [60] Wei L, Mei F, Shao N, Kong M, Li G Y, Li J G. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Appl. Phys Lett.. 2005, 86(2):021919(1-3)
    [61] 岳建岭, 孔明,赵文济,李戈扬.反应溅射 VN/SiO2 纳米多层膜的微结构与力学性能. 物理学报,2007, 56(3): 316-321
    [62] Wei L, Kong M, Dong Y S.2005 J. Appl.Phys..028519
    [63] Dong Y S, Yue J L, LiuY, Li G Y. Crystallization of AlON layers and its effects on the microstructure and hardness of reacting synthesized ZrN/AlON nanomultilayer. Journal of Physics D: Applied Physics.. 39(2006): 4838-4842
    [1] 田民波, 刘德令. 薄膜科学与技术手册(上册). 机械工业出版社, 北京, 1991: 400~453
    [2] 韩增虎, 张俊秋, 劳技军等. 材料力学性能的微压入测试方法. 理化检验(物理分册), 2001, 37(8): 3338~3341
    [3] Oliver W C, Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research.. 1992, 7(6): 1564~1583
    [4] Tian J W, Han Z H., Lai Q X. Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings. Surface and Coatings Technology.. 2004, 176(3): 267~27
    [1] Weaver L. Cross-section TEM sample preparation of multilayer and poorly adhering films. Microscopy Research and Technique.. 1997, 36:368
    [2] Zhang H. Transmission electron microscopy for the semi-conductor industry. Micron.. 2002, 33:515
    [3] 劳技军, 胡晓萍, 虞晓江, 李戈扬, 顾明元. AlN在 AlN/(Ti,Al)N纳米多层膜中的相转变及其对薄膜力学性能的影响. 物理学报, 2003, 52(9):2259
    [4] 魏仑, 梅芳华, 邵楠, 李戈扬, 李建国. TiN/SiO2 纳米多层膜的晶体生长与超硬效应. 物理学报, 2005, 54(4):1742
    [1] Sproul W D. New routes in the preparation of mechanically hard films, Science.. 1996;273(16):889-892
    [2] Lao J J, Shao N, Mei F H, Li G Y, Gu MY. Mutual promotion effect of crystal growth in TiN/SiC nanomultilayers.Applied Physics Letters.. 2005, 86(1): 011902(1-3)
    [3] Wei L, Mei F H, Shao N], Kong M, Li G Y, Li J G. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Applied Physics Letters.. 2005, 86(2):021919(1-3)
    [4] Wei L, Kong M, Dong Y S, Li G Y. Crystallization of Al2O3 and its effects on the mechanical properties in TiN/Al2O3 nanomultialyers. J. Appl. Phys.. 2005,(98):074302
    [5] Huy L D, Laffez P, Daniel P, Jouanneaux A, Khoi N T, Simeone D 2003.Mater. Sci. & Eng. B.. 104 163
    [6] Then I K, Mujahid M, Zhang Surf. & Coat. Techn l B.. 2005198 104
    [7] Kim C, Qadri S B, Scanlon M R, Cammarata R C. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films.. 1994; 240:52~55
    [8] 田家万, 韩增虎, 赖倩茜, 虞晓江, 李戈扬. 两步压入法—薄膜力学性能的可靠测量方法. 机械工程学报, 2003, 39(6): 71-74
    [9] Germany Normal. DIN 50359-1: 1997-10. Universal h?rteprüfung [S]
    [10] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. J. Mater. Res.. 1992, 7(6): 1564-1583
    [11] Yue J L, Liu Y, Zhao W J, Li G Y. Crystalization of AlON and its effects on the growth and hardness of reactively synthesized VN/AlON nanomultilayer. Scripta Materialia.. 55(2006):895-898
    [12] 劳技军, 孔明, 张惠娟, 李戈扬. TiN/SiC 纳米多层膜的生长结构与力学性能. 物理学报, 2004, 53(6): 1961-1966.
    [13] Hu X P, Zhang H J, Dai J W, Li G Y, Gu M Y. A study on the superhardness mechanism of Ti-Si-N nanocomposite films: the influence of the thickness of Si3N4 interfacial phase. Journal of Vacuum Science and Technology A.. 2005,23(1): 114-117
    [1] Koehler S. Attempt to design a strong solid. Phys. Rev. B.. 1970; 2(2):547-551
    [2] Anderson P M, Li C. Hall-petch relations for multilayered materials. Nanostructure Mater..1995; 5(3), 349
    [3] Cammarata R C. The supermodulus effect in compositionally modulated thin films. Scripta Matall.. 1986;20:479~480
    [4] Kato M, Mori T, Schwartz L H. Hardening by spinodal modulated structure. Acta. Metall.. 1980; 28, 285
    [5] Lehoczky S L. Strength Enhancement in Thin-layered Al-Cu Laminates. Journal of Applied Physics.. 1978, 49: 5479~5485
    [6] Shinn M., Barnett S A. Effect of Superlattice layer elastic moduli on hardness. Appl. Phys. Lett..1994, 64(1): 61~63
    [7] Chu X , Barnett S A. Model of Superlattice yield stress and hardness enhancements. J. Appl. Phys.. 1995, 77(9): 4403~4411
    [8] Cahn J W. Hardening by Spinodal Decomposition. Acta Metallurgical.. 1963,11: 1275~1282
    [9] Mirkarimi P B, Barnett S A, Hubbard K M, Jervis T R, Hultman L. Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N(100) Superlattices.J. Mater. Res.. 1994, 9(6): 1456~1467
    [10] Mirkarimi P B, Hultman L, Barnett S A. Enhanced hardness in lattice-matched single-crystal TiN/V0.6Nb0.4N Superlattices. Appl. Phys. Lett.. 1990, 57(25): 2654~2656
    [11] Head A K. The interaction of dislocations and buoudaries. Phil. Mag.. 1953;44: 92~94
    [12] Courtney T H. Mechanical behavior of material. New York:McGraw-Hill, Inc..1992
    [13] Lehoczky S L.Strength enhancement in thin-layered Al-Cu laminates. J.Appl. Phys.. 1978,49:5479-5485
    [14] Lehoczky S L. Retardation of dislocation generation and motion in thin-Layered metal laminates. Phys. Rev. Lett..1978; 41(26), 1814-1818
    [15] Shinn M., Hultman L, Barnett S A. Growth, structure and microhardness of epitaxial TiN/NbN superlattices.J Mater. Res.. 1992;7(4):901-911
    [16] Chu X, Wong M. S, Sproul W D. Deposition and properties of polycrystalline TiN/NbN superlattice coatings. Vac.Sci. Technol..1992, A 10(4): 1604~1609
    [17] Helmersson U, Todorova S, Barnett S A.. Growth of single-crystal TiN/VN strained-lay superlattices with extremely high mechanical hardness. Journal of Applied Physics..1987, 62(2): 481~484
    [18] Chu X., Barnett S A., Wong, M S. Reactive unbalanced magnetron sputter Deposition of Polycrystalline TiN/NbN Superlattice. Surface and Coatings Technology..1993, 57: 13~18
    [19] Shinn M, Hultman L, Barnett S A. Growth, structure, and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res..1992 ,7(4): 901~911
    [20] Wei L, Mei F H, Shao N, Kong M, Li G Y, Li J G. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Applied Physics Letters..2005, 86(2):021919(1-3)
    [21] 赵文济,孔明,黄碧龙,李戈扬,“SiO2 的赝晶化及 AlN/SiO2 纳米多层膜的超硬效应”. 物理学报,2007, 56(3): 322-328
    [22] Li G.Y, Han Z H, Tian J W, Xu J H., Gu M Y. Alternating stress and superhardness effect in TiN/NbN superlattice films. J.Vac.Sci. Technol A.. 2002; 20(3):674-677
    [23] Grinfeld M A, Hazzledine P M, Shoykhet B, Dimiduk D M. Coherency stresses in lamellar Ti-Al. Matallurgical and Materials transactions A.. 1998;29A(3): 937~942
    [24] Lebouvier D, Gilormini P, Felder E. A kinematic model for plastic indentation of a bilayer, Thin Solid Films.. 1989;172(2):227~231
    [25] Xu J H, Li G. Y, Kamiko M, Gu M Y, Zhou Y M, Yamamoto R. Superhardness effects of heterostructure NbN/TaN nanostructured multilayers. J. Appl. Phys.. 2001; 89(7) 3674~3678

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700