AlN基纳米多层膜的生长结构、超硬机制及高温稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiN为代表的陶瓷硬质薄膜在刀具涂层上的成功应用有力地推动了制造业的发展。高速、干式切削等加工技术的进步对刀具涂层提出了更高的要求。
     作为一种通过微结构设计强化的材料,纳米多层膜不仅可因其超硬效应获得高硬度,而且可以通过选择材料组合获得其他优异性能,因而纳米多层膜作为新一代刀具涂层材料而备受关注。
     鉴于已有的纳米多层膜产生强化的超硬效应研究,以及纳米多层膜中晶体层强制非晶层晶化的模板效应的微结构研究,其理论分析和实验研究多以NaCl结构的立方晶系所展开,本论文采用六方晶系的纤锌矿结构AlN(h-AlN)作为纳米多层膜的晶体层,研究了SiO_2和Si_3N_4非晶层在h-AlN晶体层上的晶化现象以及AlN/SiO_2和AlN/Si_3N_4纳米多层膜的生长结构、超硬效应和强化机制;考察了AlN/SiO_2纳米多层膜的高温抗氧化性,并且讨论了氧化物层的加入对纳米多层膜抗氧化性的影响。
     研究结果表明:
     在AlN/SiO_2和AlN/Si_3N_4纳米多层膜中,六方晶体的AlN模板层能够使沉积态为非晶的SiO_2和Si_3N_4在调制层厚度小于约0.6 nm时晶化为六方结构的赝晶体,并与AlN层形成共格外延生长结构,多层膜呈现出硬度升高的超硬效应,最高硬度分别达到29.1 GPa和32.8 GPa。SiO_2和Si_3N_4随层厚的进一步增加又逐渐转变为以非晶态生长,多层膜的外延生长结构遭到破坏,硬度亦随之降低。
     对于AlN/SiO_2和AlN/Si_3N_4纳米多层膜,根据模量差理论定量计算所得的硬度增量远小于实际测量值,表明模量差强化仅仅占到多层膜硬度提高的一小部分。基于高分辨透射电子显微镜观察到多层膜中存在晶格错配而产生拉压交变应力场,本论文利用共格应变的理论模型进行计算,得到的硬度增量与实际的增量相当。分析认为,两调制层形成共格
The application of ceramic thin hard films, such as TiN, on cutting tools remarkably promoted the development of manufacturing industry. With the advancement of high-speed and dry cutting technology, it needs much high requirements for the protection coatings on cutting tools. As the kind of materials that are reinforced by microstructure design, nano-multilayers can not only reach high hardness by the superhardness effect, but also obtain other excellent properties by properly choosing the combination of modulation materials. As a result, nano-multilayers are receiving increasing attentions and researches as a new generation of protection coating.
     Former researches on superhardness effects and template effects in multilayers are mainly on NaCl structure materials. However, this thesis adopt h.c.p. structured wurtzite AlN(h-AlN) as the crystal layer in the multilayers. The crystallization behavior of SiO_2 and Si_3N_4 under the effects of h-AlN is studied. The superhardness effects as well as the mechanism of hardness enhancement are also investigated. In this thesis, the high temperature oxidation resistance of AlN/SiO_2 are experimental studied. And the effects of SiO_2 addition to the high temperature ability of the multilayers are also discussed.
     The results are showed as follows. In AlN/SiO_2 and AlN/Si_3N_4 nano-multilayers, due to the h.c.p. AlN template layers, normally amorphous SiO_2 and Si_3N_4 crystallize and form h.c.p. pseudo-crystal structure when their thickness is below 0.6 nm. The crystallized materials grew epitaxially
引文
[1] 宋健.制造业的现代化.人民日报,2002.9.26,第六版
    [2] 赵海波.国内外切削刀具涂层技术发展综述.工具技术,2002 年 36 卷 2 期:3-7
    [3] 肖寿仁.刀具涂层材料的现状与发展趋势.金属有色加工,2006 年 35 卷 4 期:35-36,51
    [4] S. A. Barnett and M. Shinn. Plastic and Elastic Properties of Compositionally Modulated Thin Films. Annu. Rev. Mater. Sci., 1994, 24:481~511
    [5] U.Helmersson,S.Todorova, S.A.Barnett et al. Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness. J.Appl. Phys., 1987;62(2):481-484
    [6] P.B.Mirkarimi, L.Hultman, S.A.Barnett. Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices. Appl. Phys Lett., 1990,57(25):2654~2656
    [7] J.O.Kim, J.D.Achenbach, M.Shinn, S.A. Barnett. Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices. J. Mater. Res., 1992;7(3):2248~2256
    [8] K.M. Hubbard, T.R.Jervis, P.B. Mirkarimi, S.A.Barnett. Mechanical properties of epitaxial TiN/(V0.6Nb0.4)N superlattices measured by nanoindentation. J. Appl. Phys., 1992; 72:4466~4468
    [9] M. Shinn, L.Hultman, S.A.Barnett. Growth, structure and microhardness of epitaxial TiN/NbN superlattices. J Mater. Res., 1992;7(4):901-911
    [10] P.B.Mirkarimi, S.A.Barnett, K. M. Hubbard, T. R. Jervis, L. Hultman. Structure and mechanical properties of Epitaxial TiN/V0.3Nb0.7N (100) superlattice. J. Mater. Res., 1994;9(6):1456-1467
    [11] M.Shinn, S.A. Barnett. Effect of superlattice layer elastic moduli on hardness. Appl. Phys. Lett., 1994 ;64(1) :61-63
    [12] X. Chu, M.S.Wong, W.D. Sproul, S.L.Rohde, S.A. Barnett. Deposition and properties of polycrystalline TiN/NbN superlattice coatings. J. Vac. Sci. Technol. A, 1992;10(4):1604~1609
    [13] J. Musil. Hard and superhard nanocomposite coatings. Surf . coat . Technol., 2000, 125:322~330.
    [14] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, et al. Deposition and microstructure of PVD TiN-NbN reactive electron beam evaporation and DC sputtering. Surf. Coat. Technol., 1996;86-87:351-356
    [15] H. Ljungcrantz, C. Engstrom, L.Hultman, et al. Nanoindentation hardness, abrasive wear, and microstructure of TiN/NbN polycrystalline nanostructured multilayer films grown by reactive magnetron sputtering. J. Vac.Sci. Tehnol. A, 1998; 16(5):3104~3113
    [16] P.Yashar, S.A. Barnett, J.Rechner, W.D. Sproul. Structure and mechanical properties of polycrystalline CrN/TiN superlattices. J. Vac.Sci. Tehnol. A, 1998; 16(5):2913-2918
    [17] U. Heister, J.Krempel-Hesse, J. Szczyrbowski, et al. TwinMagTMII: attempts to improve an excellent sputter tool. Thin Solid Films, 1999; 351 :27~31.
    [18] T. Tsakalakos, J. E. Hilliard. Elastic modulus in composition-modulated copper-nickel foils. Journal of Applied Physics,1983;54:734~737
    [19] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura. Formation of cubic-AlN in TiN/AlN superlattice. Surface and Coatings Technology. 1996, 86-87: 225~230
    [20] A Madan , I. W Kim , S C Cheng et al. Stabilization of Cubic AlN in Epitaxial AlN/ TiN Superlattices. Phys. Review. Lett., 1997, 78(9): 1743~1746
    [21] M. Setoyama, M. Irie , H. Ohara, M. Tsujioka, Y. Takeda, T. Nomura, N. Kitagawa. Thermal stability of TiN / AlN superlattices. Thin Solid Films, 1999, 341:126~131
    [22] M. Nordin and F. Eriscon. Growth Characteristics of Multilayered Physical Vapor Deposited TiN/TaNx on high Speed Substrate. Thin Solid Films. 2001, 385:174~181
    [23] M. Larsson, P. Hollman, P. Hedengvist, S. Hogmark, U. Wahlstrom and L. Hultman. Deposition and Microstructure of PVD TiN-NbN Reactive Electron Beam Evaporation and DC Sputtering. Surf. Coat. Technol. 1996, 86-87:351~356
    [24] P. Yashar, X. Chu, S. A. Barnett, J. Rechner, Y. Y. Wang, M. S. Wong, W. D. Sproul. Stablization of Cubic CrN0.6 in CrN0.6/TiN Superlattice. Appl. Phys. Lett., 1998, 72:987~989
    [25] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura. Formation of cubic-AlN in TiN/AlN superlattice. Surface and Coatings Technology. 1996, 86-87:225~230
    [26] R. Pandey, A. Sutjianto, M. Seel, E. Jaffe Jone. Elactronic Structure of high pressure phase of AlN. J Mate Res. 1993,8(8):1922~1927
    [27] N.E. Christensen, I. Gorczyca. Calculated structural phase transitions of aluminum nitride under pressure. Physical Review B 1993-II, 47(8): 4307~4314
    [28] M. Ueno, A. Onodera, O. Shimomura, K. Takemura. X-ray observation of the structural phase transition of aluminum nitride under high pressure. Physic Review B,1992-I, 45(17):10123~10126
    [29] B. M. Clemens, G. L. Eesley. Relationship Between Interface Strain and Elastic Response of Multilayers Metal Films. Phys. Rev. Lett., 1988. 61:2356~2359
    [30] 吴大维, 付德君, 毛先唯, 叶明生, 彭友贵, 范湘军.C3N4/TiN 交替复合膜的微结构研究.物理学报, 1999, 48:904~912
    [31] D. Li, X. Chu, S. C. Cheng, X. W. Lin, V. P. Dravid, Y. W. Chung, M. S. Wong and W. D. Sproul. Appl. Phys. Lett. 1995, 67 203~205
    [32] L. Wei, F. H. Mei, N. Shao, M. Kong, G. Y. Li, J. G. Li. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Applied Physics Letters, 2005, 86(2):021919(1-3).
    [33] 岳建岭, 孔明,赵文济,李戈扬.反应溅射 VN/SiO2 纳米多层膜的微结构与力学性能.物理学报, 2007, 56(3): 316-321.
    [34] Y. S. Dong, W. J. Zhao, J. L. Yue, and G. Y. Li. Crystalization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN/Si3N4 nanomultilayers. Applied Physics Letters, 89(2006):121916.
    [35] J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551
    [36] M. A. Grinfeld, P. M. Hazzledine, B. Shoykhet, D. M. Dimiduk. Coherency Stresses in Lamellar Ti-Al. Matallurgical and Materials transactions A. 1998, 29A(3): 937~942
    [37] W.D. Sproul. New routes in the preparation of mechanically hard films, Science,1996;273(16):889-892
    [38] W.D. Sproul. High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings. Vacuum, 1998 ;51(4) :641-646
    [39] P. Yashar, S. A. Barnett, L. Hultman, W. D. Sproul. Deposition and mechanical properties of polycrystalline Y2O3/ZrO2 superlattices. J. Mater. Res.,1999;14(9):3614-3622
    [40] J. L. Yue, Y. Liu, W. J. Zhao, G. Y. Li. Crystalization of AlON and its effects on the growth and hardness of reactively synthesized VN/AlON nanomultilayer. Scripta Materialia, 55(2006):895-898.
    [41] Y. S. Dong, J. L. Yue, Y. Liu, G. Y. Li. Crystallization of AlON layers and its effects on the microstructure and hardness of reacting synthesized ZrN/AlON nanomultilayer. Journal of Physics D: Applied Physics, 39(2006): 4838-4842.
    [42] O.Soichiro, S. Noriyoshi, S. Tomohiro, I.Yuichi. Formation of cubic-AlN layer on MgO (100) substrate. Journal of Crystal Growth, 1998,189/190: 452~456
    [43] I. Ivanov, L. Hultman, K. Jarrendahl, P. Matensson, J. E. Sudgren, B. Hjorvasson, J. E. Greene. Growth of epitaxial AlN (0001) on Si (111) by reactive magnetron sputter deposition. J. Appl. Phys., 1995, 78 (9): 5721~5726
    [44] S. K. Tien, J. G. Duh. Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings. Thin Solid Films, 494 (2006) 173 – 178
    [45] A. Kimura, H. Hasegawa, K. Yamada, et al. Metastable Ti1-xAlxN Films with Different Al Content. Journal of Materials Science Letters, 2000, 19: 601~602
    [46] S. PalDey and S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering A, 2003, 342: 58~79
    [1] 韩增虎, 张俊秋, 劳技军等.材料力学性能的微压入测试方法.理化检验(物理分册), 2001, 37(8): 3338~3341
    [2] J.W. Tian, Z.H. Han, Q.X. Lai, et al. Two-step penetration: a reliable method of the measurement of mechanical properties of hard coatings. Surface and Coatings Technology, 2004, 176(3): 267~271
    [3] W.C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. Journal of Materials Research, 1992, 7(6): 1564~1583
    [1] U. Helmersson, S. Todorova, S.A.Barnett et al. Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness. J.Appl. Phys., 1987;62(2):481-484
    [2] W. D. Sproul. New routes in the preparation of mechanically hard films. Science,1996;273(16):889-892
    [3] 魏仑, 梅芳华, 邵楠, 李戈扬, 李建国.TiN/SiO2 纳米多层膜德晶体生长与超硬效应. 物理学报, 2005, 54(4):1742-1747
    [4] 岳建岭, 孔明, 赵文济, 李戈扬.反应溅射 VN/SiO2 纳米多层膜的微结构与力学性能.物理学报, 2007, 56(12): 316-321
    [5] S. PalDey and S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering A, 2003, 342: 58~79
    [6] C. Kim, S. B. Qadri, M. R. Scanlon, R. C. Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films, 1994; 240:52~55
    [7] 田家万, 韩增虎, 赖倩茜, 虞晓江, 李戈扬.两步压入法—薄膜力学性能的可靠测量方法.机械工程学报, 2003, 39(6): 71-74.
    [8] Germany Normal. DIN 50359-1: 1997-10. Universal h?rteprüfung [S]
    [9] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. J. Mater. Res., 1992, 7(6): 1564-1583.
    [10] Z. Y. Zhang, M.G. Lagally. Atomistic processes in the early stages of thin-film growth. Science, 1997; 276(18): 377-383
    [11] J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551
    [12] M. Kato, T. Mori, L. H. Schwartz. Hardening by spinodal modulated structure. Acta Metall., 1980,28(3):285-290.
    [13] P. M. Anderson, C. Li. Hall-Petch relations for multilayered materials. Nanostructure Mater., 1995, 5(3):349-362.
    [1] U. Helmersson, S. Todorova, S. A.Barnett et al. Growth of single-crystal TiN/VN stained-lay superlattice with extremely high mechanical hardness. J.Appl. Phys., 1987;62(2):481-484
    [2] W.D. Sproul. New routes in the preparation of mechanically hard films. Science,1996;273(16):889-892
    [3] H. Soderberg, M. Oden, J.M. Molina-Aldareguia, L. Hultman. Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering. J. Appl. Phys. 2005, 97:114327.
    [4] Y. H. Chen, K.W. Lee, W. A. Chiou, Y. W. Chung, L. M. Keer. Synthesis and structural of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surf. & Coat. Technol., 2001, 146-147:209-214.
    [5] Y. H. Chen, M. Guruz, Y. W. Chung and L. M. Keer. Thermal stability of hard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surf. & Coat. Techol. 2002, 154: 162-166
    [6] S. Veprek, A. Niederhofer, K. Moto, T. Bolom. Mannling H D, Nesladek P, Dollinger G and Bergmaier A, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with Hv = 80 to ≥105 GPa. Surf. Coat. Technol. 2000, 133-134: 152-159.
    [7] S. Veprek, G. J. Maritza, V. Heijman, P. Karvankova and J. Prochazka. Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, 476: 1-29.
    [8] J. H. Xu, K. Hattori, Y. Seino, I. Kojima. Microstructure and properties of CrN/Si3N4 nano-structured multilayer films. Thin Solid Films, 2002, 414:239-245
    [9] J. J. Jeong, S. K. Hwang, C. M. Lee. Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings. Mater. Chem. & Phys., 2002, 77:27-33.
    [10] J. J. Jeong, C. M. Lee. Effects of post-deposition annealing on the mechanical and chemical properties of the Si3N4/NbN multilayer coatings. Appl. Surf. Sci., 2003, 214:11-19.
    [11]张晨辉、雒建斌、李文治、陈大融.TiN 和 Ti (1-x)SixNy 薄膜的微观结构分析.物理学报, 2004 53: 182-188.
    [12] C. Kim, S. B. Qadri, M. R. Scanlon, R. C. Cammarata. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films, 1994; 240:52~55
    [13] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. J. Mater. Res., 1992, 7(6): 1564-1583.
    [14] J. S. Koehler. Attempt to Design a Stronge Solid. Phys. Rev. B, 1970, 2:547~551
    [15] M. Kato, T. Mori, L. H. Schwartz. Hardening by spinodal modulated structure. Acta Metall., 1980,28(3):285-290.
    [16] P. M. Anderson, C. Li. Hall-Petch relations for multilayered materials. Nanostructure Mater., 1995, 5(3):349-362.
    [1] J. S. Koehler. Attempt to design a strong solid. Phys. Rev. B 1970; 2(2):547-551
    [2] P. M. Anderson, C. Li. Hall-petch relations for multilayered materials. Nanostructure Mater.,1995; 5(3), 349
    [3] M. Kato, T. Mori, L. H. Schwartz. Hardening by spinodal modulated structure. Acta. Metall., 1980; 28, 285
    [4] R. C. Cammarata,. The supermodulus effect in compositionally modulated thin films. Scripta Matall., 1986;20:479~480
    [5] A. K. Head. The interaction of dislocations and buoudaries. Phil. Mag., 1953;44: 92~94
    [6] T. H. Courtney. Mechanical behavior of material. New York:McGraw-Hill, Inc.,1992
    [7] S. L. Lehoczky. Strength enhancement in thin-layered Al-Cu laminates. J.Appl. Phys. 1978,49:5479-5485
    [8] S. L. Lehoczky. Retardation of dislocation generation and motion in thin-Layered metal laminates. Phys. Rev. Lett., 1978; 41(26), 1814-1818
    [9] M. Shinn, L. Hultman, S. A. Barnett. Growth, structure and microhardness of epitaxial TiN/NbN superlattices. J. Mater. Res., 1992;7(4):901-911
    [10] E. S. Pacheco, T. Mura. Interaction between a screw dislocation and a bimetallic interface. J. Mech. Phys. Solids, 1969;17:163-170
    [11] P. B. Mirkarimi, L.Hultman, S. A.Barnett. Enhanced hardness in lattice-matched Sigle-Crystal TiN/V0.6Nb0.4N superlattices. Appl. Phys Lett., 1990,57(25):2654~2656
    [12] M. Shinn, S. A. Barnett. Effect of superlattice layer elastic moduli on hardness. Appl. Phys. Lett., 1994 ;64(1) :61-63
    [13] J. E. Krzanowski. The effect of composition profile sharp on the strength of metallic multilayer stuuctures. Scripta Metall. Meter., 1991;25:1465-1470
    [14] J. G. Sevillano, P. Haasen, V. Gerold, G. Kowtorzs. Strength of metals and alloys. Oxford: Pergamon 1980:819
    [15] G. Y. Li, Z. H. Han, J. W. Tian, J. H. Xu, M. Y. Gu. Alternating stress and superhardness effect in TiN/NbN superlattice films. J.Vac.Sci. Technol A, 2002; 20(3):674-677
    [16] M. A. Grinfeld, P. M. Hazzledine, B. Shoykhet, D. M. Dimiduk. Coherency Stressesin Lamellar Ti-Al. Matallurgical and Materials transactions A, 1998;29A(3): 937~942
    [17] D. Lebouvier, P. Gilormini, E. Felder. A kinematic model for plastic indentation of a bilayer. Thin Solid Films, 1989;172(2):227~231
    [18] E. O. Hall. Proc. Phys. Soc.London, 1951;25:1465
    [19] G. E. Dieter. Mechanical metallurgy. New York:McGraw-Hill, Inc.,1986
    [20] P. M. Anderson, C. Li. Hall-petch relations for multilayered materials. Nanostructure Mater.,1995; 5(3), 349
    [21] P. M. Anderson, T. Foeckw, P. M. Hazzledine. Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bulletin, 1999;24(2):27
    [22] I. Ichitsubo, E. Matsubara, T. Yamamoto, H. S. Chen, N. Nishiyama, J. Saida and K. Anazawa. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Phys. Rev. Lett., 2005 95 (24): 1-4
    [23] B. Zhang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang. Properties of Ce-based bulk metallic glass-forming alloys. Phys. Rev.B, 2004 70: 224208
    [24] X. Chu, S. A. Barnett, Model of superlattice yield stress and hardness enhancements. J. Appl. Phys, 1995;77(9):4403-4411
    [25] J. H. Xu, G. Y. Li, M. Kamiko, M.Y. Gu, Y. M. Zhou, R.Yamamoto. Superhardness effects of heterostructure NbN/TaN nanostructured multilayers. J. Appl. Phys., 2001; 89(7) 3674~3678
    [1] W. D. Sproul. New routes in the preparation of mechanically hard films. Science,1996;273(16):889-892
    [2] L. Wei, F. H. Mei, N. Shao, M. Kong, G. Y. Li, Jianguo Li. Template-induced crystallization of amorphous SiO2 and its effects on the mechanical properties of TiN/SiO2 nanomultilayers. Applied Physics Letters, 2005, 86(2):021919(1-3).
    [3] S. Paldey, S.C. Deevi. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Mater. Sci. Eng. A. 342 (2003) 58-79.
    [4] H. Yoshihito, T. Yamanishi, K. Azuma, H. Uchida, M. Yatsuzuka. AlN formation and enhancement of high-temperature oxidation resistance by plasma-based ion implantation. Surface and Coatings Technology, 169 –170 (2003) 359–362
    [5] S. K. Tien, J. G. Duh. J. W. Lee. Oxidation behavior of sputtered CrN/AlN multilayer coatings during heat treatment. Surface & Coatings Technology, 2006, in press
    [6] D. G. Kim, T. Y. Seong, Y. J. Baik. Oxidation behavior of TiNyAlN multilayer films prepared by ion beamassisted deposition. Thin Solid Films, (2001), 397: 203–207
    [7] M. Setoyama, M. Irie, H. Ohara, M. Tsujioka, Y. Takeda, T. Nomura, N. Kitagawa. Thermal stability of TiN/AlN superlattices. Thin Solid Films, 341, (1999) 126-131
    [8] 田家万, 韩增虎, 赖倩茜, 虞晓江, 李戈扬.两步压入法—薄膜力学性能的可靠测量方法.机械工程学报, 2003, 39(6): 71-74.
    [9] Germany Normal. DIN 50359-1: 1997-10. Universal h?rteprüfung [S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700