基于感应加热方法的流化床生物质气化试验与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质气化制取燃气或富氢合成气,是生物质能转换利用的有效途径,对于能源的可持续利用和环境保护具有重要意义,目前还处于探索阶段。很多学者对生物质制氢技术进行了较为深入的研究,但由于气化反应器和气化剂的差异,以及操作条件的影响所取得的效果也各不相同。针对这个问题,提出基于感应加热技术的流化床生物质气化技术路线,设计并建立了小型感应加热式生物质气化试验系统,从反应器内部为流态化的生物质颗粒热解和气化过程提供热量,实现气化过程的全程准确控温,并进行了气化反应器的升温特性试验、进料速率标定试验。以稻壳为生物质原料,水蒸汽和空气为气化剂,进行了生物质气化制取高热值燃气实验、生物质气化制氢试验,对生物质气化工艺过程进行模拟计算,最后进行了生物质气化过程的(?)分析。主要研究内容和结论如下:
     进行生物质气化制氢试验研究,考察了气化温度、蒸汽生物质质量比(S/B)、当量比(ER)对产物气成分和产氢率的影响。试验结果表明:气化温度在800℃时,H2浓度随着S/B增大或ER减小而升高,H2产率分别在S/B为1.5和ER为0.22存在最大值。在温度为950℃、S/B为1.5、ER为0.22时,H2浓度和产率同时达到最大值35.47%和78.22g/kg。产物气有通过促进变换反应,进一步提高H2浓度和产率的潜力。
     采用交互正交试验设计方法,进行生物质气化制取热值燃气试验,研究了气化过程的操作条件对产物气低位热值的影响。各因素及其交互作用对低位热值影响的主次顺序为:当量比>气化温度>蒸汽生物质质量比>气化温度与当量比的交互作用>蒸汽生物质质量比与当量比的交互作用>气化温度与蒸汽生物质质量比的交互作用,其中当量比、气化温度、蒸汽生物质质量比对燃气低位热值的影响特别显著。交互作用分析获得生物质气化制取燃气的较优方案:气化温度750℃,蒸汽生物质质量比0.75,当量比0.25,在该条件下燃气的低位热值最高(6.530MJ/m3)。
     采用交互正交试验设计方法,进行生物质气化制取富氢合成气试验,研究了气化过程的操作条件对氢气浓度的影响。极差分析和方差分析的结果一致表明:在试验条件范围内,各因素及其交互作用对H2浓度的影响主次顺序为:当量比>气化温度>蒸汽生物质质量比>气化温度与蒸汽生物质质量比的交互作用>蒸汽生物质质量比与当量比的交互作用>气化温度与当量比的交互作用,其中当量比、气化温度、蒸汽生物质质量比对氢气浓度的影响特别显著。交互作用分析获得生物质气化制氢最佳的工作条件:气化温度800℃,蒸汽生物质质量比2.5,当量比0.22,在该条件下氢气浓度最高(38.27%)。
     建立基于ASPEN PLUS软件的生物质空气-蒸汽气化模型,通过对气化工艺过程进行模拟计算以及灵敏度分析,研究了蒸汽生物质质量比、气化温度、当量比等因素对生物质气化指标的影响。研究结果表明:在750-950℃范围内,随着气化温度的提高,H2浓度不断增加,CO浓度降低,产物气的产率逐步提高,产物气的热值降低,产氢率提高,蒸汽分解率提高;随着S/B在1.6~2.4范围内增大,H2浓度提高,CO、CH4和CO2浓度降低,产物气的产率提高,产物气热值降低,蒸汽分解率提高;随着ER在0.20~0.28范围内增大,CO、H2、CH4浓度降低,C02浓度提高,产物气产率增大,产物气中可燃组分浓度降低和不可燃组分浓度提高造成产物气热值降低,蒸汽分解率的模拟值先增加后降低,存在峰值。本文所建模型比较全面的反映了生物质气化的规律,能够为试验系统设计、调试和运行提供理论指导。
     建立感应加热式气化反应器的气化进程(?)流图,计算气化过程中的各项物流的(?),研究了操作条件对产物气(?)值分布的影响、(?)效率和气化效率的影响。(?)分析表明:当气化温度由750℃升高到950℃时,产物气的(?)值呈现增加的趋势,气化进程的气化效率和(?)效率均升高;当S/B从1.6增加到2.4时,产物气的(?)值呈现增加的趋势,气化效率随着S/B的增加而升高,但是(?)效率先增加再降低,表明S/B存在一个最佳值;当ER从0.2增加到0.28时,产物气总(?)值先增加后降低。随着ER的增大,气化效率和(?)效率都是先增加后降低的趋势,这就表明从能量的合理利用角度考虑,ER存在一个最佳值,本章研究中ER为0.26时气化效率和(?)效率同时达到最高。在产物气(?)圳值中,H2和CO的圳值占有较大比例,对产物气总(?)值的贡献较大;气化过程中伴随着许多不可逆过程会导致能量品质的下降,导致(?)效率低于气化热效率。
Biomass gasification process is one of the effective ways of producing gas or hydrogen-rich synga, and have marked meaning in pollution reduction and sustainable development. It is still in the primary stage. Due to differences of the types of gasifier, the gasifying agent and the operating conditions, many researchers had performed experimental studies in biomass gasification but obtained different results. In order to deal with the problem, a technical way for fluidized bed biomass gasification based on induction heating was presented and a small-scale experiment system of biomass gasification based on induction heating was designed and constructed, performing tests of reactor temperature rise properties and feed rate of biomass. The reactor in the system provided heat for pyrolysis and gasification processes of the fluidized biomass pellets, realizing accurate temperature control in the whole gasification process.In the experiments of producing high calorific value fuel gas, rice husk was applied as fuel and steam was used as gasifying agent. What's more, the simulation and exergy analysis of the biomass gasification process were also carried out. The main experimental results and conclusions are as follows in this dissertation:
     Steam and air gasification studies were carried out. The effects of reactor temperature, steam-to-biomass ratio (S/B), and equivalence ratio (ER) on gas composition and hydrogen yield were investigated. According to the experimental results, we could find that when the reactor temperature was800℃, the hydrogen content increased with the increase of S/B or the decrease of ER, hydrogen yield reached its maximum at the S/B of1.5or at the ER of2.2. The highest hydrogen content (35.47%) and the highest hydrogen yield (78.22g hydrogen/kg biomass), was achieved simultaneously at a reactor temperature of950℃, ER of0.22, and S/B of1.5. The product gas had great potential for further enhancing the hydrogen content and yield by promoting the shift reaction.
     The orthogonal test design was used in the sensitivity analysis of the three principal factors and their interactive influences for the lower heating value of gas. The range analysis and variance analysis were applied to analyze the results, and the best resultant of factor lever and the significance relation of key factor influencing the lower heating value was obtained. The results showed that in the range of experimental parameters, the order from master to minor was equivalence ratio> gasification temperature> steam/biomass mass ratio> interactive influences of steam/biomass mass ratio and equivalence ratio> interactive influences of gasification temperature and steam/biomass mass ratio> interactive influences of gasification temperature and equivalence ratio. Equivalence ratio, gasification temperature and steam/biomass mass ratio had a notable effect on the lower heating value of gas. The best application conditions were obtained by interactive analysis, when the gasification temperature was750℃, the steam/biomass mass ratio was0.75, and the equivalence ratio was0.25, the lower heating value of gas reaches its maximum of6.530MJ/m3.
     In view of the multiple factors and their interactive influences affecting the hydrogen concentration of biomass gasification, biomass gasification for hydrogen-rich gas tests were performed, the effects of gasification temperature, steam/biomass mass ratio, and equivalence ratio on the hydrogen concentration were investigated with the methods of interactive orthoplan, range analysis and variance analysis were applied to analyze the sensitivity of these factors and their interactive influences. The results achieved by both analysis were same. The study indicated that gasification temperature, steam/biomass mass ratio, and equivalence ratio had a notable effect on the hydrogen concentration, and so did the interactive influences of gasification temperature and steam/biomass mass ratio. The best application conditions were obtained by interactive analysis, when the gasification temperature was800℃, the steam/biomass mass ratio was2.5and the equivalence ratio was0.22, hydrogen concentration reached its maximum of38.27%.
     The simulation of hydrogen generation from biomass gasification was carried out, using ASPEN PLUS software to establish gasification model. The gasification parameters included reactor temperature, steam-to-biomass ratio and equivalence ratio, and their effects on the indexes of gasification were discussed. The results showed that in the range of750to950℃, with the increase of gasification temperature, there appeared increase in the concentration of H2and the product gas yield, as well as the hydrogen yield and steam decomposition rate. Meanwhile, it also enabled the reduction of CO and the heating value of the product gas. Besides, with the increase of S/B in the range of1.6to2.4, there increased the concentration of H2, the product gas rate and steam decomposition rate, which also reduced the concentration of CO, CH4and CO2and the heating value of the product gas. Furthermore, with the increase of S/B in the range of0.2to0.28, there appeared decrease in the concentration of CO, H2and CH4and combustible components of product gas, and increase in the concentration of CO2, the product gas yield and non-combustible components of product gas. Besides, the simulation of the steam decomposition rate increased first and then decreased, indicating that there was a peak. In this paper, simulation results indicated that the established model could reveal the rule of hydrogen production deeply. The establishment of such a model provided theoretical instruction for designing, debugging and operation of experiment system.
     In this section, lots of studies were carried out, including establishment of the exergy gasification process flow diagram of the induction heating gasification reactor, calculation of the exergy of various reactant among the gasification process and analysis of the effects of the operating conditions on the product gas, which containing the effects on exergy distribution, exergetic efficiency and gasification efficiency. And the studies above showed that, when the gasification temperature increased from750℃to950℃, the exergy value of gas would tend to increase and there would also have promotions to the gasification efficiency of the gasification process and exergetic efficiency. The exergy value of product gas tended to increase with increase in S/B from1.6to2.4and so did the gasification efficiency. However, exergetic efficiency increased first and then decreased, indicating the presence of an optimum value among S/B. When the ER varied from0.2to0.28, the total exergy value of product gas increased first and then decreased. With the increase of ER, the exergy value of gas would reach the peak at0.26. Meanwhile, gasification efficiency and exergy efficiency tended to first increase and then decrease, which also both reached the peak when ER was0.26at the same time. This indicated that there was an optimum value of S/B, from the perspective of the rational use of energy considerations. Among the exergy values of product gas, H2and CO accounted for a large proportion and also made a greater contribution to the total exergy values of product gas. A lot of irreversible processes accompany with the gasification process would result in a decrease in the quality of energy and lead to exergy efficiency being less efficient than gasification thermal efficiency.
引文
[1]中国科学院,国家自然科学基金委员会.未来10年中国学科发展战略:能源科学[M].北京:科学出版社,2012.
    [2]张齐生,马中青,周建斌.生物质气化技术的再认识[J].南京林业大学学报(自然科学版),2013,37(01):1-10.
    [3]田原宇,乔英云.生物质气化技术面临的挑战及技术选择[J].中外能源,2013,18(08):27-32.
    [4]胡润青,秦世平,樊京春.中国生物质能技术路线图研究[M].北京:中国环境科学出版社,2011.
    [5]韩文科.中国战略性新兴产业研究与发展——生物质能[M].北京:机械工业出版社,2013.
    [6]刘荣厚.生物质能工程[M].北京:化学工业出版社,2009.
    [7]谭洪.生物质热裂解机理试验研究[D].杭州:浙江大学,2005.
    [8]乔国朝,王述洋.生物质热解液化技术研究现状及展望[J].林业机械与木工设备,2005,33(05):4-7.
    [9]蒋剑春,沈兆邦.生物质热解动力学的研究[J].林产化学与工业,2003,23(04):1-6.
    [10]朱锡锋,郑冀鲁,郭庆祥,等.生物质热解油的性质精制与利用[J].中国工程科学,2005,07(09):83-88.
    [11]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报,2006,27(12):1285-1289.
    [12]李海滨,袁振宏,马晓茜.现代生物质能利用技术[M].北京:化学工业出版社,2012:128-129.
    [13]刘建坤.固定床生物质富氧气化行为研究[D].沈阳:沈阳航空工业学院,2009.
    [14]Song T, Wu J H, Shen L H, et al. Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds [J]. Biomass & Bioenergy,2012,36:258-267.
    [15]Shen L H, Gao Y, Xiao J. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds [J]. Biomass and Bioenergy,2008, 32 (2):120-127.
    [16]朱锡锋.生物质热解原理与技术[M].合肥:中国科学技术大学出版社,2006.
    [17]孙立,张晓东.生物质热解气化原理与技术[M].北京:化学工业出版社,2013.
    [18]王红梅.生物质气化过程建模与参数优化研究[D].北京:华北电力大学,2009.
    [19]陆豫.甘蔗渣在水蒸汽氛围中热解气化制取合成气的研究[D].南宁:广西大学,2005.
    [20]Pfeifer C, Rauch R, Hofbauer H. In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier [J]. Industrial & Engineering Chemistry Research,2004,43 (7):1634-1640.
    [21]Corella J, Toledo J M, Molina G. Biomass gasification with pure steam in fluidised bed:12 variables that affect the effectiveness of the biomass gasifier [J]. International Journal of Oil Gas and Coal Technology,2008,1 (1-2): 194-207.
    [22]Umeki K, Yamamoto K, Namioka T, et al. High temperature steam-only gasification of woody biomass [J]. Applied Energy,2010,87 (3):791-798.
    [23]Basu P. Biomass gasification and pyrolysis:Practical design and theory [M]. Burlington:Elsevier Science & Technology,2010.
    [24]沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究[J].中国电机工程学报,2006,26(11):7-11.
    [25]吴家桦,沈来宏,王雷,等.串行流化床生物质气化制氢试验研究[J].太阳能学报,2010,31(02):242-247.
    [26]高杨,肖军,沈来宏.串行流化床生物质气化制取富氢气体模拟研究[J].太阳能学报,2008,29(07):894-899.
    [27]吴家桦,沈来宏,肖军,等.串行流化床生物质气化制取合成气试验研究[J].中国电机工程学报,2009,29(11):111-118.
    [28]冯飞,宋国辉,沈来宏,等.加压串行流化床制取生物质合成气的模拟[J].农业机械学报,2013,44(03):129-136.
    [29]周劲松,赵辉,曹小伟,等.生物质气流床气化制取合成气的试验研究[J].太阳能学报,2008,29(11):1406-1413.
    [30]赵辉,周劲松,曹小伟,等.生物质半焦高温水蒸汽气化反应动力学的研究[J].动力工程,2008,28(03):453-458.
    [31]张晓东,周劲松,骆仲泱,等.生物质中热值气化技术中试实验[J].太阳能学报,2003,24(1):74-79.
    [32]金亮,周劲松,吴远谋,等.下吸式生物质气化炉气化性能研究[J].热能动力工程,2011,26(01):105-109.
    [33]陈汉平,赵向富,米铁,等.基于aspen plus平台的生物质气化模拟[J].华中科技大学学报(自然科学版),2007,35(09):49-52.
    [34]米铁,张春林,刘武标,等.流化床作为生物质气化反应器试验研究[J].化学工程,2003,31(05):26-30.
    [35]吕友军,金辉,郭烈锦,等.生物质在超临界水流化床系统中部分氧化气化制氢[J].西安交通大学学报,2009,43(01):5-9.
    [36]吕友军,金辉,郭烈锦,等.原生生物质在超临界水流化床系统中气化制氢[J].西安交通大学学报,2009,43(02):111-115.
    [37]吕友军,金辉,郭烈锦,等.生物质在超临界水流化床反应系统中气化制氢实验研究[J].太阳能学报,2009,30(10):1155-1160.
    [38]吕友军,郭烈锦,张西民,等.生物质超临界水流化床气化制氢系统与方法研究[J].工程热物理学报,2009,30(09):1521-1524.
    [39]吕鹏梅,吴创之,袁振宏,等.生物质流化床空气-水蒸气气化模型研究[J].化学工程,2007,35(10):23-26.
    [40]吕鹏梅,熊祖鸿,王铁军,等.生物质流化床气化制取富氢燃气的研究[J].太阳能学报,2003,24(06):758-764.
    [41]吕鹏梅,常杰,熊祖鸿,等.生物质在流化床中的空气-水蒸气气化研究[J].燃料化学学报,2003,31(04):305-310.
    [42]阴秀丽,徐冰,吴创之,等.生物质循环流化床气化炉的数学模型研究[J].太阳能学报,1996,17(01):1-8.
    [43]苏德仁,周肇秋,谢建军,等.生物质流化床富氧-水蒸气气化制备合成气 研究[J].农业机械学报,2011,42(03):100-104.
    [44]高宁博,李爱民,曲毅.生物质气化及其影响因素研究进展[J].化工进展,2010,29(增刊):52-57.
    [45]Gao N B, Li A M, Quan C, et al. Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer [J]. International Journal of Hydrogen Energy,2008,33 (20): 5430-5438.
    [46]Gao N B, Li A M, Quan C. A novel reforming method for hydrogen production from biomass steam gasification [J]. Bioresource Technology,2009,100 (18): 4271-4277.
    [47]高宁博.高温过热水蒸气的制备及生物质高温气化重整制氢特性研究[D].大连:大连理工大学,2009.
    [48]宋聪聪.外循环径向移动床生物质催化气化工艺研究[D].大连:大连理工大学,2011.
    [49]冯杰,吴志斌,秦育红,等.生物质空气-水蒸气气化制取合成气热力学分析[J].燃料化学学报,2007,35(04):397-400.
    [50]陈晓辉,贾亚龙,冯杰,等.流化床-气流床耦合反应器中煤气化特性[J].化工学报,2011,62(12):3484-3491.
    [51]李克忠,张荣,毕继诚.煤和生物质共气化协同效应的初步研究[J].化学反应工程与工艺,2008,24(04):312-317.
    [52]李克忠,张荣,毕继诚.煤和生物质共气化制备富氢气体的实验研究[J].燃料化学学报,2010,38(06):660-665.
    [53]张巍巍,陈雪莉,王辅臣,等.基于aspen plus模拟生物质气流床气化工艺过程[J].太阳能学报,2007,28(12):1360-1364.
    [54]刘鑫,张保申,陈雪莉,等.石油焦与稻草焦共气化研究[J].燃料化学学报,2012,40(02):164-169.
    [55]李大中,王臻.基于最小二乘支持向量机的生物质气化过程模型建立[J].系统仿真学报,2009,21(3):629-633.
    [56]李大中,王红梅,韩璞.流化床生物质气化动力学模型建立[J].华北电力大学学报(自然科学版),2008,35(01):4-8.
    [57]王立群,李伟振,宋旭,等.生物质与煤共气化制取氢气的试验[J].江苏大学学报(自然科学版),2009,30(05):496-500.
    [58]王立群,张俊如,朱华东,等.在流化床气化炉中生物质与煤共气化的研究(i)——以空气-水蒸汽为气化剂生产低热值燃气[J].太阳能学报,2008,29(02):246-251.
    [59]王立群,宋旭,周浩生,等.在流化床气化炉中生物质与煤共气化研究(ii)—以水蒸汽为气化剂生产中热值燃气[J].太阳能学报,2008,29(03):354-359.
    [60]郭凯.生物质与煤共气化制取富氢燃气的试验及模拟研究[D].镇江:江苏大学,2009.
    [61]Xie Q, Borges F C, Cheng Y, et al. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal [J]. Bioresour Technol,2014,156:291-296.
    [62]Kihedu J H, Yoshiie R, Nunome Y, et al. Counter-flow air gasification of woody biomass pellets in the auto-thermal packed bed reactor [J]. Fuel,2014,117: 1242-1247.
    [63]Chaiwatanodom P, Vivanpatarakij S, Assabumrungrat S. Thermodynamic analysis of biomass gasification with co2 recycle for synthesis gas production [J]. Applied Energy,2014,114:10-17.
    [64]Pudasainee D, Paur H-R, Fleck S, et al. Trace metals emission in syngas from biomass gasification [J]. Fuel Processing Technology,2014,120:54-60.
    [65]Galindo A L, Lora E S, Andrade R V, et al. Biomass gasification in a downdraft gasifier with a two-stage air supply:Effect of operating conditions on gas quality [J]. Biomass and Bioenergy,2014,61:236-244.
    [66]Loha C, Chattopadhyay H, Chatterjee P K. Three dimensional kinetic modeling of fluidized bed biomass gasification [J]. Chemical Engineering Science,2014, 109:53-64.
    [67]Brachi P, Chirone R, Miccio F, et al. Fluidized bed co-gasification of biomass and polymeric wastes for a flexible end-use of the syngas:Focus on bio-methanol [J]. Fuel,2014,128:88-98.
    [68]中华人民共和国国家统计局.中国统计年鉴2013[M].北京:中国统计出版社,2013.
    [69]安冬敏.稻壳生物质资源的综合利用[D].吉林:吉林大学,2011.
    [70]黄宝祥.稻壳利用现状综述[J].现代农业科技,2007,2007(06):113-115.
    [71]衣海龙,张巍,黄宝玺,等.稻壳硅的综合开发与利用[J].齐齐哈尔职业学院学报,2009,03(03):67-70.
    [72]杨君,马红超,付颖寰,等.用稻壳硅源水热合成p型分子筛的研究[J].环境污染与防治,2011,33(06):23-25.
    [73]王立,王领军,姚惠源.稻壳硅综合利用[J].粮食与油脂,2006,2006(04):14-16.
    [74]沈建锋.稻壳低温慢速热解机理研究[D].南京:南京理工大学,2011.
    [75]冯俊凯,沈幼庭.锅炉原理及计算(第3版)[M].北京:科学出版社,2003.
    [76]《工业锅炉设计计算标准方法》编委会.工业锅炉设计计算标准方法[M].北京:中国标准出版社,2003.
    [77]Parikh J, Channiwala S A, Ghosal G K. A correlation for calculating hhv from proximate analysis of solid fuels [J]. Fuel,2005,84 (5):487-494.
    [78]Channiwala S A, Parikh P P. A unified correlation for estimating hhv of solid, liquid and gaseous fuels [J]. Fuel,2002,81 (8):1051-1063.
    [79]Yin C Y. Prediction of higher heating values of biomass from proximate and ultimate analyses [J]. Fuel,2011,90 (3):1128-1132.
    [80]Abuadala A, Dincer I, Naterer G F. Exergy analysis of hydrogen production from biomass gasification [J]. International Journal of Hydrogen Energy,2010, 35 (10):4981-4990.
    [81]Van Loo S, Koppejan J. The handbook of biomass combustion and co-firing [M]. Taylor & Francis,2012.
    [82]郑鑫.稻草酸性水解的实验研究[D].沈阳:东北大学2009.
    [83]安璐.黑液气化模型分析[D].北京:华北电力大学(北京),2005.
    [84]Franco C, Pinto F, Gulyurtlu I, et al. The study of reactions influencing the biomass steam gasification process [J]. Fuel,2003,82 (7):835-842.
    [85]吉恒松,王谦,成珊,等.基于感应加热的生物质气化制氢试验[J].农业机械学报,2013,44(10):183-187.
    [86]金松寿.化学动力学[M].上海:上海科学技术出版社,1959.
    [87]许越.化学反应动力学[M].北京:化学工业出版社,2005.
    [88]李绍芬.反应工程(第三版)[M].北京:化学工业出版社,2013.
    [89]Probstein R F, Hicks R E. Synthetic fuels [M]. Dover Publications,2006.
    [90]Cetin E, Moghtaderi B, Gupta R, et al. Biomass gasification kinetics:Influences of pressure and char structure [J]. Combustion Science and Technology,2005, 177 (4):765-791.
    [91]Di Blasi C. Combustion and gasification rates of lignocellulosic chars [J]. Progress in Energy and Combustion Science,2009,35 (2):121-140.
    [92]Barrio M, Hustad J E, Steam gasification of wood char and the effect of hydrogen inhibition on the chemical kinetics, in Thermochemical Biomass Conversion.2001, Blackwell Science:Oxford, p.47-60.
    [93]Wang Y, Kinoshita C M. Kinetic model of biomass gasification [J]. Solar Energy, 1993,51(1):19-25.
    [94]Smith J M, Van Ness H C, Abbott M M. Introduction to chemical engineering thermodynamics [M]. McGraw-Hill Book Company,2005.
    [95]刘洪来,陆小华,陈新志.化工热力学导论[M].化学工业出版社,2008.
    [96]浙江大学普通化学教研组.普通化学(第6版)[M].北京:高等教育出版社,2011.
    [97]汪洋,代正华,于广锁,等.运用gibbs自由能最小化方法模拟气流床煤气化炉[J].煤炭转化,2004,27(04):27-33.
    [98]代正华,龚欣,王辅臣,等.气流床粉煤气化的gibbs自由能最小化模拟[J].燃料化学学报,2005,33(02):129-133.
    [99]杨国来.生物质在流化床中的催化气化焦油及裂解的试验研究[D].武汉:华中科技大学,2007.
    [100]高杨.生物质气化制氢及mcfc联合循环系统性能研究[D].南京:东南大学,2008.
    [101]Lv P M, Xiong Z H, Chang J, et al. An experimental study on biomass air-steam gasification in a fluidized bed [J]. Bioresource Technology,2004,95 (1): 95-101.
    [102]徐锦丹.生物质发电过程分析与建模研究[D].北京:华北电力大学(北京),2010.
    [103]李琳娜,应浩,涂军令,等.木屑高温水蒸气气化制备富氢燃气的特性研究[J].林产化学与工业,2011,31(05):18-24.
    [104]Turn S, Kinoshita C, Zhang Z, et al. Experimental investigation of hydrogen production from biomass gasification [J]. International Journal of Hydrogen Energy,1998,23 (8):641-648.
    [105]吕鹏梅,袁振宏,马隆龙,等.生物质废弃物催化裂解制备富氢燃气实验研究[J].环境污染治理技术与设备,2006,07(09):35-40.
    [106]贺茂云,胡智泉,肖波,等.城市生活垃圾催化气化制取富氢气体的研究[J].环境工程,2009,27(02):97-101.
    [107]赵先国,常杰,吕鹏梅,等.生物质富氧—水蒸气气化制氢特性研究[J].太阳能学报,2006,27(7):677-681.
    [108]江苏大学.基于感应加热的生物质气化制氢反应器:中国,ZL201010195744.5[P].2012-08-15.
    [109]江苏大学.一种生物质气化炉点火装置及其操作方法:中国,ZL200910232277.6[P].2012-07-04.
    [110]王鹰,陈宏勋,王国华,等.连续输送机械设计手册[M].北京:中国铁道出版社,2001.
    [111]中国机械工业联合会,螺旋进料机.2008,中国标准出版社:北京.
    [112]严家录,余晓福,王永青.水和水蒸汽热力性质图表(第2版)[M].北京:高等教育出版社,2003.
    [113]张殿印,王纯.除尘工程设计手册(第2版)[M].北京:化学工业出版社,2010.
    [114]Saxena R C, Seal D, Kumar S, et al. Thermo-chemical routes for hydrogen rich gas from biomass:A review [J]. Renewable and Sustainable Energy Reviews, 2008,12(7):1909-1927.
    [115]陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报,2006,27(12):1276-1284.
    [116]Kumar A, Eskridge K, Jones D D, et al. Steam-air fluidized bed gasification of distillers grains:Effects of steam to biomass ratio, equivalence ratio and gasification temperature [J]. Bioresource Technology,2009,100 (6):2062-2068.
    [117]Kumabe K, Hanaoka T, Fujimoto S, et al. Co-gasification of woody biomass and coal with air and steam [J]. Fuel,2007,86 (5-6):684-689.
    [118]闫桂焕,孙荣峰,许敏,等.生物质固定床两步法气化技术[J].农业机械学报,2010,41(04):101-104.
    [119]Lv P M, Yuan Z H, Ma L L, et al. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier [J]. Renewable Energy, 2007,32(13):2173-2185.
    [120]Wei L G, Xu S P, Zhang L, et al. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor [J]. International Journal of Hydrogen Energy,2007,32(1):24-31.
    [121]Lv P M, Chang J, Xiong Z H, et al. Biomass air-steam gasification in a fluidized bed to produce hydrogen-rich gas [J]. Energy & Fuels,2003,17 (3):677-682.
    [122]文双全.电厂锅炉生物质燃气点火助燃的初步研究[D].北京:华北电力大学(北京),2008.
    [123]Narvaez I, Orio A, Aznar M P, et al. Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas [J]. Industrial and Engineering Chemistry Research,1996,35 (7):2110-2120.
    [124]Wei L G, Xu S P, Liu J G, et al. A novel process of biomass gasification for hydrogen-rich gas with solid heat carrier:Preliminary experimental results [J]. Energy & Fuels,2006,20 (5):2266-2273.
    [125]陈汉平,杨海平,李斌,等.生物质流化床气化焦油析出特性的研究[J].燃料化学学报,2009,37(04):433-437.
    [126]成功.生物质催化气化定向制备合成气过程与机理研究[D].武汉:华中科技大学,2012.
    [127]Puchner B, Hofberger E, Rauch R, et al. Biomass gasification with a co2-absortive bed material to produce a hydrogen rich gas:Proceedings of the The 14th European Conference on Biomass for Energy Industry and Climate Protection, Paris,France,17-21 October,2005 [C].
    [128]Fiorenza G, Canonaco J, Amelio M, et al. An advanced model for biomass steam gasification processes:Proceedings of the The 15th European Conference on Biomass for Energy Industry and Climate Protection, Berlin, Germany,7-11 May,2007 [C].
    [129]Wang L q, Dun Y h, Xiang X n, et al. Thermodynamics research on hydrogen production from biomass and coal co-gasification with catalyst [J]. International Journal of Hydrogen Energy,2011,36 (18):11676-11683.
    [130]Gordillo G, Annamalai K. Adiabatic fixed bed gasification of dairy biomass with air and steam [J]. Fuel,2010,89 (2):384-391.
    [131]Lu Y J, Guo L J, Zhang X M, et al. Hydrogen production by supercritical water gasification of biomass:Explore the way to maximum hydrogen yield and high carbon gasification efficiency [J]. International Journal of Hydrogen Energy, 2012,37 (4):3177-3185.
    [132]李波.基于交互正交试验的空间用谐波减速器传动性能影响因素研究[J].航空学报,2012,33(02):375-380.
    [133]周洪莹.激光标记二维条码在皮革上的应用研究[D].济南:山东大学,2012.
    [134]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2008.
    [135]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008.
    [136]任露泉.试验设计及其优化[M].北京:科学出版社,2009.
    [137]叶慈南,曹伟丽.应用数理统计[M].北京:机械工业出版社,2009.
    [138]吉恒松,王谦,成珊,等.生物质气化燃气低位热值影响因素的试验研究[J].热能动力工程,2013,28(05):529-534.
    [139]Knudsen R A, Bailey T, Fabiano L A. Experience with aspen while simulating a new methanol plant:Proceedings of the Selected Topics on Computer-Aided Process Design and Analysis, New Orleans,USA,1982 [C]:AIChE.
    [140]Ong'iro A O, Ugursal V I, Al Taweel A M, et al. Simulation of combined cycle power plants using the aspen plus shell [J]. Heat recovery systems& CHP, 1995,15(2):105-113.
    [141]杨毅梅,陈文义,范晓旭,等.基于aspen plus的生物质气化模拟与分析[J].河北工业大学学报,2011,40(05):49-52.
    [142]周金豪,陈雪莉,郭强,等.基于aspen plus模拟生物质与煤气流床共气化工艺[J].太阳能学报,2010,31(09):1112-1116.
    [143]裘啸,阎维平,孙俊威,等.基于gibbs自由能最小化原理模拟生物质流化床气化[J].可再生能源,2011,29(04):32-39.
    [144]屈一新.化工过程数值模拟及软件(第2版)[M].北京:化学工业出版社,2011.
    [145]孙兰义.化工流程模拟实训——aspen plus教程[M].北京:化学工业出版社,2012.
    [146]Li X, Grace J R, Watkinson A P, et al. Equilibrium modeling of gasification:A free energy minimization approach and its application to a circulating fluidized bed coal gasifier [J]. Fuel,2001,80 (2):195-207.
    [147]Li X T, Grace J R, Lim C J, et al. Biomass gasification in a circulating fluidized bed [J]. Biomass and Bioenergy,2004,26 (2):171-193.
    [148]高杨,肖军,沈来宏.生物质气化制氢的模拟[J].燃烧科学与技术,2006,12(06):540-544.
    [149]谢安俊,刘世华,张华岩,等.大型化工流程模拟软件-aspen plus [J]石油与天然气化工,1995,24(04):217-218.
    [150]于志强.工业硅生产系统的能流及节能研究[D].昆明:昆明理工大学,2009.
    [151]梁慧.基于aspenplus的零排放生物质发电系统模型构筑[D].北京:华北电力大学(北京),2009.
    [152]朱明善,刘颖,林兆庄,等.工程热力学(第2版)[M].北京:清华大学出版社,2011.
    [153]方国元.天然气联合循环发电成本分析及发展对策研究[D].保定:华北电力大学(河北),2004.
    [154]傅秦生.能量系统的热力学分析方法[M].西安:西安交通大学出版社,2005.
    [155]王立群,陈兆生.生物质气化制备燃气过程的火用分析[J].农业机械学报,2013,44(增刊):143-148.
    [156]Dincer I. Technical, environmental and exergetic aspects of hydrogen energy systems [J]. International Journal of Hydrogen Energy,2002,27 (3):265-285.
    [157]Abuadala A, Dincer I. Efficiency evaluation of dry hydrogen production from biomass gasification [J]. Thermochimica Acta,2010,507-08:127-134.
    [158]Zhang Y, Fu Z, Li B, et al, Energy and exergy evaluation of product gas from coal/biomass blend gasification in a dual circulating fluidized bed reactor.2013. p.599-604.
    [159]张亚宁,李炳熙,张波,等.生物质氧气气化和水蒸汽气化的能量分析及火用分析[J].华北电力大学学报(自然科学版),2012,39(01):64-69.
    [160]张小桃,黄明华,王爱军,等.生物质气化特性研究及火用分析[J].农业工程学报,2011,27(02):282-286.
    [161]张小桃,黄明华,王爱军,等.玉米秸秆气化特性研究[J].华北水利水电学院学报,2011,32(01):46-49.
    [162]Szargut J, Morris D R, Steward F R. Exergy analysis of thermal, chemical, and metallurgical processes [M]. Washington D.C:Hemisphere Publishing Corporation,1988.
    [163]Ptasinski K J, Prins M J, Pierik A. Exergetic evaluation of biomass gasification [J]. Energy,2007,32 (4):568-574.
    [164]J. Prins M, J. Ptasinski K, J. J. G. Janssen F. Thermodynamics of gas-char reactions:First and second law analysis [J]. Chemical Engineering Science, 2003,58(3-6):1003-1011.
    [165]华自强,张忠进,高青.工程热力学(第4版)[M].北京:高等教育出版社,2009.
    [166]Moran M J, Shapiro H N, Boettner D D, et al. Fundamentals of engineering thermodynamics [M]. the United States of America:John Wiley & Sons,2010.
    [167]Yunus A C, Michael A B. Thermodynamics:An engineering approach (sixth edition) [M]. New York:McGraw-Hill Higher Education,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700