不同热解过程产物炭的理化性质及石油焦催化气化反应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于不同的形成过程,不同热解过程产物炭的理化性质不同,导致其气化反应特性也应该有所区别。为此,研究不同热解过程产物炭的理化性质及气化反应性,不仅可加深对它们的基本性质及碳的气化反应机理的认识,而且对进一步丰富炭素学科理论具有重要的现实意义。此外,我国石油焦的产量与日俱增,其合理有效利用成为急需解决的重要问题。为此,开展石油焦/水蒸气催化气化特性的研究,不仅可以丰富碳/水蒸气催化气化反应规律的认识,而且可以为石油焦用作气化原料提供基础数据和理论参考。本文的主要研究内容和结果如下:
     (1)在气相、液相和固相热解温度分别为1000~1200℃、350-500℃和1000-1600℃条件下,以各种气相、液相和固相含碳物料为原料制备了三种不同种类炭,使用SEM、XRD、FTIR、GC/MS和孔结构及比表面积测试仪等分析手段,对它们的理化性质进行了分析,并采用等温热重法对其C02气化反应性进行了研究,取得了一些新的认识:①气相炭和液相炭都含有一定量的可溶有机质,其中液相炭含有的可溶有机质相当多,这也是导致其气化活性低的最主要因素;②气相炭、液相炭和固相炭的碳微晶结构有序化程度都不高,但总体上三者之间有如下的顺序,即液相炭>气相炭>固相炭;③这三种炭的气化活性顺序总体上为气相炭>液相炭>固相炭。
     (2)在慢速升温及高温热解(950-1400℃)和快速升温和加压(0.1~3 MP)热解条件下,以工业延迟焦(石油焦和沥青焦)和煤(神华煤和兖州煤)为原料,分别采用高温马弗炉和自制的快速加压热解装置制备了各种慢速高温热解焦和快速加压热解焦,使用SEM、XRD和孔结构及比表面积测试仪等分析手段对各种焦的理化性质进行了分析,并采用等温热重法考察了各种热解焦的C02气化反应特性,结果发现:①煤焦和工业延迟焦在热解过程中比表面积的变化呈现相反的趋势;②高温热解总体上有利于提高工业延迟焦的气化反应性;③热解压力增加导致煤焦的气化活性增加,而导致工业延迟焦的气化活性下降;④工业延迟焦的气化活性远低于煤焦的气化活性,甚至低于天然石墨的气化活性。
     (3)以三种典型的农作物秸秆(稻草、麦草和棉花)灰为研究对象,采用XRF、XRD和SEM/EDS等分析手段对它们的理化性质进行了分析,并在自建的固定床气化反应装置上考察了这三种秸秆灰及K金属盐对石油焦/水蒸气气化的催化作用,结果发现:①高温下矿物质之间相互作用形成低共熔体,导致秸秆灰中具有催化作用的金属元素失去活性;②本文提出的计算CO和C02气化选择性的方法,可用于了解碳/水蒸气气化行为;③在各种钾盐和各种秸秆灰中,催化活性最好的分别是K2CO3和棉花秸秆灰,但其添加量几乎不影响气化产物的分布及CO和CO2的选择性。
Due to their different formation processes, carbons from different pyrolysis processes possess of different pysyco-chemical properties, which results in some differences of their gasification characteristics. Therefore, It's imperative for us to investigate physico-chemical properties and gasification reactivity of carbons produced in different pyrolysis processes, thus it can not only strengthen our understanding of their essential properties and the gasification mechanism of carbons, but also enrich the theory of carbon science.
     Furthermore, due to the increasing output of petroleum coke in our country, it is very imperative to utilize it in an efficient and reasonable way. Therefore, investigating the catalytic steam gasification of petroleum coke not only can enrich the understandings of catalytic steam gasification characteristics of petroleum coke, but also provide basic data and theoretic references for petroleum coke when it is used as the raw material of gasifiers. The main contents and achievements of this study were summarized as follows.
     (1) Three different carbons were separately prepared from gas-phase, liquid-phase and solid-phase carbonaceous materials at the corresponding pyrolysis temperatures of 1000~1200℃(gas-phase pyrolysis),350~500℃(liquid-phase pyrolysis) and 1000~1600℃(solid-phase pyrolysis). Physico-chemical properties of the three carbons were investigated by SEM, XRD, FTIR, GC/MS, a surface area and porosity analyzer, etc. and their CO2 gasification reactivity was also investigated by an isothermal thermo-gravimetry. Some new cognitions were obtained as follows.①Gas-phase and liquid-phase carbons contained a certain amount of solvent-soluble organic matters. The solvent-soluble organic matters in liquid-phase carbons were of great aboundance, which mainly resulted in a low gasification acitivity of liquid-phase carbons.②The ordered degree of carbon crystalline structure of gas-phase, liquid-phase and solid-phase carbons were low, and the ordering of carbon crystalline structure among the three carbons was as follows:liquid-phase carbon> gas-phase carbon> solid-phase carbon.③The ordering of gasification acitivities of the three carbons was as follows:gas-phase carbon> liquid-phase carbon> solid-phase carbon.
     (2) Various slow and rapid pyrolysis chars were prepared separately from industrial delayed cokes (petroleum coke and pitch coke) and coals (Shenhua and Yanzhou coals) at the corresponding pyrolysis conditions of high temperatures (950~1400℃) and high pressures (0.1~3 MP), respectively using a high-temperature muffle and a pressurized pyrolysis set-up. Physico-chemical properties of various resultant chars were investigated using SEM, XRD and a surface area and porosity analyzer so on, and their CO2 gasification reactivity was also investigated by an isothermal thermo-gravimetry. The following results were obtained.①Effects of pyrolysis condition on BET surface areas of coal chars are opposite to those on BET surface areas of industrial delayed cokes.②High pyrolysis temperatures, as a whole, were favorable to elevate the gasification acitivity of industrial delayed cokes.③Increasing pyrolysis pressures resulted in the increase of the gasification acitivity of coal chars and the decrease of that of industrial delayed cokes.④The gasification acitivity of industrial delayed cokes was far lower than that of coals and even lower than that of natural graphite.
     (3) Physico-chemical properties of the ashes from three typical crop straws (rice straw, wheat straw and cotton straw) were investigated by XRF, XRD and SEM/EDS, etc. and the catalytic steam gasification characteristics of petroleum coke, which were catalyzed by various K salts and the three ashes, was investigated using a fixed-bed gasification set-up. The following results were obtained.①At high temperatures, various minerals reacted each other to form amorphous compounds, resulting in the deactivity of metals from straw ashes.②A proposed method for calculating the selectivity towards CO and CO2 could be used to understand the steam gasification behaviours of carbons.③Among various K salts and straw ashes, K2CO3 and the ash from cotton straws respectively had the highest catalytic activity. There were no effects of their contents on the distribution of gas products and the selectivity towars CO and CO2.
引文
[1]张德祥,陈秀,赵玉兰等.煤化工工艺学.北京:煤炭工业出版社.1999,P 438-439
    [2]W. A. Bone, H. F. Coward. In-situ coating of carbon films by pyrolysis of methane. Fuel. 1953,11(3):256-273
    [3]钱树安.略论炭素科学的形成和发展Ⅳ.气相炭化机理研究的历史和现状.炭素.1996,(1):4-12
    [4]李太平,王成扬.针状焦技术的研究进展.炭素.2004,(3):11-16
    [5]V. V. S. Revankar. Studies in catalytic steam of petroleum with special reference to the effect of particle size. Ind. Eng. Chem. Res..1987,26(5):1018-1025
    [6]H. Marsh. Petroleum derived carbons. ACS Symposium series 21.1998, P.266-274
    [7]J. Gu, S. Wu, X. Zhang, et al. CO2-Gasification reactivity of different carbonaceous materials at elevated temperatures. Energy Sources.2009,31(3):232-243
    [8]陈喜平,周孑民,李旺兴.煅烧石油焦反应性的实验研究.轻金属.2007,(5):37-39
    [9]郭永恒.煅后石油焦平均晶粒尺寸的研究.科学技术与程.2006,18(6):2997-2998
    [10]苏玉长,徐仲榆.高温热处理石油焦的微观结构与其充放电性能的关系.湖南大学学报(自然科学版).2001,28(4):43-48
    [11]杜亚平,张德祥,毛清龙等.石油焦原料性质及炭化工艺对活性炭性能的影响.石油炼制与化工.2002,33(11):36-40
    [12]孙利,沈本贤.X射线衍射法研究石油焦炭化过程的微晶变化.石油学报(石油加工).2004,20(2):53-56
    [13]李庆峰,房倚天,张建民等.气化活性与孔比表面积的关系.煤炭转化.2003,26(3):45-48
    [14]李庆峰,房倚天,张建民等.石油焦水蒸气气化过程孔隙结构和气化速率的变化.燃料化学学报.2004,32(4):435-439
    [15]李庆峰,房倚天,张建民等.石油焦的气化反应特性.燃烧科学与技术.2004,10(3):254-259
    [16]潘英刚,严惠珍,曹建功.碱金属碳酸盐在煤气化中的催化作用:Ⅳ复合催化剂Na-M-Ⅱ的催化活性.燃料化学学报.1986,14(1):63-68
    [17]S. Dutta, C. Y. Wen, R. J. Belt. Reactivity of coal char 1:in carbon dioxide atmosphere. Ind. Eng. Chem. Press. Des. Dev..1977,16(1):20-30
    [18]M. Sahimi, T. T. Tsotsis. Statistical modeling of gas-solid reaction with pore volume growth:kinetics regime. Chem. Eng. Sci..1988,43(1):113-121
    [19]唐黎华,陈冬霞,朱学栋等.石油焦高温气化反应.燃料化学学报.2005,33(6):687-691
    [20]A. Solano, O. Mahajan, P. L. Walker. Reactivities of heat-treated coals in steam. Fuel Chemistry.1977,22(1):1-3
    [21]P. L. Walker,0. P. Mahajan, Y. Richard. Unification of coal char gasification reactions. Fuel Chemistry.1977,22(1):7-11
    [22]G. Liu, A. G. Tate, G. W. Bryant, et al. Mathematical modeling of coal reactivity with CO2 at high pressures and temperature. Fuel.2000,79(10):1145-1154
    [23]黄瀛华,任德庆,山下弘已等.煤显微组分的工艺性质研究.燃料与化工.1994,25(4):166-169
    [24]T. Takarada, Y. Tammai, A. Tomitta. Reactivities of 34 coals under steam gasification. Fuel.1985,64(10):1438-1442
    [25]谢克昌.煤的结构与反应性.北京:科学出版社.2002,P.556-557
    [26]A. Megaritis, R. C. Messenbock, I. N. Chatrakis. High-pressure pyrolysis and CO2-gasification of coal maceral concentrates:conversions char combustion reactivities. Fuel.1999,78(8):871-882
    [27]F. Czechowsi, H. Kidawa. Reactivity and susceptibility to porosity development of coal maceral chars on steam and carbon dioxide gasification. Fuel Processing Technology. 1991,29(1-2):57-73
    [28]张永发,谢克昌,凌大琦.显微组分焦样的C02气化动力学和表面变化.燃料化学学报.1991,19(4):359-364
    [29]J. C. Crelling, N. M. Skorupska, H. Marsh. Reactivity of coal macerals and lithotypes. Fuel.1988,67(6):781-785
    [30]J. H. Blake, G. R. Bopp, J. F. Jones. Aspects of the reactivity of porous carbons with carbon dioxide. Fuel.1967,46(2):115-125
    [31]J. D. Blackwood, B. D. Cullis, D. J. McCarthy. Reactivity in the system carbon-hydrogen-methane. Australian Journal of Chemistry.1967,20(8):1561-1570
    [32]唐黎华,吴勇强,朱学栋等.高温下制焦温度对煤焦气化活性的影响.燃料化学学报.2002,30(1):16-20
    [33]O. Senneca, P. Russo, P. Salatino, et al. The relevance of thermal annealing to the evolution of coal char gasification reactivity. Carbon.1997,35(1):141-151
    [34]C. Luo. Gasification kinetics of coal chars carbonized under rapid and slow heating conditions at elevated temperatures. Journal of Energy Resources Technology.2001, 123(3):21-26
    [35]W. Wen. Mechanisms of Alkali Metal Catalysis in the Gasification of Coal Char or Graphite. Cat. Rev. Sci. Eng..1980,22(1):1-28
    [36]潘英刚,刘敏芝,沈楠等.煤加压催化气化研制城市煤气Ⅰ:大同煤和煤焦的催化气化特性.华东化工学院学报.1986,12(1):25-33
    [37]朱珍平,崔洪,徐秀峰等.先锋褐煤焦的铁催化CO2脉冲气化.燃料化学学报.1997,6(3):218-222
    [38]K. J. Huttinger, R. Minges. Influence of the catalyst precursor anion in catalysis of water vapor gasification of carbon by potassium:1. Activation of the catalyst precursors. Fuel. 1986,65(8):1112-1121
    [39]谢克昌.煤的气化动力学和矿物质的作用.山西:山西科学教育出版社.1990,P.112-121
    [40]孙雪莲,王黎,张占涛等.神府及西北其它煤种的催化气化行为.洁净煤技术.2004,7(2):40-47
    [41]J. Wang, K. Sakanishi et al. High-yield hydrogen production by steam gasification of Hyper Coal with potassium carbonate:comparison with raw coal. Energy & Fuel.2005, 19(5):2114-2120
    [42]A. Sharma, T. Takanohashi, K. Morishita et al. Low temperature catalytic steam gasification of Hyper Coal to produce H2 and synthesis gas. Fuel.2008,87(4):491-497
    [43]张泽凯,王黎,刘业奎等.氯化钾催化气化煤的等温动力学研究.西安交通大学学报.2003,9(9):954-961
    [44]卫小芳,黄戒介,房倚天等.碱金属对褐煤气化反应性的影响.煤炭转化.2007,30(4):38-42
    [45]冯杰,李文英,谢克昌.石灰石在煤水蒸气气化中的催化作用.太原工业大学学报.1996,12(4):50-60
    [46]朱廷钰,汤忠,黄戒介.煤温和气化特征的热重研究阴.燃料化学学报.1999,10(5):420-423
    [47]胡松,付鹏,向军等.典型农业生物钟催化去和反应动力学特性研究.太阳能学报.2008,29(6):716-722
    [48]A. Tomita A, Y. Watanabe, Y. S. Outsuka, et al. Nickel-catalyzed gasification of brown coal in a fluidized bed reactor at atmospheric pressure. Fuel.1983,64(6): 795-800
    [49]Silvaif, L. S. Lobo. Study of CO2 gasification of activated carbon catalysed by molybdenum oxide and potassium carbonate. Fuel.1986,65(10):1400-1403
    [50]K. Asami, P. Sears, E. Fmimsly, et al. Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts. Fuel Processing Technology. 1996,47(2):139-151
    [51]L. Jiang, J. Fu. Effect of iron on the gasification of Victorian brown coal with steam: enhancement of hydrogen production. Fuel.2006,85(2):127-133
    [52]杨景标,郑炯,邱燕飞等.煤焦水蒸气催化气化动力学分析.节能.2009,(6):22-24
    [53]S. Atul, D. Y. Yaw, G. Anm-adha. Catalytic Gasification of Coal Using Eutectic Salts: Reaction Kinetics with Binary and Ternary Eutecfic Catalysts. Fuel.2003,82(3):305-317
    [54]徐秀峰,崔洪,顾永达等.脱矿物质对铁镍催化煤焦-C02气化反应性的影响.洁净煤技术.1996,2(4):28-31
    [55]J. F. Akyurtlu. Catalytic gasification of Pittsburgh coal char by potassium sulphate and ferrous sulphate mixtures. Fuel Processing Technology.1995,43(1):71-86
    [56]孙雪莲,王黎,张占涛.煤气化复合催化剂研究及机理探讨.煤炭转化.2006,29(1):15-18
    [57]洪诗捷,张济宇,黄文沂等.工业废碱对福建无烟煤水蒸气催化气化的实验室研究.燃料化学学报.2002,30(6):481-486
    [58]C. B. Robert, L. Qin, N. Glerm. Catalytic effects observed during the CO2 gasification of coal and switch grass. Biomass and Bio-energy.2000,18(6):499-506
    [59]凌开成,谢克昌,米杰.高灰煤在C02中的催化气化.太原工业大学学报.1989,6(2):66-70
    [60]邹建辉,周志杰,代正华等.三种工业废料对石油焦C02气化动力学的影响.燃料化学学报.2008,36(3):279-288
    [61]A. N. Gokam, H. J. Muhlen. Catalysis of coal gasification by Na lignosulfonate. Fuel. 1995,74(1):124-127
    [62]黄瀛华,王曾辉,杭月珍.煤化学及工艺学实验.上海:华东工学院出版社.1998,P.7-40
    [63]邹建辉.论文褐煤与石油焦共成浆与共气化特性研究[博士论文].华东理工大学,2008,P.76
    [64]刘辉,吴少华,孙锐等.快速热解褐煤焦的比表面积及孔隙结构.中国电机工程学报.2005,25(12):86-90
    [65]C. N. Satterfield. Heterogeneous catalysis in industrial practice. Florida:Krieger Publishing Company.1996, P.138-145
    [66]A. K. Sadhukhan, P. Gupta, R. K. Saha. Characterization of porous structure of coal char from a single devolatilized coal particle:coal combustion in a fluidized bed. Fuel Processing Technology.2009,90(5):692-700
    [67]S. Porada. The reactions of formation of selected gas products during coal pyrolysis. Fuel.2004,83 (9):1191-1196
    [68]J. Wang, J. Du, L. Chang, et al. Study on the structure and pyrolysis characteristics of Chinese western coals. Fuel Processing Technology.2010,91(4):430-433
    [69]肖瑞华.煤焦油化工学.北京:冶金工业出版社.2009,P.52-54
    [70]张全国.生物质焦油燃烧动力学及其燃料特性实验研究[博士论文].大连理工大学,2006,P.28-40
    [71]A.G. Alvarez, M. Martinez-Escandell, M. Molina-Sabio, et al. Pyrolysis of petroleum residue:analysis of semicoke by X-ray diffraction. Carbon.1999,37(10):1627-1632
    [72]K. N. Tran, S. K. Bhatia. Air Reactivtiy of Petroleum Coke:Role of Inaccessible Porosity. Ind. Eng. Chem. Res..2007,46(10):3265-3274
    [73]Y. Zong, Z. Zong, M. Ding, et al. Separation and analysis of organic compounds in an Erdos coal. Fuel.2009,88(3):469-474
    [74]Z. Zong, J. Zhang, R. Xie, et al. Effect of charring temperature on the compositon and solubility of chars formed from rapid heating of Shenfu coal. Energy Sources.2010, 32(7):620-627
    [75]S. Wu, J. Gu, X. Zhang, et al. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures. Energy & Fuels. 2008,22(1):199-206
    [76]L. Kong, G. Kong, V. Sahajwalla. Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel.2002,81(9):1215-1225
    [77]M. J. G. Alonso, A. G. Borrego, D. Alvarez, et al. A reactiviy study of chars obtained at different temperatures in relation to their petrographic characteristics. Fuel Processing Technology.2001,69(3):257-272
    [78]R. Gadiou, Y. Bouzidi, G. Prado. The devolatilization of millimeter sized coal particles at high heating rate:the influence of pressure on the structure and reactivity of the char. Fuel.2002,81(16):2121-2130
    [79]E. Cetin, B. Moghtaderi, R. Gupta, et al. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel.2004,83(16):2139-2150
    [80]J. A. Satrio, B. H. Shanks, T. D. Wheelock. A combined catalyst and sorbent for enhanced hydrogen production form coal and biomass. Energy & Fuels.2007,21(1): 322-326
    [81]J. Wang, Y. Yao, J. Cao. Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation. Fuel.2010,89(2):310-317
    [82]D.W. Mckee, C.L. Spiro, P.G. Kosky, et al. Catalysis of coal char gasification by alkali metal salts. Fuel.1983,62(2):217-220
    [83]B. J. Wood, R. H. Fleming, H. Wise. Reactive intermediate in the alkali-carbonate-catalyzed gasification of coal char. Fuel.1984,63(11):1600-1603
    [84]Z. Liu, H. Zhu. Steam gasification of coal char using alkali and alkali-earth metal catalysts. Fuel.1986,65(10):1334-1338
    [85]R. C. Timpe, R. W. Kulas, V. B. Hauserman, et al. Catalytic gasification of coal for the production of fuel cell feedstock. International Journal of Hydrogen Energy.1997,22(5): 487-492
    [86]J. M. Saber, J. L. Falconer, L. F. Brown. Interaction of potassium carbonate with carbon surface oxides of carbon. Fuel.1986,65(10):1356-1359
    [87]J. Wang, M. Jiang, Y. Yao, et al. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel.2009,88(9): 1572-1579
    [88]K. Mondal, K. Piotrowski, D. Dasgupta, et al. Hydrogen from coal in a single step. Ind. Eng. Chem. Res..2005,44(15):5508-5517
    [89]Y. Ohtsuka, K. Asami. Highly active catalysts from inexpensive raw materials for coal gasification. Catalysis Today.1997,39(1-2):111-125
    [90]H. Juntgen. Application of catalysts to coal gasification processes:incentives and perspectives. Fuel.1983,62(2):234-238
    [91]S. Lin, Y. Suzuki, H. Harano, M. Harada. Developing an innovative method, Hyper-ring, to produce hydrogen from hydrocarbons, Energy Conversion and Manage.2002, 43(9-12):1283-1290
    [92]T. Wigmans, R. Elfring, J. A. Moulijn. On the mechanism of the potassium carbonate catalysed gasification of activated carbon:the influence of the catalyst concentration on the reactivity and selectivity at low steam pressures. Carbon.1983,21(1):1-12
    [93]D. W. Mckee. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel. 1978,62(2):170-175
    [94]M. J. Veraa, A. T. Bell. Effect of alkali metal catalysts on gasification of coal char. Fuel. 57(4):194-200
    [95]D. W. Mckee, S. Chatterji. Gasification of graphite in carbon dioxide and water vapor-the catalytic effects of alkali metal salts. Carbon.1982,20(1):59-66
    [96]F. Delannay, W. T. Fysoe. H. Heinemann et al. The role of KOH in the steam gasification of graphite:identification of the reaction steps. Carbon.1984,22(4-5): 401-407
    [97]I. L.G. Freriks, H. M. H. van Wechem, J.C.M. Stuiver, et al. Potassium-catalysed gasification of carbon with steam:a temperature-programmed desorption and Fourier Transform infrared study. Fuel.1981,60(6):463-470
    [98]J. M. Saber, J. L. Falconer, L. F..Brown. Carbon dioxide gasification of carbon black: Isotope study of carbonate catalysis. Journal of Catalysis.1984,90(1):65-74
    [99]D. C. Amoros, A. L. Solano, F. H. M. Dekker, et al. Isotopic steady-state and step-response study on carbon gasification catalyzed by calcium. Carbon.1995,33(8): 1147-1154
    [100]A. A. Lizzio, L. R. Radovic. Transient Kinetics Study of Catalytic Char Gasification in Carbon Dioxide. Ind. Eng. Chem. Res..1991,30(8):1735-1744
    [101]F. Kapteijn, H. Porre, J. A. Moulijn. CO2 gasification of activated carbon catalyzed by earth alkaline elements. AIChE Journal.1986,32(4):691-695
    [102]J. A. Moulijn, F. Kapteijn. Towards a unified theory of reactions of carbon with oxygen-containing molecular. Carbon.1995,33(8):1155-1165
    [103]傅玉普.物理化学.大连:大连理工大学出版社.2001,P.75-78
    [104]K. J. Huttinger, R. Minges. The influence of the catalyst precursor anion in catalysis of water vapour gasification of carbon by potassium 2 catalytic acitivity as influenced by activation and deactivation reactions. Fuel.1986,65(8):1122-1128
    [105]M. Ni, D. Y. C. Leung, M. K. H. Leung, et al. An over view of hydrogen from biomass. Fuel Processing Technology.2006,87(5):461-472
    [106]P. D'Jesus, N. Boukis, B. Kraushaar-Czarnetzki, et al. Gasification of corn and clover grass in superitical water. Fuel.2006,85(7-8):1032-1038
    [107]C. Erlich, E. Bjornbom, D. Bolado, et al. Pyrolysis and gasification of pellets from sugarcane bagasse and wood. Fuel.2006,85(10-11):1535-1540
    [108]O. Senneca. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology.2007,88(1):87-97.
    [109]S. Wang, X. Jiang, X. Han, et al. Fusion characteristic study on seaweed biomass ash. Energy & Fuels.2008,22(4):2229-2235
    [110]吴诗勇,顾菁,李莉等.高温下快速和慢速热解神府煤焦的理化性质.煤炭学报.2006,31(4):492-496
    [111]T. R. Miles, T. R. Miles Jr, L. L. Baxter, et al. Boiler deposits from firing biomass fuels. Biomass and Bioenergy.1996,10(2-3):125-138
    [112]D. C. Dayton, D. Belle-Oudry, A. Nordin. Effect of coal minerals on Chlorine and Alkali metals released during biomass/coal cofiring. Fuel.1999,13(6):1203-1211
    [113]J. Wang, G. Wang, M. Zhang, et al. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process biochemistry.2006,41(8):1883-1886
    [114]A. A. Tortosa Masia, B. J. P. Buhre, R. P. Gupta, et al. Characterising ash of biomass and waste. Fuel Processing Technology.2007,88(11-12):1071-1081
    [115]M. Ohaman, L. Pommer, A. Nordin. Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels. Energy & Fuels.2005,19(4): 1742-1748
    [116]E. Brus, M. Ohman, A. Nordin. Mechanisms of bed agglomeration during fluidized-bed combustion of biomass fuels. Energy & Fuels.2005,19(3):825-832
    [117]K. O. Davidsson, K. Engvall, M. Hagstrom, et al. A surface ionization instrument for on-line measurements of Alkali metal components in combustion:instrument description and applications. Energy & Fuels.2002,16(6):1369-1377
    [118]顾菁,吴诗勇,张晓等.高温下兖州煤焦/CO2气化反应性.煤炭转化.2007,30(4):34-37.
    [119]顾菁.煤焦和其它高碳物料高温气化反应特性的研究[博士论文].华东理工大学,2008,P.23-24
    [120]王爽,姜秀民,王宁等.海藻生物质灰熔融特性分析.中国电机工程学报.2008,28(5):96-101
    [121]L. L. Baxter, T. R. Miles, T. R. Miles Jr, et al. The behavior of inorganic material in biomass-fired power boilers:field and laboratory experiences. Fuel Processing Technology.1998,54(1-3):47-48
    [122]M. Rachakornkij, S. Ruangchuay, S. Teachakulwiroj. Removal of reactive dyes from aqueous solution using bagasse fly ash. Songklanakarin Journal of Science and Technology.2004,26(Supplement.1):13-14
    [123]J. G. Olsson, U. Jaglid, J. B. C. Pettersson, et al. Alkali metal emission during pyrolysis of biomass. Energy & Fuels.1997,11(4):779-784
    [124]米铁,陈汉平,吴正舜等.生物质灰化学特性的研究.太阳能学报.2004,25(2):236-241
    [125]B. Olanders, B. M. Steenari. Characterization of ashes from wood and straw. Biomass and Bioenergy.1995,8(2):105-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700