稻瘟病菌几丁质酶和丝氨酸蛋白酶之水稻受体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病菌(Magnaporthe oryzae)引起水稻重要病害,是研究植物与病原微生物相互作用的重要模式生物。已知其在侵染水稻时分泌几丁质酶、丝氨酸蛋白酶,参与致病过程。前期研究表明稻瘟病菌几丁质酶和丝氨酸蛋白酶可能是稻瘟病的致病因子,然而,它们在病程中的作用机制未明,特别是如何介导寄主水稻的响应,尚无报道。本文利用酵母双杂交系统以稻瘟病菌几丁质酶、丝氨酸蛋白酶作为诱饵蛋白,从水稻中筛选受体,研究两个蛋白与候选受体的互作关系,并探讨候选受体水稻RNAi突变体在与稻瘟病菌互作过程的变化,从而进一步明确它们在抗病或致病过程中的作用。
     酵母双杂交获得与稻瘟菌几丁质酶(MoChi1)互作的阳性克隆18个,与稻瘟病菌丝氨酸蛋白酶(MoSP1)互作的阳性克隆12个,同时测序并对他们进行生物信息学分析,结果发现MoChi1和MoSP1筛选到了同一个受体甘露糖凝集素OsMbl1。通过GST pull-down验证了MoChi1可以与水稻甘露糖凝集素OsMbl1、金属硫蛋白OsMtl1和MoSP1与锌指蛋白OsZfp1、甘露糖凝集素OsMbl1及A11体外互作。Western bloting结果表明MoChi1与OsMbl1和OsMtl1间存在相互作用;MoSP1可以与OsZfp1、OsMbl1体外互作,但不能与A11体外互作。
     本文重点研究了OsMbl1分别与MoChi1和MoSP1互作结构域。首先,生物信息学分析表明,OsMBL1含有单子叶植物甘露糖结合凝集素家族结构域,且该结构域含有三个糖结合位;与蒜、石斛、文殊兰属等其他单子叶植物甘露糖结合凝集素的序列一致性大于50%,并具有单子叶植物甘露糖结合凝集素保守酸性氨基酸的结合位点。通过构建OsMBL1不同片段缺失突变体,经GST pull-down方法来检测其与MoChi1和MoSP1的互作特性,结果表明在与几丁质酶互作的过程中他的三个结合位点G…..GXXXD、GXGXXXEDE和GX[GAVIYWF][DNEW]是相互独立的,都能各自发挥作用。然而它与丝氨酸蛋白酶互作结果却表明只有这三个位点同时存在时才能表现出活性。
     本文还分析了MoSP1与OsZfp1的互作结构域。生物信息学分析表明,OsZFP1含有一个C3HC4保守结构域,C端位置有两个跨膜螺旋序列,编码α/β型、非分泌型蛋白。缺失突变和GST Pull-down分析表明,OsZfp1与丝氨酸蛋白酶的互作只需要其C3HC4结构域,其N端和C端不是它们互作所必须的。
     利用实时定量PCR技术检测OsZFP1、A11和OsMBL1基因在几丁质酶和丝氨酸蛋白酶敲除突变体和野生型Guy11侵染后的水稻叶片中的表达情况,结果表明,在丝氨酸蛋白酶敲除突变体侵染后的水稻叶片中表达量与在野生型侵染后的水稻叶片中的表达量相比,OsMBL1在72小时前表现为下调,在96小时后表现为上调;OsZFP1都表现为下降;而A11基因的表达量无多大差异。OsMBL1基因在几丁质酶敲除突变体侵染后的水稻叶片中的表达量先表现为下调,48小时后达到最小,接着又有所回升。与野生型侵染后的水稻叶片中的表达量相比,在72小时前表现为下调,在96小时后表现为上调
     此外,本研究还分别构建了OsMBL1和OsZFP1基因的RNAi及超表达载体并转化水稻,目前已获得OsMBL1和OsZFP1基因的RNAi植株,超表达转基因植株尚未获得。因而,两个蛋白的生物学功能还有待深入研究。
The rice blast fungus, Magnaporthe oryaze, infects many economically important cereal crops, particularly rice. The interaction between M. oryzae and rice is also taken as a model for the study of fungus-plant interaction. It has been shown that the fungus could secrete chitinase and serine protease in the process of its host infection. Our previous studies indicated that chitinase and serine protease in M. oryaze are probably important pathogenic factors. However, their regulation mechanism in the process of blast fungus infection remains unclear, particularly in the regulation of pathogen-associated molecular pattern (PAMP)-induced immunity reaction. In this study, we characterized the relationship between the chitinase/serine protease in M. oryzae and their receptors in rice by the yeast two-hybrid assay, immunology and molecular genetics approach by creating the rice RNAi mutants of putative receptors.
     By yeast two-hybrid screening, we obtained 18 rice positive clones interacting with M. oryzae chitinase (MoChi1) and 12 rice positive clones interacting with M. oryzae serine protease (MoSP1). These clones were then sequenced and annotated by BLAST search. Interestingly, we found a common receptor, mannose-binding lectin (OsMbl1), which could interact with both MoChi1 and MoSP1.
     GST pull-down and Western bloting were then to confirm interaction between above candidates and MoChi1 and MoSP1. Results showed that there is interaction between the mannose-binding lectin, metallothionein-like protein (OsMtl1) and MoChi. And there was an obvious interactrion between OsMbl1, OsZfp1 and MoSP1. We then further dissected the binding properties of a protein-protein interaction domain between OsMbl1 and MoChi1 and MoSP1. First, bioinformatics analysis showed that OsMBL1 contains mannose-binding lectin domain, including three sugar-binding sites. Homology analysis showed that OsMbl1 is about 50% identical to other mannose-binding lectin from Monocotyledon, such as garlic, dendrobium and crinum. And it has conserved amino acid binding sites of mannose-binding lectin of Monocotyledon. In order to clarify the interaction domain of the smallest fragment between OsMbl1 and MoChi1 and MoSP1, we constructed the different mutants of OsMBL1, then detected the interaction by GST Pull-down assay. The results showed that the three binding sites, G…..GXXXD,GXGXXXEDE and GX[GAVIYWF] [DNEW], are independent for each other during their interaction with MoChi1. Whereas, the three binding sites are dependent for each other during their interaction with MoSP1.
     We also analyzed the interaction domain of another receptor OsZfp1 with MoSP1 in M. oryzae. Bioinformatics analysis indicated that the OsZFP1 gene contains a C3HC4 conserved domain, two c-terminal transmembrane helix sequence, which coding andα/β-type, non-secreted protein. Domain deletion and GST Pull-down assay demonstrated that N-terminal and C-terminal of this protein is not necessary for its interaction with the serine protease, while only C3HC4 domain is required for the interaction.
     The expression of OsZFP1, A11and OsMBL1 mRNA in the rice leaves which were infected by Guy11 or the knockout mutant of MoChi1 and MoSP1 were examined by the Real-Time PCR. The results showed the expression of OsMBL1 mRNA in the rice leaves infected by the knockout mutant of serine protease was down-regulated before 72 h compared with that in the Guy11-infected rice leaves,the expression of OsZFP1 was also down-regulated. However, the expression of A11 mRNA had no difference in all mutants. The expression of OsMBL1 mRNA in the rice leaves infected by the knockout mutant of MoChi1 was down-regulated compared with that in the Guy11-infected rice leaves., which is consistent with the results above.
     Besides above results,we also plan to analyze the biological functions of OsZFP1 an OsMBL1 through RNAi and overexpression in the rice. We have obtained RNAi and overexpression constructs of these two genes and the transgenic rice of RNAi-OsZFP1 and RNAi-OsMBL1. The lines of overexpression-OsZFP1 and overexpression -OsMBL1 were not obtained yet. Therefore, more detailed analysis of the transgenic lines generated from this study are necessary for further identification the function of these genes in rice.
引文
[1] L da Cunha L, McFall A J, Mackey D. Innate immunity in plants: a continuum of layered defenses[J]. Microbes and Infection, 2006, 8(5): 1372-1381.
    [2] Nürnberger T, Brunner F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns[J]. Current opinion in plant biology, 2002, 5(4): 318-324.
    [3] Alfano J R, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense[J]. Annual Review of Phytopathology, 2004, 42(1): 385?414.
    [4]Ellis J. Insights into nonhost disease resistance: can they assist disease control in agriculture? In: Am Soc Plant Biol; 2006:523-528.
    [5] Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444: 323-329.
    [6] Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family[J]. Immunology letters, 2003, 85(2): 85-95.
    [7] Gaulin E, Drame N, Lafitte C, et al. Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns[J]. The Plant Cell Online, 2006, 18(7): 1766.
    [8] Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells[J]. J Biol Chem, 2002, 277(50): 48146?48151.
    [9] Zhang S, Klessig D F. MAPK cascades in plant defense signaling[J]. Trends in Plant Science, 2001, 6(11): 520-527.
    [10] Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling[J]. Trends in Plant Science, 2005, 10(7): 339-346.
    [11]张春光,荆红梅,郑海雷,等.水杨酸诱导植物抗性的研究进展[J].生命科学研究进展, 2001, 5(3): 185-189.
    [12]李明亮,韩一凡.乙烯在植物生长发育的抗病反应中的作用及其生物合成的反义抑[J].林业科学, 2000, 36(004): 77-84.
    [13] Zhang Z, Feechan A, Pedersen C, et al. A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways[J].Plant Journal, 2007, 49(2):302?312.
    [14] Dean R A, Talbot N J, Ebbole D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036): 980-986.
    [15] Dov G, Nicjolas M L, Ronald J, et a1. Interrelating Different Types of Genomic Data from Proteome to Secretome: Oming in on Function[J]. Genome Research, 2001, 11: 1463-1468.
    [16] Von HG. Life and death of a signal peptide[J]. Nature, 1998, 396(6707): 111-113.
    [17] Akita M, Sasaki S, Matsuyama S, et al. SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli[J]. Journal of Biological Chemistry, 1990, 265(14): 8164-8169.
    [18] Paetzel M, Dalbey R E, Strynadka N C J. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor[J]. Nature, 1998, 396(6707): 186-190.
    [19] Albers SJ, Driessen AJ. Signal peptides of secreted proteinsof the archaeon sulfolobus solfaricus: a genomic survey[J]. Arch Microbiol, 2002, 177(3): 209-216.
    [20] Harolod T, Albert B, Jan DHJ, et al. Signal peptide-dependent protein tran sport in Bacillus subtilis: agenome-based survey of the secretome[J]. Microbiol Mol Biof Rev, 2000, 64(3): 51 5-547.
    [21]叶方寅.信号肽假说的提出及证实[J].国外医学分子生物学分册, 1999, 21(6): 377-379.
    [22] Izard J W, Doughty M B, Kendall D A. Physical and conformational properties of synthetic idealized signal sequences parallel their biological function[J]. Biochemistry(Washington), 1995, 34(31): 9904-9912.
    [23] Tjalsma H, Bolhuis A, Jongbloed J D, et al. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome[J]. Microbiology and Molecular Biology Reviews, 2000, 64(3): 515-547.
    [24] Goldshmidt O, Zcharia E, Abramovitch R, et al. Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis[J]. Proceedings of the National Academy of Sciences, 2002, 99(15): 10031.
    [25] Levidiotis V, Freeman C, Tikellis C, et al. Heparanase Is Involved in the Pathogenesis of Proteinuria as a Result of Glomerulonephritis. In: the American Society of Nephrology; 2004:68-78.
    [26]周晓罡,李成云,赵之伟,等.粗糙脉孢菌基因组分泌蛋白的初步分析[J].遗传, 2006,28(002): 200-207.
    [27] Wu S C, Kauffmann S, Darvill A G, et al. Purification, cloning and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus[J]. Molecular plant-microbe interactions, 1995, 8(4): 506-514.
    [28] Skamnioti P, Gurr S J. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence[J]. Plant Cell, 2007, 19(8): 2674-2689.
    [29] Kamakura T, Yamaguchi S, Saitoh K, et al. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation[J]. Molecular Plant-Microbe Interactions, 2002, 15: 437-444.
    [30] Vogel J P, Raab T K, Schiff C, et al. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis[J]. Plant Cell, 2002, 14(8): 2095-2106.
    [31] Herbert C, O’Connell R, Gaulin E, et al. Production of a cell wall-associated endopolygalacturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection[J]. Fungal Genetics and Biology, 2004, 41(2): 140-147.
    [32] Rohe M, Gierlich A, Hermann H, et al. The race-specific elicitor, NIP 1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs 1 resistance genotype[J]. EMBO Journal, 1995, 14(17): 4168-4177.
    [33] Lauge R, Goodwin P H, de Wit P J, et al. Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants[J]. Plant Journal, 2000, 23(6): 735-745.
    [34] Kamoun S, van West P, Vleeshouwers V, et al. Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition of the elicitor protein INF1[J]. The Plant Cell, 1998, 10: 1413-1426.
    [35] D'Silva I, Heath M C. Purification and characterization of two novel hypersensitive response-inducing specific elicitors produced by the cowpea rust fungus[J]. Journal of Biological Chemistry, 1997, 272(7): 3924-3927.
    [36] Kramer K J, Muthukrishnan S. Insect chitinases: Molecular Biology and Potential Use as Biopesticides[J]. Insect Biochemistry and Molecular Biology, 1998, 27(11): 887-900.
    [37] Adams D J. Fungal cell wall chitinases and glucanases[J]. Microbiology(Reading), 2004, 150:2029-2035.
    [38] Gooday G W, Zhu W Y, O'Donnell R W. What are the roles of chitinases in the growing fungus[J]. FEMS Microbiolgy Letter, 1992, 100: 387-392.
    [39] Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases[J]. Journal of Experimental Biology, 2003, 206(24): 4393-4412.
    [40] Park J K, Morita K, Fukumoto I, et al. Purification and characterization of the chitinase(ChiA) from Enterobacter sp. G-1[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(4): 684-689.
    [41] Wang S L, Chang W T. Purification and characterization of two bifunctional chitinases/ lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium[J]. Applied and Environmental Microbiology, 1997, 63(2): 380-386.
    [42] Chet I, Barak Z, Oppenheim A. Genetic engineering of microorganisms for improved biocontrol activity[J]. Biotechnology in Plant Disease Control I Chet, ed Wiley-Liss, New York, 1993: 211-235.
    [43] Woo S L, Donzelli B, Scala F, et al. Disruption of the ech 42(endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P 1[J]. Molecular Plant-Microbe Interactions, 1999, 12(5): 419-429.
    [44] Kramer K J, Muthukrishnan S. Insect chitinases: molecular biology and potential use as biopesticides[J]. Insect Biochemistry and Molecular Biology, 1997, 27(11): 887-900.
    [45] Arakane Y, Koga D. Purification and Characterization of A Novel chitinase Isozyme from Yam Tuber[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(11): 1895-1901.
    [46] Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities[J]. Biochemical Journal, 1993, 293(Pt 3): 781-788.
    [47] Nadia Robert, Karine Roche, et al. Expression of grapevine chitinase genes in berries and leaves infected by fungal orbacterial pathogens[J]. Plant Science. 2002, 162: 389-400.
    [48]崔欣,杨庆凯.植物几丁质酶在抗真菌病害基因工程中的应用[J].植物保护, 2002, 28(1): 39-43.
    [49] Patil R S, Ghormade V, Deshpande M V. Chitinolytic enzymes: an exploration[J]. Enzyme and Microbial Technology, 2000, 26(7): 473-483.
    [50] Techkarnjanaruk S, Goodman A E. Multiple genes involved in chitin degradation from the marine bacterium Pseudoalteromonas sp. strain S91 [J]. Microbiology, 1999, 145(4): 925-934.
    [51] Felse P A, Panda T. Production of microbial chitinases-A revisit[J]. Bioprocess and Biosystems Engineering, 2000, 23(2): 127-134.
    [52] Duo-Chuan L. Review of Fungal Chitinases[J]. Mycopathologia, 2006, 161(6): 345-360.
    [53] Morimoto K, Karita S, Kirchman D L. Role of chitinase proteins in the specific attachment of the marine bacterium Vibrio barveyi to chitin[J]. Applied and Environmental Microbiology, 1993, 59: 373-379.
    [54] Watanabe T, Suzuki K, Oyanagi W, et al. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin[J]. Journal of Biological Chemistry, 1990, 265(26): 15659-15665.
    [55] Yanai K, Takaya N, Kojima N, et al. Purification of two chitinases from Rhizopus oligosporus and isolation and sequencing of the encoding genes[J]. Journal of Bacteriology, 1992, 174(22): 7398-7406.
    [56] Kuranda M J, Robbins P W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1991, 266(29): 19758-19767.
    [57] Colussi P A, Specht C A, Taron C H. Characterization of a nucleus-encoded chitinase from the yeast Kluyveromyces lactis[J]. Applied and Environmental Microbiology, 2005, 71(6): 2862-2869.
    [58] Mauch F, Mauch-Mani B, Boller T. Antifungal Hydrolases in Pea Tissue 1 II. Inhibition of fungal growth by combinations of chitinase andβ-1, 3-glucanase[J]. Plant Physiology, 1988, 88(3): 936-942.
    [59] Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A, et al. Only specific tobacco (nicotiana tabacum) chitinases and [beta]-1, 3-glucanases exhibit antifungal activity. Plant Physiology: 1993: 857-863.
    [60] Arlorio M, Ludwig A, Boller T, et al. Inhibition of fungal growth by plant chitinases andβ-1, 3-glucanases[J]. Protoplasma, 1992, 171(1): 34-43.
    [62]郭玉莲.微生物几丁质酶及其在植物病害防治中的作用[J].中国农学通报, 2005,21(001): 283-285.
    [63] Bar-Shimon M, Yehuda H, Cohen L, et al. Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila[J]. Current Genetics, 2004, 45(3): 140-148.
    [64] Brenner S. The molecular evolution of genes and proteins:a tale of two serines [J]. Nature 334: 528-530.
    [65]孙之荣,王珏,胡胜民,等.丝氨酸蛋白酶超家族分子结构进化研究[J].生物物理学报1999,15 (3):49~53.
    [66] Iadarola P, Lungarella G, Martorana P A, et al.. Lung injury and degradation of extracellular matrix components by Aspergillus fumigatus serine proteinase[J]. Experimental lung research, 199824: 233–251.
    [67] Reichard U, Cole G T, Hill T W, et al. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus[J]. International journal of medical microbiology, 2000, 290(6): 549-558.
    [68] Rodrigues M L, dos Reis F C G, Puccia R, et al. Cleavage of human fibronectin and other basement membrane-associated proteins by a Cryptococcus neoformans serine proteinase[J]. Microbial pathogenesis, 2003, 34(2): 65-71.
    [69] Wood S D, Wright L M, Reynolds C D, et al. Structure of the native (unligated) mannose-specific bulb lectin from Scilla campanulata (bluebell) at 1.7 A resolution[J]. Biological Crystallography, 1999, 55:1264-1272
    [70] Van Damme E J M, Allen A K, Peumans W J. Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop(Galanthus nivalis) bulbs[J]. FEBS letters, 1987, 215(1): 140-144.
    [71] Hester G, Wright C S. The mannose-specific bulb lectin from galanthus nivalis (Snowdrop) binds mono-and dimannosides at distinct sites. Structure Analysis of Refined Complexes at 2.3 ? and 3.0 ? Resolution[J]. Journal of molecular biology, 1996, 262(4): 516-531.
    [72] Barre A, Bourne Y, Van Damme E J M, et al. Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process[J]. Biochimie, 2001, 83(7): 645-651.
    [73] Xu Q, Liu Y, Wang X, et al. Purification and characterization of a novel anti-fungal proteinfrom Gastrodia elata[J]. Plant Physiology Biochemistry, 1998, 36(12): 899-905.
    [74]刘士庄,施承梁.棉花凝集素的分离纯化[J].植物生理学通讯, 1996, 32(005): 369-370.
    [75] Balzarini J, Van Laethem K, Hatse S, et al. Profile of resistance of human immunodeficiency virus to mannose-specific plant lectins[J]. Journal of virology, 2004, 78(19): 10617-10627.
    [76] Marchetti M, Mastromarino P, Rieti S, et al. Inhibition of herpes simplex, rabies and rubella viruses by lectins with different specificities[J]. Research in Virology, 1995, 146(3): 211-215.
    [77] Wang Z Y, Sun X F, Wang F, et al. Enhanced resistance of snowdrop lectin (Galanthus nivalis L. agglutinin)-expressing maize to Asian corn borer (Ostrinia furnacalis Guenee)[J]. Journal of Integrative Plant Biology, 2005, 47(7): 873-880.
    [78] Biotechnol A. Production of transgenic rice homozygous lines with enhanced resistance to the rice brown planthopper[J]. Acta Biotechnologica, 2001, 21(2): 117-121.
    [79] Ripoll C, Favery B, Lecomte P, et al. Evaluation of the ability of lectin from snowdrop(Galanthus nivalis) to protect plants against root-knot nematodes[J]. Plant science(Limerick), 2003, 164(4): 517-523.
    [80] Hong-Nian G U O, Yan-Tao J I A, Zhouyong-Gang Z Z S, et al. Effects of transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzus persicae[J]. Journal plant, 2004, 46(9): 1100-1105.
    [81] Laity J H, Lee B M, Wright P E. Zinc finger proteins: new insights into structural and functional diversity[J]. Current Opinion in Structural Biology, 2001, 11(1): 39-46.
    [82]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报, 2000, 45(14): 1465-1474.
    [83] Wolfe S A, Nekludova L, Pabo C O. DNA recognition by Cys2His2 zinc finger proteinsF [J]. Annual review of biophysics and biomolecular structure, 2000, 29(1): 183-212.
    [84] Nagaoka M, Nomura W, Shiraishi Y, et al. Significant effect of linker sequence on DNA recognition by multi-zinc finger protein[J]. Biochemical and Biophysical Research Communications, 2001, 282(4): 1001-1007.
    [85] Swirnoff A H, Milbrandt J. DNA-binding specificity of NGFI-A and related zinc finger transcription factors[J]. Molecular and Cellular Biology, 1995, 15(4): 2275-2287.
    [86] Pabo C O, Nekludova L. Geometric analysis and comparison of protein-DNA interfaces: why is there no simple code for recognition?[J]. Journal of Molecular Biology, 2000, 301(3):597-624.
    [87] Isalan M, Patel S D, Balasubramanian S, et al. Selection of Zinc Fingers that Bind Single-Stranded Telomeric DNA in the G-Quadruplex Conformation?[J]. Biochemistry, 2001, 40(3): 830-836.
    [88] Lippuner V, Cyert M S, Gasser C S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast[J]. Journal of Biological Chemistry, 271(22): 12859-12866.
    [89]王俊英,尹伟伦,夏新莉.胡杨锌指蛋白基因克隆及其结构分析[J].遗传, 2005, 27(002): 245-248.
    [90] Jin K, Wanhong C, Jinsong Z, et al. Transgenic analysis of a salt-inhibited OsZFP1 gene from rice[J]. Acta Botanica Sinica, 2004, 46(5): 573-577.
    [91] Kim J C, Lee S H, Cheong Y H, et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. The Plant Journal, 2001, 25(3): 247-259.
    [92] Sugano S, Kaminaka H, Rybka Z, et al. Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia[J]. Plant Journal, 2003, 36(6): 830.
    [93] Jia Y, McAdams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. The EMBO Journal, 2000, 19: 4004-4014.
    [94] Deslandes L, Olivier J, Peeters N, et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus[J]. Proceedings of the National Academy of Sciences, 2003, 100(13): 8024-8029.
    [95] Lahaye T. Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2[J]. Trends in Plant Science, 2004, 9(1): 1-4.
    [96] Ueda H, Yamaguchi Y, Sano H. Direct Interaction between the Tobacco Mosaic Virus Helicase Domain and the ATP-bound Resistance Protein, N Factor during the Hypersensitive Response in Tobacco Plants[J]. Plant Molecular Biology, 2006, 61(1): 31-45.
    [97] Dodds P N, Lawrence G J, Catanzariti A M, et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes[J]. Proceedings of the National Academy of Sciences, 2006, 103(23): 8888-8893.
    [98] Salmeron J M, Oldroyd G E D, Rommens C M T, et al. Tomato PRF is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the PTO kinase gene cluster[J]. Cell(Cambridge), 1996, 86(1): 221-229.
    [99] Rivas S, Thomas C M. Molecular Interactions Between Tomato and the Leaf Mold Pathogen Cladosporium fulvum[J]. Annual Review of Phytopathology, 2005, 43: 395-436.
    [100] Takahashi A, Casais C, Ichimura K, et al. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2003, 100(20): 11777-11782.
    [101] Kim C Y, Lee S H, Park H C. Identification of rice blast fungal elicitor-responsive genes by differential display analysis[J]. Molecular Plant-Microbe Interactions , 2000, 13: 470-474.
    [102] Shepherd P R, Salvesen G, Toker A, et al. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase[J]. Biochemical Journal, 2003, 376: 481-487.
    [103] Mutller U. Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis [J]. Mechanisms of development,1999, 82(I-2): 3-12.
    [104] Senju S, K Iyama, H Kudo, et a1. Immunocytochemical Analyses and Targeted Gene Disruption of GTPBP1[J]. Molecular and Cellular Biology, 2OOO, 20(17): 6195-6200.
    [105] Rudinicki MA, Braun T,Hinuma S, et al. Inactivation of MyoD in mice leads to upregulation of the myogenic HLH gene Myf-5 and resulis in apparently normal muscle development[J]. Cell, 1992, 71(3): 383-390.
    [106] Kume T, Deng K, Hogan BLM, et al. Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2 [J]. Molecular and Cellular Biology, 2000, 20(4): 1419-1425.
    [107]朱龙付,张献龙. RNAi及其在植物遗传改良中的应用[J].华中农业大学学报, 2004, 23(4): 472~477.
    [108] Nunes ACS, Vianna GR, Cuneo F, et a1. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content[J]. Planta, 2006, 224(1): 125-132.
    [109] Sin SF, Yeung EC, Chye ML. Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development[J]. Plant Journal, 2006, 45(1):58-70.
    [110] Miki D, Itoh R, Shimamoto K. RNA Silencing of Single and Multiple Members in a Gene Family of Rice[J]. Plant Physiology, 2005, 138(4): 1903-1913.
    [111] Davuluri GR, Tuinen A van, Fraser PD, et a1. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes [J]. Nature Biotechnolgy, 2005, 23(7): 890-895.
    [112] Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology, 2000, 25(2): 169-193.
    [113]孙淑斌,李宝珍,胡江,等.水稻低丰度表达基因OsAMT13实时荧光定量PCR方法的建立及其应用[J].中国水稻科学, 2006, 20(001): 8-12.
    [114] Nicot N, Hausman J F, Hoffmann L, et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany, 2005, 56(421): 2907-2914.
    [115] Volkov R A, Panchuk, II, Schoffl F. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR[J]. Journal of Experimental Botany, 2003, 54(391): 2343-2349.
    [116] Ohdan T, Francisco P B, Sawada T, et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. Journal of Experimental Botany, 2005, 56(422): 3229-3244.
    [117]孙蕾,吴茂森,何晨阳.建立以lipA和purH为靶基因的RTQ-PCR方法对水稻白叶枯病菌侵染过程进行定量分析[J].中国农业科学, 2007: 08.
    [118]赵进良,赵彦平,汤俊明,等.细胞因子实时定量PCR检测方法的建立和应用[J].江苏医药, 2007, 33(5): 486-488.
    [119]刘娜,张锐,罗淑萍,等.荧光定量PCR技术检测vgb基因在棉花中的表达[J].新疆农业大学学报, 2007: 03.
    [120]吴茂森,田峰,齐放军,等.水稻与白叶枯病菌互作的基因表达谱分析与差异性表达基因的识别[J].中国农业科学, 2007, 40(2): 277-282.
    [121]黄翠芬,叶棋浓.蛋白质间相互作用技术的研究近况[J].中国生物化学与分子生物学报, 1998, 14(001): 1-7.
    [122] Magnard C, Bachelier R, Vincent A, et al. BRCA1 interacts with acetyl-CoA carboxylase through its tandem of BRCT domains[J]. Oncogene, 2002, 21: 6729-6739.
    [123] Liu G, Schwartz J A, Brooks S C. Estrogen Receptor Protects p53 from Deactivation by Human Double Minute-2 1[J]. Cancer Research, 2000: 1810-1814.
    [124] Lupas A, Van Dyke M and Stock J. Predicting Coled Coils from Protein Sequences[J]. Science ,1991, 252: 1162-1164.
    [125] Schultz J, Milpetz, F, Bork P, et al. SMART, a simple modular architecture research tool: Identification of signaling domains[J]. Proceedings of the National Academy of Sciences, 1998, 95(11): 5857-5864.
    [126] Hulo N, Sigrist CJ, Le Saux V, et al. Recent improvements to the PROSITE database[J]. Nucleic Acids Research, 2004, 32: D134-D137.
    [127] Averous J, Bruhat A, Mordier S, et al. Recent Advances in the Understanding of Amino Acid Regulation of Gene Expression 1[J]. Journal of Nutrition, 2003: 2040-2045.
    [128] Wool I G. Extraribosomal functions of ribosomal proteins[J]. Trends in Biochemical Sciences, 1996, 21(5): 164-165.
    [129] Chen F W, Ioannou Y A. Ribosomal proteins in cell proliferation and apoptosis[J]. International Reviews of Immunology, 1999, 18(5-6): 429-448.
    [130] Naora H, Naora H. Involvement of ribosomal proteins in regulating cell growth and apoptosis: Translational modulation or recruitment for extraribosomal activity[J]. Immunology & Cell Biology, 1999, 77(3): 197.
    [131] Maathuis F J M, Ichida A M, Sanders D, et al. Roles of higher plant K+ channels[J]. Plant Physiology, 1997: 1141-1149.
    [132] Fox T C, Guerinot M L. molecular biology of cation transport in plants [J]. Annual Reviews in Plant Physiology and Plant Molecular Biology, 1998, 49(1): 669-696.
    [133] Maathuis F J M, Sanders D. Mechanisms of potassium absorption by higher plant roots[J]. Physiologia Plantarum, 1996, 96(1): 158-168.
    [134] Kahvejian A, Svitkin Y V, Sukarieh R, et al. Mammalian poly (A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms[J]. Genes & Development, 2005, 19(1): 104-113.
    [135] Hoshino S, Imai M, Kobayashi T, et al. The Eukaryotic Polypeptide Chain Releasing Factor (eRF3/GSPT) Carrying the Translation Termination Signal to the 3'-Poly (A) Tail of mRNA direct association of eRF3/GSPT with polyadenylate-bing protein[J]. Journal of Biological Chemistry; 1999:16677-16680.
    [136] Seli E, Lalioti M D, Flaherty S M, et al. An embryonic poly (A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos[J]. Proceedings of the National Academy of Sciences, 2005, 102(2): 367-372.
    [137] Nigg E A. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle[J]. Bioessays, 1995, 17(6): 471-480.
    [138] Magyar Z, Meszaros T, Miskolczi P, et al. Cell Cycle Phase Specificity of Putative Cyclin-Dependent Kinase Variants in Synchronized Alfalfa Cells[J]. The Plant Cell, 1997, 9(2): 223-235.
    [139] Mironov V, De Veylder L, Van Montagu M, et al. Cyclin-Dependent Kinases and Cell Division in Plants-The Nexus[J]. the plant cell, 1999, 11(4): 509.
    [140] Dewitte W, Murray J A H. The plant cell cycle [J]. Annual Review of Plant Biology, 2003, 54(1): 235-264.
    [141]全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传, 2006, 28(003): 375-382.
    [142] Mir G, Domenech J, Huguet G, et al. A plant type 2 metallothionein (MT)from corktissue responds to oxidative stress[J]. Journal of experimental botany, 2004, 55(408): 2483-2493.
    [143] Sequeira L, Graham T L. Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin[J]. Physiological Plant Pathology, 1977, 11: 43-54.
    [144] Ayouba A, Causse H, Van Damme E J M, et al. Interactions of plant lectins with the components of the bacterial cell wall peptidoglycan[J]. Biochemical Systematics and Ecology, 1994, 22(2): 153-159.
    [145] Mayfield S P, Schirmer-Rahire M, Frank G, et al. Analysis of the genes of the OEE1 and OEE3 proteins of the photosystem II complex from Chlamydomonas reinhardtii[J]. Plant Molecular Biology, 1989, 12(6): 683-693.
    [146] Ohta H, Suzuki T, Ueno M, et al. An intermediate member of the PsbQ protein family in red algal PS II[J]. European Journal of Biochemistry, 2003, 270(20): 4156-4163.
    [147] Calderone V, Trabucco M, Vuji?i? A, et al. Crystal structure of the PsbQ protein of photosystem II from higher plants[J]. EMBO Reports, 2003, 4(9): 900.
    [148] Kim K K, Kim R, Kim S H. Crystal structure of a small heat-shock protein[J]. Nature, 1998, 394(6693): 595-599.
    [149] Kundu M, Sen P C, Das K P. Structure, stability, and chaperone function of alpha -crystallin: Role of N-terminal region[J]. Biopolymers, 2007, 86(3): 177-192.
    [150] Haslbeck M, Braun N, Stromer T, et al. Hsp42 is the general smallheat shock protein in the cytosol of Saccharomyces cerevisiae [J ]. EMBO Journal, 2004, 23(3): 638-649. [151 ] Basha E, Lee G J, Breci L A, et al. The identity of proteinsassociated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellularfunctions [J ]. Journal of Biological Chemistry, 2004, 279(9): 7566-7575.
    [152] Haslbeck M, Braun N, Stromer T, et al. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae[J]. The EMBO Journal, 2004, 23: 638-649. [153 ] Quinlan R. Cytoskeletal competence requires protein chaperones[J]. Progress in molecular and subcellular biology, 2002, 28: 219-233. [154 ] Clark J I, Muchowski P J. Small heat-shock proteins and their potential role in human disease[J]. Current Opinion in Structural Biology, 2000, 10(1): 52-59.
    [155] Broekaert W F, van Parijs J, Leyns F, et al. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties[J]. Science, 1989, 245(4922): 1100-1102.
    [156] Yan Q, Jiang Z, Yang S, et al. A novel homodimeric lectin from Astragalus mongholicus with antifungal activity[J]. Archives of Biochemistry and Biophysics, 2005, 442(1): 72-81.
    [157] Freemont P S. RING for destruction[J]. Current biology: CB, 2000, 10(2): R84.
    [158] Vij S, Tyagi A K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger (s) in rice and their phylogenetic relationship with Arabidopsis[J]. Molecular Genetics and Genomics, 2006, 276(6): 565-575.
    [159] Schumann U, Prestele J, O'Geen H, et al. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts[J]. Proceedings of the National Academy of Sciences, 2007, 104(3): 1069.
    [160] Seong E S, Choi D, Cho H S, et al. Characterization of a stress-responsive ankyrin repeat-containing zinc finger protein of Capsicum annuum (CaKR1)[J]. Journal ofbiochemistry and molecular biology, 2007, 40(6): 952. [161 Ko J H, Yang S H, Han K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis[J]. The Plant Journal, 2006, 47(3): 343-355.
    [162] Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method[J]. Methods, 2001, 25(4): 402-408.
    [163] Stark-Lorenzen P, Nelke B, H?n?ler G, et al. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.) [J]. Plant Cell Reports, 1997, 16: 668-673.
    [164] Datta K, Velazhahan R, Oliva N, et al. Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease[J]. Theoretical and Applied Genetics, 1999, 98: 1138-1145.
    [165] Kanzaki H, Nirasawa S, Saitoh H, et al. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice[J]. Theoretical and Applied Genetics, 2002, 105: 809-814.
    [166] Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. Plant Journal, 1994, (6): 27l-282.
    [167]易自力,曹守云,王力,等.提高农杆菌转化水稻频率的研究[J].遗传学报, 2001, 28(2): 352-358.
    [168]马慧,赵开军,徐正进.农杆菌介导的水稻遗传转化现状及展望[J].中国生物工程杂志, 2003, 23(4): 2l-26.
    [169]施利利,王松文,蔡宝立,等.影响农杆菌介导的水稻遗传转化效率的因素[J].天津农学院学报, 2003, 10(4): 53-57.
    [170]刘巧泉,张景六,王宗阳,等.根癌农杆菌介导的水稻高效转化系统的建立[J].植物生理学报, 1998, 24(3): 259-271.
    [171]黄健秋,卫志明,安海龙,等.根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生[J].植物学报, 2000, 42(II): 1172-1178.
    [172]周玲艳,姜大刚,吴豪,等.潮霉素和PPT对水稻愈伤组织筛选效果的比较[J].仲恺农业技术学院学报, 2003, 16(2): 10-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700