酸性磷铵料浆物性测试及其浓缩新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别用湿法工业磷酸(19.41%P_2O_5)和纯稀磷酸(23.68%P_2O_5)与气氨中和并进行浓缩得到一系列不同中和度、不同含水率的酸性磷铵料浆。研究了料浆的密度、沸点、导热系数、氟逸出率与中和度、含水率的关系。所得结果为酸性磷铵料浆浓缩法制磷铵提供了重要的基础数据。
     研究结果表明,料浆的密度随含水率的减小、中和度的减小而增加,可通过对密度进行预测。料浆的沸点随着含水率的减小、中和度的减小而升高。含水率低于40%时,沸点随含水率的变化更显著。在实验范围内,可通对沸点进行预测。
     氟逸出率随含水率的减小、中和度的减小而增大。中和度低于0.4时,氟逸出率明显较大,受中和度的影响也非常显著,当中和度超过0.6之后,氟逸出率变化很小。
     料浆导热系数的范围为0.434~0.630 w/m℃。无固体颗粒析出时,料浆导热系数随含水率和中和度的减小而减小,随温度升高而增大。当有固体颗粒析出时,料浆导热系数随含水率减小而增大。湿法磷酸料浆的导热系数比纯稀磷酸料浆的导热系数略小。
     用酸性磷铵料浆进行工业浓缩实验,结果表明,可以在现有的料浆法浓缩系统中通过局部整改进行酸性磷铵料浆的浓缩。对生产过程和工艺条件进行分析表明,将中和度0.4~0.5酸性料浆浓缩至含水率20%左右,再进行第二次氨中和及喷浆造粒,可以有效地利用二次中和热,简化磷铵生产流程,降低能耗。
Ammonium phosphate is an important compound fertilizer. It is a new way to produce ammonium phosphate by concentrating acidic ammonium phosphate slurry. The dependence of the density,thermal conductivity,boiling point of the acidic ammonium phosphate slurry on both neutralization degree and water content is very important to the industrial realization of the new process.
    The acidic ammonium phosphate slurries with different neutralization degrees were obtained by neutralizing dilute pure phosphoric acid (P2O523.68%) or wet process phosphoric acid (P2O5l9.41%) with ammonium. They were concentrated to different water contents. The dependence of the density boiling point fluorine volatility and thermal conductivity on neutralization degree and water content were measured.
    The results indicate that the density of slurry increases with the reduction of water content and/or neutralization degree. The density of the slurry from wet process phosphoric acid is slightly higher than that from dilute pure phosphoric acid. The density of acidic ammonium phosphate slurry can be calculated by the equation p = k(psxv+pL(l-xv)).
    The experiments shows that the boiling point of slurry rises with the reduction of water content and/or neutralization degree. When water content is below 40%,the boiling point strongly depends on the water content. The boiling
    
    
    point can be calculated by equation T = Tb+Tb.
    The fluorine volatilizes in the concentration of the slurries from wet process phosphoric acid. The volatilization was enhanced in low water content and low neutralization degree range. When the neutralization degree is below 0.4,the fluorine volatility sharply increases with decreasing neutralization degree. While,at a neutralization degree over 0.6,the volatility drops to a very low level.
    The experiments also show that the thermal conductivity ranged from 0.434 to 0.630 w/m. When no crystalline exist in solution,the thermal conductivity increases with increasing temperature,water content or neutralization degree. However,when crystalline appears,it increases with decreasing water content. The thermal conductivity of the slurries from wet process phosphoric acid is slightly less than that of the slurries from dilute pure phosphoric acid.
    An industry test for the concentration of acidic ammonium phosphate slurry was conducted in an existing modified concentrating system. According to the test results and process parameters,acidic ammonium phosphate slurry with a neutralization degree of 0.4-0.5 can be directing concentrated to water content 20%. It is further neutralized by ammonia to produce ammonium phosphate. The secondary neutralization releases a large amount of heat which can be used to vaporize water. It will be a simply energy saving process.
引文
[1].冯元琦.加速发展我国磷复肥生产.化肥工业.1988,3:51~59
    [2].张允湘.磷肥及复合肥料工艺学.四川大学化工学院(内部资料).1999.8
    [3].王春燕.世纪之交的化肥工业.中国石油和化工.1999,12:26~28
    [4].罗澄源,林乐,钟本和,张允湘.磷酸铵类肥料技术讲座.磷肥与复肥.1999,2:70~75
    [5].罗澄源,林乐,钟本和,张允湘.磷酸铵类肥料技术讲座.磷肥与复肥.1999,6:70~75
    [6].张凤华,罗洪波,张允湘.湿法磷酸中的杂质对氨化料浆粘度的影响.成都科技大学学报.1992,5:1~6
    [7].钟本和,张允湘,应建康,罗洪波,蒋绍志.我国磷矿湿法制磷酸和磷铵的物化数据测试研究.高校化学工程学报.1999,136:495~499
    [8].钟本和,魏文彦,林乐,张允湘.固体磷铵的生产与应用.成都:四川科学技术出版社.1986
    [9].涂敏端,何锐章,费德君.杂质对共沸精馏浓缩磷酸的影响.成都科技大学学报,1992,6:85~88,96
    [10].罗澄源,林乐,钟本和,张允湘.磷酸铵类肥料技术讲座.磷肥与复肥.1999,3:65~69
    [11].罗洪波,钟本和.磷铵及其不溶物的组成研究.成都科技大学学报,1994,6:1~6
    [12].黄祥玉,向惟汉,黄大庆,杨序.固体磷铵肥料的物质成分研究.成都科技大学学报.1986,3:51~58
    [13].罗澄源,林乐,钟本和,张允湘.磷酸铵类肥料技术讲座.磷肥与复肥.1999,5:69~74
    [14].王国平,黄隐华,钟本和,张允湘.用湿法磷酸制纯磷酸一铵.四川大学学报(工程科学版).2000,3:77~80
    [15].罗澄源,林乐,钟本和,张允湘.磷酸铵类肥料技术讲座.磷肥与复肥.1999,4:70~74
    [16].上海化工研究院磷肥室.磷肥工业.化学工业出版社,1979.4
    [17].中华人民共和国国家标准GB15580-95,磷肥工业水污染物排放标准.
    [18].中华人民共和国国家标准GB16297-1996,大气污染物综合排放标准.
    [19].章元济.氟化学工业的科研新领域.浙江化工.1986,17(4):13~17
    [20].袁晓明.氟气吸收过程中流程及设备的改进.化工设计通讯.1989,3:51~52
    [21].赵世忠.含氟废气的综合利用.化工环保.1985,5:212~216
    [22].(苏)A.H.多霍洛娃,B.φ.卡尔梅绍夫,B.西多利娜著,吴志伟等译,磷酸铵的生产及其施用.化工部化肥工业研究所《化肥工业译丛》编辑部.1988.4
    
    
    [23].张允湘,冯余清,应建康,曾祥森编著.料浆法制磷铵的生产与操作.成都:成都科技大学出版社.1987
    [24].李沁,卫永祉,陈晓东,钟本和.用液上气相色谱法测定磷铵料浆平衡分压的研究.四川联合大学学报(工程科学版).1999,2:60~64
    [25].GB/T 1872—1995,磷矿石和磷精矿中氟含量的测定,离子选择电极法,北京:中国标准出版社,1995
    [26]. K. Srinivasan, G. A. Rechnitz. Acrvity measurements with a Fluoride-Selective Membrane Electrode. Analytic Chemistry. 968, 40(3): 509~512
    [27].湖南化工研究所编.钙镁磷肥生产分析方法.北京:石油化学工业出版社.1976
    [28].成都科技大学分析化学教研组,浙江大学分析化学教研组.分析化学实验.北京:高等教育出版社.1989.
    [29].[日]山添文雄,越野正义,藤并国博,三轮睿太郎等著.韩辰极,付玉振等译.肥料分析方法.化学工业出版社.1983.4
    [30]. JOSEF VESELY, KAREL STULIK. THE EFFECT OF SOLUTION ACIDITY ON THE RESPONSE OF THE LANTHANUM TRIFLUORIDE SINGLE-CRYSTAL ELECTRODE. Analytic Chimica Acta. 1974, 73:157~166
    [31].陈则韶,葛新石,顾毓沁编著.量热技术和热物性测定.合肥:中国科学技术大学出版社,1990
    [32]. Y. S. Touloukian, R. W. Powell, C.Y.HO, P. G. Klemens. Thermophysical Properties of Matter. Volume. 2. Thermal conductivity nonmetallic solids. IFI/PLENUM. NEWYORK —WASHIHTON. 1970.
    [33]. J. S. Agapiou, M. F. DeVries, An Experimental Determination of the Thermal Conductivity of a 304L Stainless Steel Powder Metallurgy material. Journal of Heat Transfer. 1989, 111:281~286
    [34]. TAKASHI SAEKI, HIROMOTO USUI. Heat transfer characteristics of coal-water mixtures. The Canadian Journal of Chemical Engineering. 1995,73:404
    [35]. I H Tavman. An apparatus for measuring the thermal conductivity and viscosity of polymers under shearing strain. Meas. Sci. Technol, 1997, 8:287-292
    [36].李春喜,蒋伟川,韩世钧.瞬态热丝法测定液体导热系数.天然气化工.1988,5:56~60
    [37].张洪济,童明伟,刘小云,雷亨顺.血液热导率的瞬态热丝法测试.中国生物医学工程
    
    学报.1995,2:97~102
    [38].宋又王,虞吉林.液体导热系数、导温系数的快速测定仪.科学通报.1983,14:848~850
    [39].胡望月,顾飞燕,吴兆立.非均相电解质溶液导热系数的测定.化学工程.1994.22(3):39~42,46
    [40].宋又王,虞吉林,付绍银.KDR—1固体液体导热系数快速测定仪.仪器仪表学报.1985,6(4):369~374
    [41]. J.J. Healy, J.J. de Groot,J.Kestin. The theory of the transient hot-wire method for measuring thermal conductivity. Physica. 1976, 82c: 392~408
    [42]. C. A Nieto de Castro, J. C G Galado, W. A Wakeham, M Dix. An apparatus to measure the thermal conductivity of liquids. Journal of Physics E: Scienticfic Instruments. 1976, 9: 1073~1080
    [43]. J.K. HORRCKS, E. MCLAUGHLIN. Non-steady-state measurements of the thermal conductivities of liquid polyphenyls. Prc. R. Sc. London, 1963, SerA.A273, 259~274,
    [44]. J.J. de Groot,J.Kestin, H.Sookiazian. Instrument to measure the thermal conductivity of gases. Physica. 1974, 75: 454~482
    [45]. Carlos A Nieto de Castro, Jorge C G Galado, William A Wakeham. Thermal conductivity of organic liquids measured by a transient hot-wire technique. High Temperatures—High Pressures. 1979, 11:551~559
    [46].胡少枝,庄素芬.橡胶热导率试验方法(热丝法).特种橡胶制品.1989,1:52~59
    [47]. M. Hoshi, T. Omotani, A. Nagashima. Transient method to measure the thermal conductivity of high-temperature melts using a liquid-metal probe. Rev. Sci. Instrum. 1981, 52(5):755~758,
    [48]. T. Omotani, A. Nagashima. Thermal conductivity of molten salts, HTS and the LiNO_3-NaNO_3 system, Using a modified transient hot-wire method. J. Chem. Eng. Data. 1984, 29:1~3
    [49]. L S Verma, Ramvir Singh, D R Chaudhary. Probe controlled transient method for simultaneous determination of thermal conductivity and thermal diffusivity. J. Phys. D: Appl. Phys. 1993, 26:259~270
    [50]. W.Woodside, J. H. messmer. Thermal conductivity of porous media.Ⅰ.Unconsolidated Sands. Journal of Applied Physics. 1961,32(9):1688~1699
    [51]. Sintaro Kitade, Yuji Kobayashi, Yuji Nagasaka, Akira Nagashima. Measurement of the thermal
    
    conductivity of molten KNO_3 and NaNO_3 by the transient hot-wire method with ceramic-coated probes. High temperatures-High Pressures, 1989, 21:219~224
    [52]. Phil. S. Davis, Felix Theeuwes, Richard J. Bearman,Roger p. Gordon. Non-Steady-State, Hot Wire, Thermal Conductivity Apparatus. The Journal of Chemical Physics. 1971,55(10) :4776~4783
    [53].黄少烈,林垂豪,杜建中,潘大年,蒋中坚.导热系数探针研究的新进展.广东化工.1989,2:12~16
    [54].黄少烈,蒋中坚,杜建中,林垂豪,潘大年.热线探针测定液体的导热系数.化学工程.1989,17(6):62~66
    [55].王补宣,江亿.利用热探针在现场同时测定松散介质α和λ的“加热—冷却”法.工程热物理学报.1985,6(3):249~254
    [56]. Yoshihrd IIDA, Minoru ouhashi. Simultaneous determination of thermal diffusivity and thermal conductivity of liquids by the Laplace Transform Method. Journal of Chemical Engineering of Japan. 1991, 24(5): 587~592
    [57]. J. RAJAIAH, G. ANDREWS, E. RUCKENSTEIN and R.K.GUPTA. Thermal Conductivity of Concentrated, Sterically Stabilized Suspensions. Chemical Engineering Science, 1992,vol.47, No.15/16,pp.3863~3868.
    [58]. Avtar Singh Ahuja. Measurement of thermal conductivity of (neutrally and nonneutrally buoyant) staionary suspensions by the unsteady-state method. Journal of Applied Physics, 1975, 46(20):747~755
    [59]. Toshiaki KUMADA. Thermal conductivity of suspensions (Measurements and Shape Effects of Suspended Particles on Conductivity). Bulletin of the JSME. 1975, 18(126): 1440~1447
    [60].王琮玉,杨孟林,吴子庭,李根娣.丁基橡胶聚合淤浆导热系数的测定.化工学报.1985,2:253~255
    [61].王琮玉,郭藏生,杨孟林,马录,卢心中.用瞬时法测定液体导热系数.化工学报.1984,3:274~277
    [62]. Cong Yu Wang, Meng Lin Yang. A new calorimeter for measuring rapidly the thermal conductivity of liquids. Therm Chimica Acta. 1995, 255:365~370
    [63].王琮玉,杨孟林,王季澄,刘平.在高温高压下测定液体导热系数的方法.化工学报.1989,4:494~498
    
    
    [64]. D.J.Eatoug. Determination of the thermal conductivity of liquids in a constant temperature environment calorimeter. Therm Chimica Acta. 1972,3:333~336
    [65].童景山,唐建,高光华,梁燕波.液体混合物导热率的测量及导热率数据的理论预测.工程热物理学报.1996,17(4):408~410
    [66].张洪济.热传导.北京:高等教育出版社.1992.10
    [67]. J. Popplewell, A. Al-Qenaie, S. W. Charles, R. Moskowitz, K. Raj. Thermal conductivity measurements on ferrofluid. Collids & Polymer Science. 1982, 260:333'338
    [68]. Y.C. Chung, L. G. Leal. An experimental study of the effective thermal conductivity of a sheared suspension of rigid spheres. Int. J. Multiphase Flow. 1982, 8(6):605~625
    [69]. Avtar Singh Ahuja. Augmentation of heat transport in laminar flow of polystyrene suspensions. Ⅰ.Experiments and results. Journal of Applied Physics. 1975, vol. 46, No. 8:3408~3416
    [70]. Avtar Singh Ahuja. Augmentation of heat transport in laminar flow of polystyrene suspensions. Ⅱ.Analysis of the data. Journal of Applied Physics. 1975, vol.46, No.8:3417~3425
    [71]. Hideaki Nagai, Fabrice Rossignol, Yoshinori Nakata, Takashi Tsurue, masaaki Suzuki,Takeshi Okutani. Thermal conductivity measurement of liquid materials by a hot-disk method in duration micogravity environments. Materials Science and Engineering.2000,A276:117~123
    [72]. Hideaki Nagai, Yoshinori Nakata, Takashi Tsurue, Hideki Minagawa, Keiji Kamada, Silas E. Gustafsson, Takeshi Okutani. Thermal conductivity measurement of molten silicon by a hot-disk method in duration micogravity environments. Jpn. J. Appl. Phys. 2000, 39:1405~1408.
    [73]. S.S. Hsiau, M. L. Hunt. Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows. Journal of Heat Transfer. 1993,115:541548
    [74]. G. BUONANNO, A. CAROTENUTO. The effective thermal conductivity of a porous medium with interconnected particles. Int. J. Heat Mass Transfer. 1997, Vol.40, No.2, pp:393~405
    [75]. AVINOAM NIR, ANDREAS ACRIVOS. The effective thermal conductivity of sheared suspensions. J. Fluid Mech.1976,vol.78,part 1, pp.33~48
    [76]. L.S. Verma, Ramvir Singh, D. R. Chaudhary, Geometry dependent resistor model for predicting effective thermal conductivity of two phase systems. Int, J. Heat Mass Transfer. 1994,Vol.37,No.4,pp.704~714,
    
    
    [77]. Pramod B. Lal Chaurasia, Dhanraj R. Chaudary, Roop C.Bhandari. Thermal conductivity of suspension and emulsion materials. J. Appl. Chem. Biotechnol.1975,25:881~890
    [78]. DWIGHT E. GRAY. American institute of physics Handbook. McGraw—HILL Book Company, Inc. New York, Toronto, London,1975.
    [79].李春喜,蒋伟川,韩世钧.同心圆筒法测定液体导热系数.天然气化工C:化学与化工.1989,2:54~60,62
    [80]. L.P. Filippov. Liquid thermal conductivity research at Moscow university. Int. J. Heat mass Transfer. 1968,11: 331~345
    [81].罗澄源编.物理化学实验.北京:高等教育出版社,1991
    [82].陈敏恒,丛德滋,方图南,齐鸣斋.化工原理.北京:化学工业出版社.1999
    [83].邓景发,范康年.物理化学.北京.高等教育出版社.1993
    [84].轻工业部设计院编.日用化工理化数据手册.北京:轻工业出版社.1981
    [85].卢焕章.石油化工基础数据手册.北京:化学工业出版社.1982
    [86].[日]化学工学协会.物性定数9集.丸善株式会社,1971.
    [87]. N.B.Vargaftik. Tables on the thermophysical properties of liquids and gases in normal and dissociatd states. HEMISPHERE PUBLISHING CORPORATION. Second Edition. 1975.
    [88]. S.Mankad, C.A.Branch, P.J.Fryer. The effect of particle slip on the sterilization of solid-liquid food mixtures. Chemical Engineering Science. 1995, Vol.50. No.8. pp1323-1336.
    [89]. M.L.Hunt,.Discrete element simulations for granular material flows:effective thermal conductivity and sekf-diffusivity, Int. J. Heat Mass Transfer. 1997,Vol.40,No.13,pp3059-3068,
    [90]. P.Charunyakom, S.Sengupta and S.K.Roy. Forced convection heat transfer in microencapsulated phase chang material slurries:flow in circular ducts. Int. J. Heat Mass transfer. 1991,Vol.34,No.3:pp819-833,
    [91].化学工业部建设协调司,化工部硫酸和磷肥设计技术中心组织编写.磷酸磷铵重钙技术与设计手册.北京:化学工业出版社.1997.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700