醋酸—水体系的精馏过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综述醋酸-水体系分离方法的基础上,以醋酸丁酯、醋酸异丁酯、醋酸异丙酯为挟带剂,对醋酸水溶液进行共沸精馏过程研究,详细研究了填料高度、水与挟带剂的配比、醋酸初始浓度等对共沸精馏分离效果的影响;对醋酸-水体系进行普通精馏和共沸精馏过程模拟计算,讨论了回流比、理论板、进料位置、进料温度和浓度对精馏过程的影响,获得了对醋酸-水体系精馏过程实际生产具有指导意义的较佳的工艺操作参数、共沸精馏塔的工艺设计放大的基础数据,并对两种精馏方法的投资、操作能耗进行了比较;同时在共沸精馏模拟计算的基础上进行了共沸精馏塔的初步工艺设计计算,并对填料塔的主要辅助设备及塔内件进行了初步选型。
    研究结果表明:(1) 共沸精馏时,醋酸丁酯、醋酸异丁酯和醋酸异丙酯作为挟带剂,分离效果相近;塔顶醋酸浓度始终很低;随着水与挟带剂的比值的减小或进料醋酸含量的增加,塔釜醋酸浓度增加,但随着水与挟带剂比值的进一步减小,醋酸丁酯和醋酸异丁酯作为挟带剂时,塔釜中会出现挟带剂,而醋酸异丙酯作为挟带剂时,塔釜中未出现醋酸异丙酯;三种挟带剂在水中溶解较少,基本可以回收利用。(2)普通精馏模拟计算时,用“化学理论” 修正汽相非理想性和用NRTL方程计算液相活度系数,得到了精馏操作的较佳条件:回流比为4.0~4.5,理论板37~43块;共沸精馏模拟计算时,采用NRTL方程计算液相活度系数,Hayden-O'Connell关联式修正有缔合组分的汽相非理想性,得出的较佳的条件为:回流比3.0~3.5,理论板数30~35。(3)与普通精馏比较,分离要求相同时,共沸精馏时所需要的理论板数要低于普通精馏所需要的理论板数,回流比减小,可降低设备投资70万元,塔釜加热量减少36%。(4)确定了不同回流比下,四股进料的最佳进料位置,如:普通精馏时,R=4.0下的最佳进料位置,F1:18、F2:41、F3:42和F4:39;共沸精馏时,R =3.0下的最佳进料位置,F1:9、F2:33、F3:34和F4:30。进料处于最佳进料位置时,分离效果最好。随着进料位置从最佳进料位置上移或下降,分离效果降低。(5)随着进料温度的升高,塔顶醋酸浓度升高,塔釜醋酸浓度降低,分离效率变差;进料中醋酸含量增加时,塔顶、塔釜醋酸浓度均随之增加。(6)确定了回流比3.0下的共沸精馏塔的工艺参数:填料:钛质250Y板波纹填料,塔径:4.0m;填料高:25.92m;填料层压降:2959.05Pa;填料塔四段的平均泛点气速分别为:5.22m/s,4.97 m/s,3.63 m/s和3.05 m/s;平均持液量分别为:0.025 m3/m3,0.032 m3/m3,0.044 m3/m3,0.050 m3/m3。
On the basis of summarizing separation method of acetic acid-water system, we studied the azeotropic distillation process of acetic acid-water system, selecting butyl acetate, isobutyl acetate and isopropyl acetate as entrainers. The influence of packing height, ratio of water to entrainer and acetic acid initial concentration to separation effect of azeotropic distillation was studied in detail. Simulation calculations of general distillation and azeotropic distillation were carried out. The influence of reflux ratio, theoretical plate, feed position, feed temperature and feed concentration to distillation process were discussed. Preferred process operation parameter, which had guiding meaning to practical production of distillation process were obtained. Basic data for the process amplifying design of azeotropic distillation tower were provided. Invest and operation energy consumption of two distillation methods were compared. The elementary technical design of azeotropic distillation tower was carried out on the basis of result of simulation calculation. The type of major auxiliary equipments and inner parts of packed tower were selected.
    The research results are as follows: (1) Butyl acetate, isobutyl acetate and isopropyl acetate could be selected as entrainer, and separation effect was near. Acetic acid concentration of tower top was always very low. With the decrease of the ratio of water to entrainer or increase of acetic acid concentration of feed, acetic acid concentration of tower bottom increased. When butyl acetate and isobutyl acetate were selected as entrainer, tower bottom production contained entrainer, with the further decrease of the ratio of water to entrainer. When isopropyl acetate was selected as entrainer, isopropyl acetate didn't appear in the tower bottom production. Three entrainers rarely dissolve in the water and can be reclaimed. (2) When general distillation was simulated, the "chemical theory" was used to correct the nonideality of vapor phase and NRTL equation was used to calculate active coefficient in the liquid phase. The preferred condition of general distillation was obtained as follows: reflux ratio was 4.0~4.5 and the number of theoretical plate was 37~43; When azeotropic distillation was simulated, NRTL equation was used to calculate active coefficient in the liquid phase and Hayden-O'Connell equation was used to correct the nonideality of vapor phase with associated molecules. The preferred condition of azeotropic distillation was obtained as follows: reflux ratio was 3.0~3.5 and the number of theoretical plate was 30~35. (3) Compared with general distillation, the number of theoretical plate which azeotropic distillation needed was less under the same separation demand. The reflux ratio of azeotropic distillation could decrease. Equipment invest could be decreased 700000 yuan. Water vapor could be saved 36%. (4) Optimum feed positions of four feeds were confirmed. Optimum positions of general distillation were F1: 18, F2: 41, F3: 42 and F4: 39, when reflux ratio was 4.0;
    
    Optimum feed positions of azeotropic distillation were F1: 9, F2: 33, F3: 34 and F4: 30, when reflux ratio was 3.0. When feeds were situated in optimum positions, separation effect was best. Separation effect became worse when feed position rose or fell from optimum position. (5) With increasing of feeds temperature, acetic acid concentration of tower top increased and acetic acid concentration of tower bottom decreased. With increasing of initial concentration of acetic acid, acetic acid concentration of tower top and bottom increased. (6) Technical parameters of azeotropic distillation tower were obtained when reflux ratio was 3.0. Packing was 250Y titanium corrugated-plate packing. Diameter of tower was 4.0m, and height of packing was 25.92m. The pressure drop of packing was 2959.05Pa. Average flood point gas velocity of four parts of packed tower were 5.22m/s, 4.97 m/s, 3.63 m/s, 3.05 m/s. Average liquid holdup of four parts of packed tower were 0.025 m3/m3, 0.032 m3/m3, 0.044 m3/m3, 0.050
引文
1.Donald F.Othmer. Acetic Acid Recovery Methods. Chemical Engineering Progress, 1958, 54(7):48-52
    2.R.W.Helsel. Removing Carboxylic Acids From Aqueous Wastes. Chemical Engineering Progress, 1977, 5:55-59
    3.杨春平, 曾光明, 陈福明, 等. 从水溶液中分离回收醋酸方法的评述. 化工环保, 1995, 15(2): 78-82
    4.黄峰, 张玉林. 从含酸废水中回收醋酸的方法. 石油化工环境保护, 1998, 1:6-9
    5.张章福, 陈吉伟. 从稀醋酸废液生产醋酸乙酯的研究. 化学世界, 1988, 4: 186- 187
    6.JP 59029633
    7.JP 53135920
    8.JP 57091799
    9.秦炜, 王东, 戴猷元. 超声场对树脂吸附醋酸动力学影响的机理研究. 清学大学学报(自然科学版), 2001, 41(4/5): 28-31
    10.李新, 汪少朋, 刘德威, 等. 低浓度醋酸水溶液的回收. 化学工程, 1996, 24 (5): 41- 44
    11.郭文阁, 陈兰忠. 醋酸装置T204塔废水回收醋酸工艺研究. 黑龙江石油化工, 1997, 8(2): 34-37
    12.田恒水, 霍文军, 苏元复. 溶剂萃取法回收稀醋酸. 华东化工学院学报. 1991, 17(2): 123~128
    13.嫡丽巴哈, 戴猷元. 醋酸稀溶液的络合萃取. 高校化学工程学报, 1993, 7(2): 174-179
    14.US 3878241
    15.US 3951755
    16.张培辉, 韦奇, 朱卫东, 等. 水-甲酸-乙酸混合物的共沸分馏. 华东化工学院学报, 1993, 19(4): 427-431
    17.US 2050234
    18.US 4250330
    19.WO 9606065
    20.GB 1576787
    21.倪邦庆, 马新胜, 施亚均. 液膜法处理含醋酸废水.无锡轻工大学学报, 1998, 18(4): 51-55
    22.Samuel P. Kusumocahyo. Water Permselectivity in the Pervaporation of Acetic
    
    Acid-Water Mixture Using Crosslinked Poly(vinyl alcohol) Membranes. Separation and Purification Technology, 2000,18:141-150
    23.James Huang. Dehydration of Acetic Acid by Pervaporation through an Asymmetric Polycarbonate Membrane. European Polymer Journal, 2000,37: 527-534
    24.Masakazu Yoshikawa, Shin-ichi Kuno, Takashi Wano, et al. Special Polymeric Membranes. Polymer Bulletin,1993, 31:607-613
    25.E.Ruckenstein, H.H.Chen. Composite Membranes Prepared by Concentrated Emulsion Polymerization and Their Use for Pervaporation Separation of Water-Acetic Acid Mixtures. Journal of Membrane Science,1992, 66:205-210
    26.US 5662780
    27.雷良恒, 周荣琪等.“加盐萃取——恒沸精馏”联合过程的研究Ⅰ. 醋酸-水体系的分离. 石油化工,1985, 14(8): 439-443
    28.于水军, 王志勇. 稀醋酸母液中回收醋酸. 焦作工学院学报, 1996, 12(6): 94-96
    29.刘庆林, 苏玉忠, 张志炳. 低浓乙酸的乙酸/水混合物分离. 厦门大学学报(自然科学版), 2001,40(5):1078-1082
    30.徐琴堂, 鲁芳平, 李熙, 等. 乙酸-甲酸-水体系的分离研究——酯化-共沸蒸馏精制醋酸. 高等学校化学学报, 1990, 11(11):1236-1239
    31.邓修, 吴俊生. 化工分离工程. 科学出版社: 2000
    32.张建侯, 许锡恩. 化工过程分析与计算机模拟. 化学工业出版社: 1989
    33.吴俊生,邵惠鹤. 精馏设计、操作和控制. 中国石化出版社:1998
    34.高为辉. 精馏计算的现状与发展. 高等教育出版社: 1990
    35.文立中. 精馏过程计算机模拟研究的方法与进展. 化工电子计算,1992, 3: 39-44
    36.时钧, 汪家鼎, 余国琮, 陈敏恒主编. 化学工程手册. 化学工业出版社: 1996
    37.谢安俊, 刘世华, 张华岩, 等. 大型化工流程模拟软件——ASPEN PIUS. 石油与天然气化工. 1995, 24(4): 247-251
    38.谢扬,沈庆扬. ASPEN PLUS化工模拟系统在精馏过程中的应用. 化工生产与技术.1999,16(3):17-22,28
    39.陈强, 孟爱民, 梁志荣. Aspen P1us软件在C8芳烃分离工艺设计中的应用. 炼油设计. 2001, 31(10):42-45
    40.堵祖荫. 用Aspen Plus模拟汽油分馏塔系统. 乙烯工业. 2002, 14(4): 13-17
    41.黄崇平. 用Aspen Plus软件模拟炼厂气脱硫和再生系统工艺流程. 炼油. 2001, 4: 32-35
    42.邵百祥. 乙苯装置全流程模拟. 炼油设计. 2001, 31(10): 46-48
    
    
    43.李浩春主编. 分析化学手册第5分册,汽相色谱分析. 化学工业出版社: 1999
    44.US 5160412
    45.赵汝溥,管国锋编.化工原理.化学工业出版社:1995
    46.赵承朴编. 萃取精馏及恒沸精馏. 高等教育出版社:1988
    47.Weast R C.. The CRC Handbook Chemistry and Physics.
    48.Prausnitz J.M., Anderson T.F., et al. Computer Calculations for the Multicomponent Vapor-Liquid and Liquid-Liquid Equilibrium. Prentice-Hall Inc. Englewood Cliffs: New Jersey, 1980
    49.E.Sebastiani, L.Lacquaniti. Acetic Acid-Water System Thermodynamical Correlation of Vapor-Liquid Equilibrium Data. Chemical Engineering Science, 1967,22(9):1155-
    1162
    50.Yang Zhicai, Cui Xianbao. Esterfication-Distillation of Butanol and Acetic Acid. Chemical Engineering Science, 1998,53(11): 2081-2088
    51.王良恩, 赵素英. 醋酸甲酯-甲醇-水-醋酸四元反应体系汽液平衡. 化工学报, 1995,46(1):57-65
    52.耿皎, 吴有庭, 刘庆林, 等. 乙酸-水体系的相平衡及精馏过程模拟. 南京大学学报(自然科学), 2000,36(4):491-496
    53.李君发, 潘行高. 缔合体系汽-液平衡的研究(Ⅰ)二元缔合体系.化学工程, 1989, 17(1): 26-31
    54.Constantine Tsonopoulos. An Empirical Correlaion of Second Virial Coefficients. AIChE Journal. 1974,20(2):263-272
    55.朱自强, 姚善泾, 金彰礼. 流体相平衡原理及应用. 浙江大学出版社:1990
    56.J.Gmehling, U.Onken. Vapor-Liquid Equilibrium Data Collection. DECHEMA, Chemistry Data Series, Vol.Ⅰ, partⅠ
    57.钟心泰, 黄延德. 醋酸-甲酸-水体系汽液平衡数据的测定与关联. 化学工程, 1983, 5: 64-72
    58.傅吉全. 特殊体系的相平衡和精馏模拟计算. 中国石化出版社: 2002
    59.张吉瑞,付吉全,张瑶芬.缔合体系的汽-液相平衡及精馏研究.石油化工,1988,17(10):633-638
    60.吴俊生.恒沸精馏模拟计算.化学工程,1992,20(5):16-22
    61.J.S.Wu, P.R.Bishnoi. An Algorithm for Three-Phase Equilibrium Calculations. Computers & Chemical Engineering, 1986,10(3): 269-275
    62.J.S.Wu, P.R. Bishnoi. A Method for Steady-State Simulation of Multistage Separation Columns Involving Nonideal System. Computers & Chemical Engineering,1986,10(4):
    343-351
    
    
    63.陈同芸, 史贤林, 陈晓祥. 醋酸缔合物系的复杂精馏计算. 华东理工大学学报, 1995, 21(1): 7-11
    64.Fang-Zhi Liu, Hideki Mori, Setsuro Hiraoka, et al. Phase Equilibrium and SimulationMethod for Heterogeneous Azeotropic Distillation. Journal of Chemical Engineering of Japan. 1993, 26(1):41-47
    65.黄又明. Amoco法和三井油化法生产PTA的技术经济分析. 现代化工. 1994, 14 (4): 27-33
    66.王树楹主编. 现代填料塔技术指南. 中国石化出版社: 1998
    67.袁孝竞, 干爱华, 田桂林, 等. 规整填料塔在国内的应用. 石油化工设计.1996, 13(2): 54-61
    68.王双成. 波纹填料层泛点的新关联. 高校化学工程学报. 2001,15(3): 223-229
    69.于长秋, 张如云, 裴奎水, 等. 洗氨塔液体分布器的选择与计算. 燃料与化工. 1999, 30(3): 141-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700