近景摄影测量在LAMOST光纤位置检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“大天区面积多目标光纤光谱望远镜(Large Sky Area Mulit-object Fiber Spectroscopic Telescope, LAMOST)"是我国的一项重大科学工程项目,在其直径1.75米的焦面板上,布置有4000根光纤。LAMOST观测时,望远镜光学系统使天体目标成像在焦面上,然后光纤定位系统控制4000根光纤与这些天体的像对准而获取它们的光谱。由于存在控制、机械加工、安装、工作环境改变等引起的误差,如果光纤定位系统是开环控制,精度不易保证,因此为了修正这些误差,使LAMOST能够准确运转,必须要对光纤在焦面上的位置进行精密检测。
     LAMOST光纤位置检测有如下要求:大视场、多离散目标、高精度、快速、非接触,几乎囊括了所有的高检测标准。在常规的位置测量方法中,近景摄影测量最有可能全部符合这些要求,因此本文对近景摄影测量在光纤位置检测中的应用进行了详细研究。
     摄影测量有基于线阵CCD和面阵CCD的两种可选设备,针对各自优缺点,本文提出了多线阵CCD的扫描检测方案和面阵CCD像机的分区检测方案,并对这两种方案都从原理和方法上进行了细致的探讨。
     论文的主要内容包括:
     1.设计并研制了一套由3个线阵CCD组成的光纤位置试验检测系统,该系统检测静止光纤坐标的误差为±0.9μm(2σ),具有很好的稳定性。
     2.实现了线阵CCD试验检测系统对动态光纤的位置测量。对线阵CCD姿态标定、转换拼接和参数优化后,实验显示,该系统检测光纤之间距离的误差只有±5μm(2σ),具有较高的精度。但高检测精度需要复杂的标定和优化,该过程需要大范围高密度的标定光纤。
     3.建立了光斑定位算法(光重心法)的误差分析模型,结合实验研究,提出了一个最佳的检测条件,在该条件下,光重心法的精度达到0.04像素,并以光重心法的精度为依据确立检测子区域的大小。
     4.提出一种改进的光束法平差自标定方法,实现面阵CCD像机的在线高精度标定。实验结果显示,该标定方法只需要数量很少的控制点就能够获得与多控制点的传统标定方法相当的精度。
     本文对线阵CCD方案的研究结果是,该方案具有较高的理论检测精度,若要在LAMOST现场应用,不仅需要大范围高密度的标定光纤,而且对系统硬件的性能和精度都有很高要求,以目前技术手段难以实现。
     本文研究并解决了面阵CCD方案中的几个关键问题,保证了面阵CCD方案从实验室论证顺利移植到LAMOST现场应用。
Large Sky Area Mulit-object Fiber Spectroscopic Telescope-LAMOST, with a 1.75m-diameter focal plate on which 4000 optical fibers are arranged, is one of major scientific projects in China. During the surveying process of LAMOST, the optical imaging system makes the astrometric objects be imaged in the focal plane, and the optical fiber positioning system controls the 4000 fibers to be aligned with these objects and obtain their spectrum. If the optical fiber positioning system works in open-loop control mode, it's difficult to ensure the positioning accuracy because of the errors caused by control, machining, installation and changes of the work environments. In order to correct these errors and make the LAMOST run accurately, it is necessary to detect the position of optical fibers in the focal plane accurately.
     The detection of optical fibers'position in LAMOST has the following requirements:large field, multi-discrete targets, high accuracy, rapid and non-contact, including almost all high testing standards. In the conventional position detection methods, the close-range photogrammetry has the most possibility of meeting all these requirements, so the application of the close-range photogrammetry is studied detailedly in this paper.
     Photogrammetry has two optional imaging devices:linear CCD and area CCD. For their advantages and disadvantages, multi-linear CCD scanning detection method and area CCD camera district detection method is proposed in this paper, and their measuring principles and processes are discussed in detail.
     This paper's main content includes:
     1. The experimental detection system, which is consisted of three linear CCD, is designed and developed. The accuracy of detecting the static optical fiber's coordinates is±0.9μm (2σ) which shows the system has a good stability.
     2. The position detection of dynamic optical fiber by the linear CCD system is achieved. After attitude calibration of the linear CCD, conversion splicing and optimization of parameters, the experiment demonstrates that the error of detecting the distance between the optical fibers is only±5μm (2σ) which is a high accuracy. However, the high detection accuracy requires complex calibration and optimization with a wide range of high-density reference optical fibers.
     3. An error analysis model of the spot location algorithm (light centroid method) is established, and the best detection condition is suggestted combined with the corresponding experiments. Under this condition, the accuracy of light centroid method is 0.04 pixels which could be used to judge the size of detection sub-region.
     4. An improved bundle adjustment self-calibration method is proposed to realize the on-line high-precision calibration of area CCD camera. The results of experiment indicate that this calibration method needs only a few control points while the traditional calibration methods need much more control points to get the same accuracy.
     The study of this paper on linear CCD method shows that it has high theoretical detection accuracy. However, it will need a wide range of reference optical fibers and high requirements on the performance and precision of hardware if the linear CCD method is applied on LAMOST in practice, and it's difficult to realize with current technology.
     Some key problems of area CCD method are researched and solved in this paper, so the area CCD camera district detection method can be smoothly transplanted to the locale of LAMOST from the laboratory.
引文
[1]Wang Shou-guan, Su Ding-qiang, Chu Yao-quan, et al. Special configuration of a large Schmidt telescope for extensive astronomical spectroscopic observation [J]. Applied Optics, 1996,35(25):5155-5161.
    [2]LAMOST项目主页-——ttp://www.lamost.org
    [3]邢晓正,胡红专,褚家如.LAMOST光纤定位技术[J].中国科学技术大学学报,2007,37(6):596-600.
    [4]邢晓正,胡红专,杜华生等.用于LAMOST的并行可控式光纤定位系统[J].中国科学技术大学学报,1997,27(4):492-495.
    [5]Xing Xiao-zheng, Zhai Chao, Du Hua-sheng, et al. Parallel controllable optical fiber positioning system for LAMOST [C]. The International Society for Optical Engineering, Proceedings of SPIE,1998, Vol.3352:839-849.
    [6]Hu Hong-zhuang, Xing Xiao-zheng, Zhai Chao, et al. New type optical fiber positioning unit device for LAMOST [C]. The International Society for Optical Engineering, Proceedings of SPIE,2002, Vol.4837:548-555.
    [7]胡红专,邢晓正,李为民等.双回转光纤定位单元装置[J].中国科学技术大学学报,2000,30(6):707-710.
    [8]Zhai Chao, Xing Xiao-zheng, Hu Hong-zhuang, et al. The design of control system for fiber positioning system of LAMOST [C]. The International Society for Optical Engineering, Proceedings of SPIE,2002, Vol.4837:494-501.
    [9]High Accuracy CMM Development. USA NIST [R],1998.
    [10]Wendt. Development of Test and Calibration for Automated Theodolite Systems in Production Metrology [R]. PTB Germany,1996.
    [11]K. Lau, R. J. Hocken, W. C. Haight. Automatic laser tracking interferometer system for robot metrology [J]. Precision Engineering,1986,8(1):3-8.
    [12]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2002.
    [13]Beyer, H. A. Digital Photogrammetry in Industrial Applications [C]. International Archives of Photogrammetry and Remote Sensing,1995,30(5W1):373-375.
    [14]冯文灏.近景摄影测量[M].武汉:武汉大学出版社,2002.
    [15]黄桂平.数字近景工业摄影测量关键技术研究与应用[D].天津:天津大学精密仪器与光电子工程学院,2005.
    [16]E. H. Thompson. Photogrammetry and surveying [M]. London:Photogrammetric society.
    1977.
    [17]S. F. El-Hakim. A real-time system for object measurement with CCD cameras [J]. International archives of photogrammetry and remote sensing,1986,26(5):363—373.
    [18]C. S. Fraser. Innovation in automation for vision metrology systems [J]. Photogrammetric record,1997,15(90):901—911.
    [19]王宝丰,李广云,李宗春等.高精度数字摄影测量技术在50m大型天线中的应用[J].测绘工程,2007,16(1):42-46.
    [20]肖振中,梁晋,唐正宗等.汽车大型模具实型的三维摄影测量检测[J].塑性工程学报,2009,16(2):150-155.[21]于江,蒋山平,杨林华.基于数字近景摄影测量的天线变形测量[J].航天器环境工程,2008,25(1):56-58.
    [22]http://www.geodetic.com
    [23]Gruen, A., Zhang, L., Wang, X. Generation of 3D city models with Linear Array CCD-sensors [C]. Proceedings Int. Conference on Optical 3D Measurement Techniques, Zurich, September 2003, Vol.Ⅱ:21-31.
    [24]Anup Basu, Hossein Sahabi. Analysis of Cylindrical Stereo Imaging [C].15th International Conference on Pattern Recognition (ICPR'00),2000, Vol.1:366-369.
    [25]Gu Yong-gang, Zhai Chao, Xing Xiao-zheng, et al. A new method for measuring the position of the end of optical fibers for LAMOST [C]. The International Society for Optical Engineering, Proceedings of SPIE,2008, Vol.7014,701444.
    [26]R. G. McMahon, N. A. Walton, M. J. Irwin, et al. The INT wide field imaging survey (WFS) [J]. New Astronomy Reviews,2001,45:97-104.
    [27]Irena Frye, Eugeniusz Czech. Application of optical fibers and ccd array for measurement of luminance distribution [C]. Metrology and Testing Techniques Using Light, Proceedings of SPIE,2003, v5064:18-21.
    [28]Erik R. Deul, Konrad Kuijken and Edwin A. Valentijn. OmegaCAM:The 16k x 16k Survey Camera for the VLT Survey Telescope [C]. Survey and Other Telescope Technologies and Discoveries, Proceedings of SPIE,2002, v4836.
    [29]http://kepler.nasa.gov(?)
    [30]李朝辉,王肇勋,武克用.空间像机CCD焦平面的光学拼接[J].光学精密工程,2000,8(3):213-216.
    [31]何昕,魏仲慧,郝志航.基于单心球面系统的九块面阵CCD数字拼接[J].光学精密工程, 2003,11(4):421-424.
    [32]牛小兵,林玉池,赵美蓉等.基于特征的二维图像拼接法测量几何量[J].天津大学学报, 2001,34(3):396-399.
    [33]Wen Chen, Yun Q. Shi and Wei Su. Image splicing detection using 2-D phase congruency and statistical moments of characteristic function [C]. Proceedings of SPIE,2007, Vol.6505, 65050R.
    [34]金熠.LAMOST光纤位置检测与观测规划中相关问题的研究[D].合肥:中国科学技术大学精密机械与精密仪器系,2007.
    [35]李静,李为民等.重心法在光电信号处理中的应用[J].光学技术,1999,(2):57-59.
    [36][日]TOSHIBA公司.Datasheet of CCD Linear Image Sensor TCD1209D[Z].1999.
    [37]王庆有.图像传感器应用技术[M].北京:电子工业出版社,2003.
    [38]强锡富.传感器[M].北京:机械工业出版社,2001.
    [39]http://www.rsf.at
    [40]冯寿廷,李迪,刘潭义.基于FPGA的高精度光栅计数卡[J].仪表技术与传感器,2002,(2):55-57.
    [41]但永平,杨雷.基于FPGA的光栅尺信号智能接口模块[J].国外电子元器件,2004,(12):4-6.
    [42][美]National InstrumentsCorporation. DAQ E Series User Manual [Z]. February 2007.
    [43]龙华伟,顾永刚.LabVIEW 8.2.1与DAQ数据采集[M].北京:清华大学出版社,2008.
    [44]侯国平,王坤,叶齐鑫.LabVIEW 7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005.
    [45]郑涛,宋庆庆,谢忠.应用动态链接库的LabVIEW数字滤波器开发[J].振动、测试与诊断,2006,26(1):46-48.
    [46]王海鹏.基于LabVIEW与动态链接库的光栅尺位移虚拟示波器的设计[J].电子测量技术,2008,31(5):95-99.
    [47]李志谭,郭山国.MATLAB在LabVIEW中调用的实现[J].太原科技大学学报,2007,28(3):195-198.
    [48]顾永刚,翟超,金熠等.光重心法在光纤位置检测中的精度研究与应用[J].光电工程,2009,36(12):62-67.
    [49]姚宜斌.平面坐标系统相互转换的一种简便算法[J].测绘信息与工程,2001,(1):1-3.
    [50]周小林,孙东松,钟志庆等.Levenberg-Marquardt算法在测风激光雷达中的应用[J].红外与激光工程,2006,36(4):500-504.
    [51]张广军.机器视觉[M].北京:科学出版社,2005.
    [52]于起峰,尚洋.摄像测量学原理与应用研究[M].北京:科学出版社,2009.
    [53]Fillard J P, M'timet H. Lussert J M, et al. Computer simulation of super resolution point source image detection [J]. Opt. Eng.,1993,32(11):2936-2944.
    [54]姜文汉,鲜浩,沈锋.夏克-哈特曼波前传感器的探测误差[J].量子电子学报,1998,15(2):218-227.
    [55]胡林亭,卢显葵.CCD测量激光光斑方法研究[J].激光技术,2001,25(2):154-156.
    [56]高学燕,苏毅,何均章等.光斑矩参量阵列测试法的测量不确定度[J].光学学报,2004,24(10):1411-1416.
    [57]Alexander B F. Elimination of Systematic Error in Subpixel Accuracy Centroid Estimation [J].Opt.Eng.,1991,30(9):1320-1331.
    [58]束永生,伍小平.CCD高精度位置检测重心算法的傅里叶分析[J].实验力学,1995,10(1):31-37.
    [59]束永生,伍小平.CCD高精度位置检测的计算机模拟[J].实验力学,1995,10(1):38-43.
    [60]West G A, Clark T A. A survey and examination of subpixel measurement techniques [C]. Close-Range Photogrammetry Meets Machine Vision, Proceedings of SPIE,1990, Vol.1395: 456-463.
    [61]陈洪涛,李银妹,楼立人等.光镊技术中的纳米位移探测及其测量误差讨论[J].中国激光,2004,31(6):729-734.
    [62]郭玉波,姚郁,遆晓光.一种改进的亚像素算法[J].光电工程,2006,33(10):137-140.
    [63]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2002.
    [64]Fillard J P. Subpixel accuracy location estimation from digital signals [J]. Opt. Eng.,1992, 31(11):2465-2471.
    [65]马颂德,张正有.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1998.
    [66]崔中兴.惯性导航系统[M].北京:国防工业出版社,1982.
    [67]Faig W. Calibration of close-range photogrammetry systems:mathematical formulation [J]. Photogrammetric Engineering and Remote Sensing,1975,41(12):1479-1486.
    [68]Fryer J G, Brown D C. Lens distortion for close-range photogrammetry [J]. Photogrammetric Engineering and Remote Sensing,1986,52(1):51-58.
    [69]Juyang Weng, Paul Cohen, Marc Herniou. Camera calibration with distortion models and accuracy evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(10):965-980.
    [70]曾慧,邓小明,赵训坡等.基于线对应的单应矩阵估计及其在视觉测量中的应用[J].自动化学报,2007,33(5):449-455.
    [71]Hartley R. In denfence of the eight-point algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(6):580-593.
    [72]王之卓.摄影测量原理[M].武汉:武汉大学出版社,2007.
    [73]P. D. Carman, B. Brown. The NRC camera calibrator [J]. Photogrammetria,1978,34(4):
    147-165.
    [74]T. A. Clarke, J. G. Fryer. The development of camera calibration methods and models [J]. Photogrammetric record,1998,16(9):51-66.
    [75]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000,26(11):43-55.
    [76]Xu G, Sugimoto N. A linear algorithm for motion from three weak perspective images using euler angles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(12):54-57.
    [77]Abdel-Aziz Y I, Karara H M. Direct linear transformation into object space coordinates in close-range photogrammetry [C]. Urbana:Proceedings of Symp. Close-Range Photogrammetry,1-18.
    [78]Tsai R Y. An efficient and accurate camera calibration technique for 3D machine vision [C]. Proceedings of IEEE Conference of Computer Vision and Pattern Recognition,1986, 364-374.
    [79]Tsai R Y. A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and censes [J]. IEEE Journal of Robotics and Automation,1987,3(4):323-344.
    [80]Wong K W. Mathematical foundation and digital analysis in close-range photogrammetry [C]. Photogrammetric Engineering and Remote Sensing,1975(44):1355-1373.
    [81]Karara H M. Handbook of close-range photogrammetry [M]. Virginia:America Society of Photogrammetry,1979.
    [82]Zhang Z Y. A flexible new technique for camera calibration [R]. Microsoft Corporation: Technical Report, MSR-TR-98-71,1998.
    [83]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003,29(1):110-124.
    [84]Faugeras O, Luong Q T, Maybank S. Camera self-calIbratiOn:Theory and experiments [C]. Proceedings of the 2nd European Conference on Computer Vision, Italy,1992:321-334.
    [85]Maybank S, Faugeras O. A theory of self-calibration of a moving camera [J]. International Journal of Computer Vision,1992,8(2):123-151.
    [86]Hartley R. Self-calibration of stationary cameras [J]. International Journal of Computer Vision,1997,22(1):5-23.
    [87]Ma S D. A self-calibration technique for active vision system [J]. IEEE Transactions on Robot Automation,1996,12(1):114-120.
    [88]Moons T, Van Gool L, Proesmans M, et al. Affine reconstruction from perspective image pairs with a relative object-camera translation in between [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(1):77-83.
    [89]Granshaw S. Bundle Adjustment methods in engineering photogrammetry [J]. Photogrammetric Record,1980,10(56):181-207.
    [90]李德仁等.基础摄影测量学[M].北京:测绘出版社,1995.
    [91]张剑清,潘励,王树根.摄影测量学[M].武汉:武汉大学出版社,2003.
    [92]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社,2003.
    [93]金文敬,唐正宏,王叔和等.LAMOST工程中天体测量要求的探讨[J].陕西天文台台刊,1999,22(1):31-39.
    [94]龙彩华,陈抱雪,沙慧军等.光波导-光纤自动调芯系统研究[J].光学学报,24(4):442-447.
    [95]隋国荣,陈抱雪,张晓微等.波导阵列与光纤阵列的智能算法自动对接[J].光学与光电技术,2006,4(5):32-34.
    [96]ZHANG R, SHI F G. A novel algorithm for fiber-optic alignment automation [J]. IEEE Transactions on Advanced Packaging,2004,27(1):173-178.
    [97]沙慧军,陈抱雪,陈林等.基于遗传算法的光波导-光纤自动调芯系统的研制[J].仪器仪表学报,2005,26(11):1109-1113.
    [98]沈浩,王昕.改进遗传单纯形混合算法在光纤对接中的应用[J].光电工程,2006,33(10):67-71.
    [99]C. S. Fraser, S. A. Veress. Self-calibration of a fixed-frame multiple-camera system [J]. Photogrmmetry engineering and remote sensing,1980,46(11):1439-1445.
    [100]冯文灏.近景摄影测量[M].武汉:武汉大学出版社,2002.
    [101]王之卓.摄影测量原理续篇[M].武汉:武汉大学出版社,2007.
    [102]Wang X, Clarke T A. Separate adjustment of close range photogrammetric measurements[C]. ISPRS 1998, Vol. XXXII, Part 5, pp.177-184.
    [103]刘芳,陆立.广义点摄影测量的平差及质量分析[J].北京测绘,2006,(1):5-8.
    [104]陈希孺,王松桂.近代回归分析[M].合肥:安徽教育出版社,1987.
    [105]冯文灏,李建松,阎利等.基于数码相机的孔群定位与数控钻孔[J].测绘学报,2003,32(3):229-233.
    [106]李德仁.自检校平差中过度参数化的克服[J].武汉测绘科技大学学报,1986,25(3):95-103.
    [107]张永军,张勇.大重叠度影像的相对定向与前方交会精度分析[J].武汉大学学报(信息科学版),2005,30(2):126-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700