含氟双-(β-酮胺)镍(Ⅱ)合成及其催化降冰片烯与功能性单体共聚改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,为了提高降冰片烯类聚合物的可加工性能,利用后过渡金属催化剂制备降冰片烯和功能单体共聚物的研究成为聚烯烃材料领域的一个新热点。本文合成了新型含氟催化剂Ni{CF3C(O)CHC[N(naphthyl)]CH3}2并采用单晶X-射线衍射技术解析了其结构。采用含氟催化体系Ni{CF3C(O)CHC[N(naphthyl)]CH3)2/B(C6F5)3和不含氟催化体系Ni{CH3C(O)CHC[N(naphthyl)]CH3)2/B(C6F5)3催化降冰片烯与甲基丙烯酸正丁酯,长链1-烯烃(1-己烯,1-辛烯,1-癸烯)共聚,采用含氟催化体系Ni{CF3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3催化降冰片烯与苯乙烯,降冰片烯甲酸甲酯共聚,探索了共聚单体结构对共聚物结构、性能和可加工性能的影响。
     在甲苯中采用双-(β-酮胺)镍(Ⅱ)Ni{RC(O)CHC[N(naphthyl)]CH3}2(R=CH3,CF3)和三五氟苯硼B(C6F5)3体系催化降冰片烯与甲基丙烯酸正丁酯共聚合。对于降冰片烯与甲基丙烯酸正丁酯共聚,这两种催化体系都具有较高的催化活性。探索了共聚单体比例和催化剂结构对产率和聚合活性的影响,推测了双-(β-酮胺)镍(Ⅱ)/三五氟苯硼B(C6F5)3体系催化降冰片烯与甲基丙烯酸正丁酯共聚合过程中可能的含有失活反应的插入机理。通过Kelen-TUdOs法得到的单体竞聚率分别为rn-BMA=0.095,norbornene=12.626。成功制备了共聚物薄膜并且共聚物在可见光范围具有良好的透光性。
     采用双-(β-酮胺)镍(Ⅱ)Ni{RC(O)CHC[N(naphthyl)]CH3}2(R=CH3,CF3)和三五氟苯硼B(C6F5)3体系催化降冰片烯与1-烯烃(1-己烯,1-辛烯,1-癸烯)共聚合并且这两种催化体系都具有较高的催化活性。探索了催化剂结构和共聚单体比例对聚合活性和单体插入率的影响。对于不含氟催化体系Ni{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3催化降冰片烯与1-辛烯共聚,通过Kelen-TUdos法得到的单体竞聚率分别为r1-octene=0.009,rnorbomene=13.461。通过1H NMR和13C NMR的分析,共聚过程是按照乙烯基加成型聚合方式进行的。TGA分析表明共聚物具有良好的热稳定性(分解温度高于400℃),DSC分析表明共聚物的玻璃化转变温度在215到275℃之间。共聚物在常见有机溶剂中具有良好溶解性并且通过广角X-射线衍射证明共聚物是非晶的。
     在甲苯中采用含氟催化体系Ni{CF3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3催化降冰片烯与苯乙烯共聚合。催化体系对于降冰片烯与苯乙烯共聚具有较高的催化活性达到1.37×105(gpolymer/molNi·h)。探索了共聚单体比例对聚合活性和单体插入率的影响,当苯乙烯加入摩尔比为10-50%时,苯乙烯在共聚物中比例可控制在1.1-5.6%。通过Kelen-TUdOs法得到的单体竞聚率分别为rSt=0.453,rNB=19.810。所制备的共聚物具有非常高的玻璃化转变温度(Tg>320℃)。采用溶液成膜法制备了共聚物薄膜,共聚物膜在可见光范围具有良好透光性,透光率达到75-80%。
     在甲苯中采用含氟催化体系Ni{CF3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3催化降冰片烯与降冰片烯甲酸甲酯共聚合。催化体系对于降冰片烯与降冰片烯甲酸甲酯共聚具有较高的催化活性达到2.69×105(gpolynler/molNi·h).通过改变共聚单体比例的共聚反应得知降冰片烯甲酸甲酯在共聚物中具有非常高的插入率,当降冰片烯甲酸甲酯加入摩尔比为10-90%时,降冰片烯甲酸甲酯在共聚物中比例可控制在7.9-77.6%。通过Kelen-TUdOs法得到的单体竞聚率分别为rNB-COOCH3=0.578,rNB=0.859。分别采用溶液成膜,干/湿相转变和静电纺丝技术对共聚物加工,采用溶液成膜法制备的共聚物薄膜在可见光范围具有良好透光性,干/湿相转变法制备的聚合物膜具有微孔结构,静电纺丝技术制备的聚合物纤维直径约3μm。
The research of the copolymerization of norbornene and functional monomer catalyzed by late transition metal catalyst is an area of great recent interest in polyolefin material in order to improve the processability of polynorbornenes. Novel fluorinated catalyst Ni{CF3C(O)CHC[N(naphthyl)]CH3}2 was synthesized and the structure was solved by single crystal X-ray refraction technique in this paper, copolymerization of norbornene and n-butyl methacrylate, 1-alkene(1-hexene,1-octene,1-decene) catalyzed by fluorinated catalyst system Ni{CF3C(O)CHC[N(naphthy])]CH3}2 and non-fluorinated catalyst system Ni{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 and copolymerization of norbomene and styrene, methoxycarbonylnorbornene catalyzed by fluorinated catalyst system Ni{CF3C(O)CHC[N(naphthyl)]CH3}2 were studied to investigate the effect of monomer structures on copolymer structures, properties and processabilities.
     Copolymerization of norbomene with n-butyl methacrylate were carried out with catalytic systems of bis-(β-ketoamino)nickel(II) complexes Ni{RC(O)CHC[N(naphthyl)]CH3}2 (R=CH3, CF3) and B(C6F5)3 in toluene. Both of the above catalytic systems exhibited higher activity for copolymerization of norbomene and n-butyl methacrylate. Influence of the comonomer feed content and catalyst structure on the yield and polymerization activity were investigated. The insertion mechanism including deactivation reaction on copolymerization of norbornene and n-butyl methacrylate catalyzed by bis-(β-ketoamino)nickel(II)/B(C6F5)3 catalytic systems was proposed. The reactivity ratios were determined by the Kelen-TUdOs method, and rn-BMA=0.095, rnbornene=12.626. Copolymer films were prepared and showed good transparency in the visible region.
     Copolymerization of norbornene with higher 1-alkene were carried out in toluene with catalytic systems based on nickel(Ⅱ) complexes Ni{RC(O)CHC[N(naphthyl)]CH3}2 (R=CH3, CF3) and B(C6F5)3 and exhibited high activity for both catalytic systems. Influence of the catalyst structure and comonomer feed content on the polymerization activity as well as on the incorporation rates were investigated. The reactivity ratios were determined to be rn-QCtcne=0.009 and rnrborniene=13.461 by the Kelen-TUdOs method for Ni{CH3C(O)CHC[N(naphthyl)]CH3}2/B(C6F5)3 system. The achieved copolymers were confirmed to be vinyl-addition copolymers through the analysis of 1H NMR and 13C NMR. TGA analysis results showed that the copolymers exhibited good thermal stability (Td> 400℃) and the glass transition temperature of the copolymers were observed between 215 and 275℃. The copolymers are confirmed to be noncrystalline by wide-angle X-ray diffraction (WAXD) analysis results and showed good solubility in common organic solvents.
     Copolymerization of norbornene (NB) with styrene (St) were carried out with catalytic system of Ni{CF3C(O)CHC[N(naphthyl)]CH3}2 and B(C6F5)3 in toluene. The catalytic system exhibited higher activity 1.37×105 (gpolymer/molNi·h) for copolymerization of norbornene and styrene. Influence of the comonomer feed content on the polymerization activity as well as on the incorporation rates were investigated. The styrene content in copolymers can be controlled to be 1.1-5.6 mol% at content of 10-50 mol% of the styrene in the monomer feeds ratios. The reactivity ratios were determined by the Kelen-TUdOs method, and rSt=0.453,rNB=19.810. The prepared copolymers had very high glass transition temperature (Tg> 320℃). Copolymers were processed by solution casting method and the films showed good transparency in the visible region with 75-80% transmittance.
     Copolymerization of norbornene (NB) with methoxycarbonylnorbornene (NB-COOCH3) were carried out with catalytic system of Ni{CF3C(O)CHC[N(naphthyl)]CH3}2 and B(C6F5)3 in toluene. The catalytic system exhibited higher activity 2.69×105(gpolymer/molNi·h) for copolymerization of norbornene and methoxycarbonylnorbornene. The influence results of the comonomer feed content on the polymerization showed that the NB-COOCH3 has a very high insertion ratio in all copolymers, and the NB-COOCH3 content in copolymers can be controlled to be 7.9-77.6 mol% at content of 10-90 mol% of the NB-COOCH3 in the monomer feeds ratios. The reactivity ratios were determined by the Kelen-TUdOs method, and rNB-COOCH3=0.578,rNB= 0.859. Copolymers were processed by solution casting method, dry/wet phase inversion technique and electrospinning respectively. The films prepared by solution casting method showed good transparency in the visible region. The membranes processed by dry/wet phase inversion technique were microporous structures. The fibers diameters fabricated by electrospinning were about 3μm.
引文
[1]Nakayama Y, Maeda N, Yasuda, H, et al. Ring-opening metathesis polymerization of norbornene catalyzed by tantalum and niobium complexes with chelating O-donor ligands[J]. Polym. Int.,2008,57(7):950~956.
    [2]Kennedy J P. Makowski H S. Carbonium Ion Polymerization of Norbornene and Its Derivatives[J]. J. Macromol. Sci. Chem.,1967,1(3):345~370.
    [3]Janiak C. Lassahn P-G.. Metal catalysts for the vinyl polymerization of norbornene[J]. J. Mol.Catal. A:Chem.2001,166(2):193~209.
    [4]Goodall B L, Barnes D A. Benedikt G M, Mclntosh L H. Rhodes L F. Proc. Am. Chem. Soc. Div. Polym. Mater.:Sci. Eng.,1997,75,56.
    [5]Glukh K, Lipian J-H, Mimna R, Neal P S, Ravikiran R, Rhodes L F, Shick R A, Zhao X-M. Proc. SPIEsInt. Soc. Opt. Eng.2000,4106,43.
    [6]Barnes D A, Benedikt G M, Goodall B L, Hullihen K, Jayaraman S, McDougall W C. McIntosh L H Ⅲ, Rhodes L F, Shick R A. In Proceedings of MetCon '98 (Worldwide Metallocene Conference), Houston, TX, Catalyst Consultants Inc.,1998.
    [7]Park H, Twieg R J, Ravikiram R, Rhodes L F, Shick R A, Yankelevich D, Knoesen A. Synthesis and nonlinear-optical properties of vinyl-addition poly(norbornene)s[J]. Macromolecules.2004,37(14):5163~5178.
    [8]Haselwander T F A. Heitz W, Krugel S A, Wendorff J H. Rigid random coils:rotationally confined chain molecules[J]. Macromolecules,1997,30(18).5345~5351.
    [9]Dorkenoo K D, Pfrom P H, Rezac M E. Gas transport properties of a series of high Tg polynorbornenes with aliphatic pendant groups[J].J. Polym. Sci. Part B:Polym. Phys., 1998,36,797~803.
    [10]Boffa L S. Novak B M. Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes[J]. Chem Rev,2000,100(4):1479~1494.
    [11]Gilliom L R., Grubbs R H. Titanacyclobutanes derived from strained, cyclic olefins:the living polymerization of norbornene[J]. J. Am. Chem. Soc.1986,108(4):733~742.
    [12]Ivin K J, Mol J C. Olefin Metathesis and Metathesis Polymerization[J]. Academic Press. San Diego. CA 1997,407~410.
    [13]Kress J. Wesolek M. Osborn J A. Tungsten (IV) carbenes for the metathesis of olefins. Direct observation and identification of the chain carrying carbcne complexes in a highly active catalyst system[J]. J. Chem.Soc. Chem. Commun.,1982,514~516.
    [14]Murdzek J S, Schrock R R. Well-characterized olefin metathesis catalysts that contain molybdenum[J]. Organometallics,1987.6(6):1373~1374.
    [15]Schwab P, Grubbs R H, Ziller J W. Synthesis and Applications of RuCl2(=CHR')(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity[J].J. Am. Chem. Soc., 1996,118(1):100~110.
    [16]Hafner A, van der Schaaf P A, Muehlebach A. Recent developments in ring-opening metathesis polymerization (ROMP)[J]. Chimia.,1996,50(4):131~134.
    [17]Gilliom L R, Grubbs R H. Titanacyclobutanes derived from strained, cyclic olefins:the living polymerization of norbornene[J]. J. Am. Chem. Soc.,1986,108(4):733~742.
    [18]Wallace K C, Liu A H, Dewan J C, et al. Preparation and reactions of tantalum alkylidene complexes containing bulky phenoxide or thiolate ligands. Controlling ring-opening metathesis polymerization activity and mechanism through choice of anionic ligand[J]. J. Am. Chem. Soc.1988,110(15):4964~4977.
    [19]Burmaghim J L, Girolami G S. Ring-Opening Metathesis Polymerization of Norbornene by Cp*2Os2Br4 and Related Compounds[J]. Organometallics,1999,18(10):1923~1929.
    [20]Steinhausler T, Koros W J. Gas permeation and sorption studies on stereoregular polynorbornene[J]. J. Polymer Sci., Part B:Polym. Phys.1997,35(1):91~99.
    [21]Huang Y P, Tsai S H, Huang D F, et al.. Polymers containing bis(indolyl)maleimides and aminophenylsuccinimides as electroluminescent materials:Solvatochromic properties and the effect of blending toward white light emission[J]. React. Funct. Polym.,2007,67(10): 986~998.
    [22]Sutthasupa S, Terada K, Sanda F, et al. Ring-opening metathesis polymerization of amino acid-functionalized norbornene diester monomers[J]. Polymer,2007,48(11):3026~3032.
    [23]Finkelshtein E S, Gringolsts M L, Ushakov N V, et al. Synthesis and gas permeation properties of new ROMP polymers from silyl substituted norbornadienes and norbornenes[J]. Polymer,2003,44(10):2843~2851.
    [24]Xue B Y, Ogata K, Toyota A. Synthesis and radical scavenging ability of new polymers from sterically hindered phenol functional ized norbornene monomers via ROMP[J]. Polymer,2007,48(17):5005~5015.
    [25]Camm K D, Castro N M, Liu Y W, Czechura P, Snelgrove J F, Fogg D E. Tandem ROMP-hydrogenation with a third-generation Grubbs catalyst[J]. J. Am. Chem. Soc.2007, 129(14),4168~4169.
    [26]Kennedy J P, Makowski H S. Reactivities and structural aspects in the cationic polymerization of mono- and diolefinic norbornanes[J]. J. Macromol. Sci., Poly. Symp. 1968,22(1):247~265.
    [27]Gaylord N G, Mandal B M, Martan M. Peroxide-induced polymerization of norbornene[J]. J. Polym. Sci.,Polym. Lett. Ed.1976,14(9):555~559.
    [28]Gaylord N G, Deshpande A B, Mandal B M, et al. Poly-2,3- and 2,7-Bicyclo [2.2.1]hept-2-enes:Preparation and Structures of Polynorbornenes[J]. J. Macromol. Sci., Chem.1977,11(5):1053~1070.
    [29]Lipian J, Mimna R A, Fondran J C, et al. Addition Polymerization of Norbornene-Type Monomers. High Activity Cationic Allyl Palladium Catalysts[J]. Macromolecules 2002, 35(24):8969~8977.
    [30]Park H, Twieg R J, Ravikiram R, et al. Synthesis and Nonlinear-Optical Properties of Vinyl-Addition Poly(norbornene)s [J]. Macromolecules,2004,37(14):5163~5178.
    [31]Ahmed S. Bidstrup S A, Kohl P A, et al. Development of a New Force Field for Polynorbornene[J]. J. Phys. Chem. B,1998,102(49):9783~9790.
    [32]Janiak C, Lassahn P G. The Vinyl Homopolymerization of Norbornene[J]. Macromol. Rapid Commun.2001,22(7):479~492.
    [33]Seehof N, Mehler C, Breunig S, et al. Pd2+ catalyzed addition polymerizations of norbornene and norbornene derivatives[J]. J. Mol. Catal.1992,76(1-3):219~228.
    [34]Bao F, Lu X-Q, Wu Q, et al. Vinylic and ring-opening metathesis polymerization of norbornene with bis(β-ketoamine) cobalt complexes[J], J. Polym. Sci., Part A:Polym. Chem.2005,43(22):5535~5544.
    [35]Tsujino T, Saegusa T, Furukawa J. Polymerization of norbornene by modified Ziegler-catalysts[J]. Makromol. Chem.1965,85(1):71~79.
    [36]Blank F, Janiak C. Metal catalysts for the vinyl/addition polymerization of norbornene[J]. Coordination Chemistry Reviews,2009,.253(7-8):827~861.
    [37]Tsujino T, Saegusa T. Furukawa J. Polymerization of norbornene by modified Ziegler-catalysts[J]. Die Makromolekulare Chemie.2003,85(1):71 ~79.
    [38]Saegusa T, Tsujino T, Furukawa J. Polymerization of norbornene by modified ziegler catalyst[J]. Makromol. Chem.1964,78(1):231~233.
    [39]Mi X, Xu D M, Hu. Y L, et al., Preparation of polynorbornene with β-diketonate titanium/ MAO catalysts[J]. Polym. Bull.,2002,47(6):521~527.
    [40]Tritto I, Boggioni L, Sacchi M C, et al. Cyclic olefin polymerization and relationships between addition and ring opening metathesis polymerization[J]. J. Mol. Catal. A 1998, 133(1-2):139~150.
    [41]Wu Q, Lu, Y Y. Synthesis of a soluble vinyl-type polynorbornene with a half-titanocene/methylaluminoxane catalyst[J]. J. Polym. Sci. A, Polym Chem,2002, 40(10):1421~1425.
    [42]Yoshida Y. Matsui S, Fujita T. Bis(pyrrolide-imine) Ti complexes with MAO:A new family of high performance catalysts for olefin polymerization[J]. J. Organometal. Chem, 2005.690(20):4382~4397.
    [43]Donner M, Kiesewetter J, Kaminsky W. Pyrolysis-GC/MS:An alternative approach to characterize cycloolefin copolymers (COC)[J]. J. Anal. Appl. Pyrolysis,2007,80(1): 231~237.
    [44]Goretzki R, Fink G. Homogeneous and heterogeneous metallocene /MAO-catalyzed polymerization of functionalized olefins[J]. Macromol.Chem. Phys.,1999.200(4):881~ 886.
    [45]Boggioni L. Ravasio A, Zampa C, Ferro D R. Tritto I. Penultimate effects and chain epimerization in propene-norbornene copolymers by rac-Me2Si(2-Me-Ind):ZrCl2 C2-Symmetric Metallocene[J]. Macromolecules,2010.43 (10):4532~4542.
    [46]Karl M, Seybert G, Massa W, et al. Amidometallate von Seltenerdelementen. Synthese und Kristallstrukturen von [Na(12-Krone-4)2] [M{N(SiMe3)2}3(OSiMe3)] (M=Sm,Yb), [Na(THF)3Sm{N(SiMe3)2}3(C=C-Ph)], [Na(THF)6][Lu2(μ-NH2)(μ-NSiMe3){N(SiMe3)2}4] sowie von [NaN(SiMe3)2(THF)]2. Anwendungen der Seltenerdkomplexe als Polymerisationskatalysatoren[J]. Z. Anorg. Allg. Chem.1999,625(8):1301~1309.
    [47]Chen J X, Huang Y B, Li Z S, et al. Syntheses of iron, cobalt, chromium, copper and zinc complexes with bulky bis(imino)pyridyl ligands and their catalytic behaviors in ethylene polymerization and vinyl polymerization of norbornene[J]. J. Molecular Cataly.A, Chem, 2006,259(1-2):133~141.
    [48]Schultz R G. The chemistry of palladium complexes. Ⅲ. The polymerization of norbornene systems catalyzed by palladium chloride (1)[J]. Polym. Lett.1966,4(8):541~546.
    [49]Mckeon J E, Tarcher P S. Novel polynorbornenes, process for production thereof, and products produced therefrom[P].US 333,0815,1967.
    [50]Tanielian C, Kiennemann A, Osparpucu T. Influence de differents catalyseurs a base d'elements de transition du groupe Ⅷ sur la polymerisation du norbornene[J]. Can. J. Chem.1979,57(15):2022~2027.
    [51]Sen A, Lai T W. Catalysis by solvated transition-metal cations. Novel catalytic transformations of alkenes by tetrakis(acetonitrile)palladium ditetrafluoroborate. Evidence for the formation of incipient carbonium ions as intermediate[J]. J. Am. Chem. Soc.1981, 103(15):4627~4629.
    [52]Bao F, Lu X, Qiao Y, Gui G, Gao H, Wu Q. Nickel and cobalt complexes bearing β-ketoamine ligands:syntheses, structures and catalytic behavior for norbornene polymerization[J]. Appl. Organomet. Chem.2005,19(8):957~963.
    [53]Bao F, Lu Q X, Gao H, Gui G, Wu Q. Vinylic and ring-opening metathesis polymerization of norbornene with bis(β-ketoamine) cobalt complexes[J]. J. Polym. Sci. Part A:Polym. Chem.2005,43(22):5535~5544.
    [54]Sen A, Lai T W, Thomas R R. Reactions of electrophilic transition metal cations with olefins and small ring compounds. Rearrangements and polymerizations[J]. J. Organomet. Chem.1988,358(1-3):567~588.
    [55]Mehler C, Risse W. The Pd2+-catalyzed polymerization of norbornene[J]. Makromol. Chem., Rapid Commun.1991,12(5):255~259.
    [56]Mehler C, Risse W. Addition polymerization of norbornene catalyzed by palladium(2+) compounds. A polymerization reaction with rare chain transfer and chain termination [J]. Macromolecules,1992,25(16):4226~4228.
    [57]Jung I G, SEO J, Chung Y K. Polymerization of Carboxylic Ester Functionalized Norbornenes Catalyzed by (g3-Allyl)palladium Complexes Bearing N-Heterocyclic Carbene Ligands[J]. J. Polym. Sci:Part A:Polym. Chem.,2007,45(14):3042~3052.
    [58]Lassahn P G. Lozan V, Wu B, et al. Dihalogeno(diphosphane)metal(Ⅱ) complexes (metal= Co, Ni, Pd) as pre-catalysts for the vinyl/addition polymerization of norbornene- elucidation of the activation process with B(C6F5)3/AlEt3 or Ag[closo-l-CB11H12] and evidence for the in situ formation of "naked" Pd2+ as a highly active species[J]. Dalton Trans,.2003,23:4437~4450.
    [59]Mehler C, Risse W. Pd(Ⅱ)-catalyzed polymerization of norbornene derivatives[J]. Makromol. Chem., Rapid Commun.,1992,13(10):455~459.
    [60]Breunig S, Risse W. Transition-metal-catalyzed vinyl addition polymerizations of norbornene derivatives with ester groups[J]. Makromol. Chem.1992.193(11):2915~ 2927.
    [61]Melia J, Connor E, W.Risse, et al. Pd(Ⅱ)-catalyzed addition polymerizations of strained polycyclic olefins[J]. Makromol. Chem., Macromol. Symp.1995,89:433~442.
    [62]Eychenne P, Perez E, Rico I. et al. Moisand A. First example of latices synthesis via oligomerization of norbornene in aqueous emulsions, catalyzed by palladium chloride[J]. Colloid Polym. Sci.1993,271:1049~1054.
    [63]Yandulov D, Hennis A D, Polley J D, et al. Novel, Efficient, Palladium-Based System for the Polymerization of Norbornene Derivatives:Scope and Mechanism[J]. Organometallics 2001,20(13):2802~2812.
    [64]Nelkenbaum E,Kapon M, Eisen M S. Synthesis and Molecular Structures of Neutral Nickel Complexes. Catalytic Activity of (Benzamidinato)(acetylacetonato)nickel for the Addition Polymerization of Norbornene, the Oligomerization of Ethylene, and the Dimerization of Propylene[J]. Organometallics,2005,24(11):2645~2659.
    [65]Li. Y F, Jiang L, Wu, Q, et al. Nickel(Ⅱ) complexes supported by a fluorinated (3-diketiminate backbone ligand:synthesis, catalytic activity toward norbornene polymerization, and the oxygenated species[J]. Appl. Organomet. Chem.2006,20(3): 181~186.
    [66]Li, Y S. Li Y R, Li X F. New neutral nickel(Ⅱ) complexes bearing pyrrole-imine chelate ligands:synthesis, structure and norbornene polymerization behavior[J]. J.Organometal. Chem..2003.667(1-2):185~191.
    [67]Gao H Y, Pei L X. Wu Q, et al., Vinyl polymerization of norbornene with nickel catalysts bearing [N,N] six-membered chelate ring:Important influence of ligand structure on activity[J]. J. Mol. Catal. A:Chem.2008,280(1-2):81~86.
    [68]Li X F. Li Y S. Vinylic polymerization of norbornene by neutral nickel(Ⅱ)-based catalysts[J]. J. Polym. Sci., Part A:Polym. Chem.,2002.40(15):2680~2685.
    [69]Zhu Y Z, Liu J Y, Li Y S. et al. Synthesis, structure and norbornene polymerization behavior of nickel complexes bearing two β-ketoiminato chelate ligands[J]. J. Organometal. Chem.,2004,689(7):1295~1303.
    [70]He X H. Chen Y W. L Y M. et al. Addition polymerization of norbornene using bis((3-ketoamino)nickel(Ⅱ)/tris(pentafluorophenyl)borane catalytic systems[J].J. Polym. Sci., Part A: Polym. Chem.,2007.45(20):4733~4743.
    [71]Lassahn P-G, Janiak C, Oh J-S. Borane Activators for Nickel Catalysts for Olefin Polymerization[J]. Z. Naturforsch.2001,56b:1289~1292.
    [72]Janiak C, Lassahn P G. Concentration effects of methylalumoxane, palladium and nickel pre-catalyst and monomer in the vinyl polymerization of norbornene[J]. Polym. Bull.2002, 47(6):539~546.
    [73]Jang Y, Sung H-K, Lee S, et al. Effects of tris(pentafluorophenyl)borane on the activation of zerovalent-nickel complex in the addition polymerization of norbornene[J]. Polymer, 2005,46(25):11301~11310.
    [74]Jang Y, Sung H-K, Kwag H. Effects of tris(pentafluorophenyl)borane on the activation of the Ni(Ⅱ)-based catalyst in the addition polymerization of norbornene[J]. Eur. Polym. J. 2006,42(6):1250~1258.
    [75]Schroers M, Demeter J, Dehnicke, K, et al. Grafting of vinyl-type polynorbornene on polybutadiene and polyisoprene[J]. Macromol. Chem. Phys.2002,203(108):2658~2664.
    [76]Lassahn P-G, Janiak C, Oh J-S. Borane activators for late-transition metal catalysts in norbornene polymerization[J]. Macromol.Rapid Commun.2002,23(1):16~20.
    [77]Yang H J, Li Z L, Sun, W H. Highly active vinyl-polymerization of norbornene by [2-methyl-8-(diphenylphosphino)quinoline]nickel(Ⅱ) dichloride/methylaluminoxane[J]. J. Mol. Catal. A:Chem.,2003,206(1-2):23~28.
    [78]Goodall B L, Mclntosh Ⅲ L H, L. Rhodes F. New catalysts for the polymerization of cyclic olefins[J]. Makromol.Chem, Macromol. Symp.,1995,89:421~432.
    [79]Sato Y, Nakayama Y, Yasuda H. Controlled vinyl-addition-type polymerization of norbornene initiated by several cobalt complexes having substituted terpyridine ligands[J]. J. Organometal. Chem.,2004,689(4):744~750.
    [80]Alt F P, Heitz W. Co(Ⅱ)-catalyzed polymerization of bicyclo[2.2.1]hept-2-ene in the presence of ethane[J]. Acta. Polymerica.1998,49(9):477~481.
    [81]Alt F P, Heitz W. Vinylic polymerization of bicyclo[2.2.1]hept-2-ene by Co(Ⅱ) catalysis[J]. Macromol. Chem. Phys.1998,199,1951~1956.
    [82]Brekner D M, Osan D F, Rohrmann D J, et al. Bulk polymerisation with metallocene catalyst for the preparation of cycloolefin polymers [J]. EP:485893,1992.
    [83]Bergstrom C H, Starck P G., Seppala J V. Influence of the polymerization conditions on the rigidity of phenylnorbornene-ethylene copolymers made using ethylene bis (indenyl) zirconium dichloride and MAO[J]. J. Appl. Polym. Sci.1998,67(3):385~393.
    [84]Bergstrom C H, Sperlich B R. Seppala J V. Investigation of the microstructure of metallocene-catalyzed norbornene-ethylene copolymers using NMR spectroscopy[J]. J. Polym.Sci. Part A:Polym. Chem.2000,36(10):1633~1638.
    [85]Ruchatz D, Fink G. Ethene-Norbornene Copolymerization Using Homogenous Metallocene and Half-Sandwich Catalysts:Kinetics and Relationships between Catalyst Structure and Polymer Structure.2. Comparative Study of Different Metallocene- and Half-Sandwich/ Methylaluminoxane Catalysts and Analysis of the Copolymers by 13C Nuclear Magnetic Resonance Spectroscopy[J]. Macromolecules,1998,31(5):4674~4680.
    [86]Ruchatz D, Fink G. Ethene-Norbornene Copolymerization with Homogeneous Metallocene and Half-Sandwich Catalysts:Kinetics and Relationships between Catalyst Structure and Polymer Structure.4. Development of Molecular Weights[J]. Macromolecules,1998, 31(15):4684~4686.
    [87]Hasan T, Ikeda T, Shiono T. Ethene-Norbornene Copolymer with High Norbornene Content Produced by ansa-Fluorenylamidodimethyltitanium Complex Using a Suitable Activator[J]. Macromolecules,2004,37(23):8503~8509.
    [88]Kaminsky W, Noll A. Copolymerization of norbornene and ethene with homogenous zirconocenes/methylaluminoxane catalysts[J]. Polym Bull.1993.31:175~182.
    [89]Kaminsky W, Derlin S, Hoff M. Copolymerization of propylene and norbornene with different metallocene catalysts[J]. Polymer,2007,48(25):271~7278.
    [90]Shiono T, Sugimoto M, Hasan T, Cai Z G, Ikeda T. Random copolymerization of norbornene with higher 1-alkene with ansa-fluorenylamidodimethyltitanium catalyst[J]. Macromolecules,2008.41:8292~8294.
    [91]Wendt R A. Fink G. Homogeneous metallocene/MAO-catalyzed polymerizations of polar norbornene derivatives:copolymerizations using ethene, and terpolymerizations using ethene and norbornene[J]. Macromol. Chem. Phys.,2000.201(12):1365~1373.
    [92]Singleton D A. Hang C. Szymanski M J, et al. A New Form of Kinetic lsotope Effect. Dynamic Effects on Isotopic Selectivity and Regioselectivity[J]. J. Am. Chem. Soc.2002, 125(5):1176~1177.
    [93]Tanielian C, Kiennemann A, Osparpucu T J. Influence de differents catalyseurs a base d'elements de transition du groupe VIII sur la polymerisation du norbornene[J]. Can. Catal. Chem.,1979,57(15):2022~2027.
    [94]Koichi U, Takeshi A, Yasuhiko N, et al. Highly threodiisotactic polymerization of triphenylmethyl crotonate[J]. Macromolecules,1993,26(25):7086~7091.
    [95]Szuromi E, Shen H. Goodall B L, et al. Polymerization of Norbornene and Methyl Acrylate by a Bimetallic Palladium(Ⅱ) Allyl Complex[J]. Organometallics 2008,27(3): 402~409.
    [96]Zhao C-T, Ribeiro M R. Portela, M F. Addition polymerisation of 5-vinyl-2-norbornene with nickel bis(acetyl acetonate)/methylaluminoxane system[J].J. Mol. Catal. A:Chem., 2002,185(1-2):81~85
    [97]Azoulay J D, Itigaki K, Wu G. et al. Influence of Steric and Electronic Perturbations on the Polymerization Activities of α-Iminocarboxamide Nickel Complexes[J]. Organometallics. 2008,27(10):2273~2280.
    [98]Wang H Y, Zhang J. Jin G-X. et al. Nickel(Ⅱ) complexes with β-enaminoketonato chelate ligands:Synthesis, solid-structure characterization and reactivity toward the addition polymerization of norbornene[J]. J. Organometal. Chem.,2006,691(6):1275~1281.
    [99]Breunig S. Risse W. Transition-metal-catalyzed vinyl addition polymerizations of norbornene derivatives with ester groups[J]. Makromol. Chem.,1992,193(11):2915~ 2927.
    [100]Reinmuth A, Mathew J P, Melia J, et al. (η3-allyl)palladium(Ⅱ) catalysts for the addition polymerization of norbornene derivatives with functional groups[J]. Macromol. Rapid Commun.,1996,17(3):173~180.
    [101]Mathew J P, Reinmuth A, Melia J, et al. (η3-Allyl)palladium(Ⅱ) and Palladium(Ⅱ) Nitrile Catalysts for the Addition Polymerization of Norbornene Derivatives with Functional Groups[J]. Macromolecules,1996,29(8):2755~2763.
    [102]Heinz B S, Heitz W, Krugel S A, et al. Poly(norbornene carboxylic acid ester)s:Synthesis and properties[J]. Acta Polymrica.1997,48(9):385~391.
    [103]Heinz B S, Alt F P, Heitz W. Pd(Ⅱ)-catalyzed vinylic polymerization of norbornene and copolymerization with norbornene carboxylic acid esters[J], Macromol Rapid Commun 1998,19(5):251~256.
    [104]Lipian J H, Rhodes L F, Goodall B L, et al. Catalyst and methods for polymerizing cycloolefins[P]. US:6455650,2002.
    [105]Funk J K, Andes C E, Sen A. Addition Polymerization of Functionalized Norbornenes: The Effect of Size, Stereochemistry, and Coordinating Ability of the Substituent[J]. Organometallics,2004,23(8):1680~1683.
    [106]Shin, B G, Jang M S, Yoon D Y, et al. Vinyl-type polymerization of norbornene dicarboxylic acid dialkyl esters[J]. Macromol. Rapid Commun.2004,25(60):728~732.
    [107]Kang M, Sen A. Reaction of Palladium 1,5-Cyclooctadiene Alkyl Chloride with Norbornene Derivatives:Relevance to Metal-Catalyzed Addition Polymerization of Functionalized Norbornenes[J]. Organometallics,2004,23(23):5396~5398.
    [108]Yamashita M, Takamiya I, Jin K, et al. Syntheses and Structures of Bulky Monophosphine-Ligated Methylpalladium Complexes:Application to Homo-and Copolymerization of Norbornene and/or Methoxycarbonylnorbornene[J]. Organometallics, 2006,25(19):4588~4595.
    [109]Goodall B L, Benedikt G M, Mclntosh Ⅲ L H, et al. Process for making polymers containing a norbornene repeating unit by addition polymerization using an organo (nickel or palladium) complex[P].US:5,468,819,1995.
    [110]Haselwander Th F A, Heitz W, Krugel St A, Wendorff J H. Rigid Random Coils: Rotationally Confined Chain Molecules[J]. Macromolecules,1997,30(18):5345~5351.
    [111]Kim J M, Shin H Y, Park K H, et al. Synthesis of Norbornene-Derived Polymers Having Pendant Phenoxyquinones for Photochromism[J]. Macromolecules,2001,34(13):4291~ 4293.
    [112]Tran H V, Hung R J, Chiba T, et al. Metal-Catalyzed Vinyl Addition Polymers for 157 nm Resist Applications.2. Fluorinated Norbornenes:Synthesis, Polymerization, and Initial Imaging Results[J]. Macromolecules,2002,35(17):6539~6549.
    [113]Son S U, Kim D H, Jung I G, et al. Use of the Pauson-Khand reaction products as monomers in the palladium(Ⅱ)-catalyzed homopolymerization and copolymerization of norbornene derivatives[J]. J. Polym. Sci., Part A:Polym. Chem.,2003,41(1):76~83。
    [114]Yamashita M, Takamiya I, Jin K, et al. Syntheses and Structures of Bulky Monophosphine-Ligated Methylpalladium Complexes:Application to Homo- and Copolymerization of Norbornene and/or Methoxycarbonylnorbornene[J]. Organometallics, 2006,25(19):4588~4595.
    [115]Lassahn P G, Janiak C, Oh J S. Borane Activators for Late-Transition Metal Catalysts in Norbornene Polymerization[J]. Macromol. Rapid Commun.2002,23(1):16~20.
    [116]Berchtold B, Lozan V, Lassahn P G, et al. Nickel(Ⅱ) and palladium(II) complexes with α-dioxime ligands as catalysts for the vinyl polymerization of norbornene in combination with methylaluminoxane, tris(pentafluorophenyl)borane, or triethylaluminum cocatalyst systems[J]. J. Polym. Sci., Part A:Polym. Chem.2002.40(21):3604~3614.
    [117]Kang S H, Shin H D, Oh C H, et al. Synthesis and Photoisomerization Properties of Polynorbornenes with Azobenzene Chromophores[J]. Bull.Korean Chem.Soc.,2002,23(7): 957~963
    [118]Hennis A D. Polley J D, Long G S, et al. Novel, Efficient, Palladium-Based System for the Polymerization of Norbornene Derivatives:Scope and Mechanism[J]. Organometallics. 2001,20(13):2802~2812.
    [119]Suzuki H, Matsumura S, Satoh Y, et al. Random copolymerizations of norbornene with other monomers catalyzed by novel Ni compounds involving N-or O-donated ligands React[J]. Funct. Polym.2004,58(2):77~91.
    [120]Wang L Y, Li Y F, Wu Q, et al. Homo- and copolymerization of norbornene and norbornene derivative with Ni- and Pd-based β-ketoiminato complexes and MAO[J]. Eur. Polym. J.,2006,42(20):322~327.
    [121]Lee B Y, Kim Y H, Shin H J, et al. Synthesis. Molecular Structures, and Norbornene Polymerization of Methallyl Nickel(Ⅱ) Complexes of 2-(Diphenylamino)benzoate[J]. Organometallics,2002,21(16):3481~3484.
    [122]Berchtold B, Lozan Vasile. Lassahn P G. et al. Nickel(Ⅱ) and palladium(Ⅱ) complexes with α-dioxime ligands as catalysts for the vinyl polymerization of norbornene in combination with methylaluminoxane. tris(pentafluorophenyl)borane, or triethylaluminum cocatalyst systems[J]. J. Polym. Sci., Part A:Polym. Chem..2002.40(21):3604~3614.
    [123]Kaita S, Matsushita K, Tobita M. et al. Cyclopentadienyl nickel and palladium complexes/activator system for the vinyl-type copolymerization of norbornene with norbornene carboxylic acid esters:control of polymer solubility and glass transition temperature[J]. Macromol. Rapid Commun.,2006.27(20):1752~1756.
    [124]He F P, Chen Y W, He X H, Chen M Q, Zhou W H. Wu Q. Copolymerization of norbornene and 5-norbornene-2-yl acetate using novel bis(β-ketonaphthylamino) Ni(Ⅱ)/B(C6F5)3/AlEt3 catalytic system[J]. J Polym Sci Part A:Polym Chem.2009.47(16):3990~4000.
    [125]Ban H T, Hagihara H, Tsunogae Y. Cai Z, Shiono T. Highly thermostable and low birefringent norbornene-styrene copolymers with advanced optical properties:A potential plastic substrate for flexible displays[J]. J Polym Sci Part A:Polym Chem,2011,49(1): 65~71.
    [126]于建香,刘太奇.电纺丝技术制备聚降冰片烯纳米纤维[J].高分子材料科学与工程,2009,25(1):137-140.
    [127]Tetsuka H, Hagiwara M, Kaita S. Addition-type poly(norbornene)s with siloxane substituents:synthesis, properties and nanoporous membrane[J]. Polym J,2011,43(1): 97~100.
    [128]He X H, Yao Y Z, Luo X, Zhang J K, Liu Y H, Zhang L, Wu Q. Nickel(Ⅱ) complexes bearing N,O-chelate ligands:synthesis, solid-structure characterization, and reactivity toward the polymerization of polar monomer[J]. Organometallice,2003,22(24):4952~ 4957.
    [129]Wendt R A, Angermund K, Jensen V, Thiel W, Fink G. Ethene copolymerization with trialkylsilyl protected polar norbornene derivates[J]. Macromol Chem Phys,2004,205(3): 308~318.
    [130]Kelen T, TUdOs F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method[J]. J Macromol Sci, Pure Appl Chem,1975,9(1):1~27.
    [131]Gao H Y, Chen Y, Zhu F M, Wu Q. Copolymerization of norbornene and styrene catalyzed by a novel anilido-imino nickel complex/methylaluminoxane system[J]. J Polym Sci Part A: Polym Chem,2006,44(18):5237~5246.
    [132]Tsujino T, Saeguss T, Furukawa J. Polymerization of norbornene by modified ziegler-catalysts[J]. Makromol Chem,1965,85(1):71~79.
    [133]Sacchi M C, Sonzogni M, Losio S, Forlin F, Locatelli P, Tritto I, Licchelli M. Vinylic polymerization of norbornene by late transition metal-based catalysis[J]. Macromol Chem Phys,2001,202(10):2052~2058.
    [134]Nishizawa O, Misaka H, Sakai R, Kakuchi T, Satoh T. Copolymerization of ethylene and norbornene using cyclopentadienylzirconium trichloride activated by isobutyl-modified methylaluminoxane[J]. J Polym Sci Part A:Polym Chem,2008,46(22):7411~7418.
    [135]Skupov K M, Marella P R, Hobbs J L, McIntosh L H, Goodall B L, Claverie J P. Catalytic copolymerization of ethylene and norbornene in emulsion[J]. Macromolecules 2006, 39(13):4279~4281.
    [136]Cai Z G, Nakayama Y, Shiono T. Living random copolymerization of propylene and norbornene with ansa-fluorenylamidodimethyltitanium complex:synthesis of novel syndiotactic polypropylene-b-poly(propylene-ran-norbornene)[J]. Macromolecules,2006, 39(6):2031~2033.
    [137]Boggioni L, Zatnpa C, Ravasio A. Propene-norbornene copolymers by C2-symmetric metallocene rac-Et(Ind)2ZrCl2:influence of reaction conditions on reactivity and copolymer properties[J]. Macromolecules,2008.41(14):5107~5115.
    [138]Jung H Y, Hong S-D, Jung M W, Lee H, Park Y-W. Norbornene copolymerization with α-olefins using methylene-bridged ansa-zirconocene[J]. Polyhedron,2005,24(11):1269~ 1273.
    [139]Kaminsky W, Hoff M, Derlin S. Tailored Branched Polyolefins by Metallocene Catalysis[J]. Macromol Chem Phys,2007,208(13):1341~1348.
    [140]Barnes D A, Benedikt G M, Goodall B L, Huang S S, Kalamarides H A, Lenhard S, Mclntosh L H Ⅲ, Selvy K T, Shick R A, Rhodes L F. Addition polymerization of norbornene-type monomers using neutral nickel complexes containing fluorinated aryl ligands[J]. Macromolecules 2003,36(8):2623~2632.
    [141]Leone G, Boglia A, Boccia A C, Scafati S T, Bertini F, Ricci G. Vinyl-type addition polymerization of norbornene and synthesis of norbornene macromonomers in the presence of ethylene catalyzed by cobalt(II)-phosphine complexs[J]. Macromolecules,2009,42(23): 9231~9237.
    [142]Benedikt G M, Elec E, Goodall B L, Kalamarides H A, Mclntosh L H Ⅲ, Selvy K T, Rhodes L F, Selvy K T. Copolymerization of ethene with norbornene derivatives using neutral nickel catalysts[J]. Macromolecules,2002,35(24):8978~8988.
    [143]Wilks B R, Chung W J, Ludovice P J, Rezac M R, Meakin P, Hill A J. Impact of average free-volume element size on transport in stereoisomers of polynorbornene. I. Properties at 35 ℃[J]. J Polym Sci Part B:Polym Phys,2003,41(18):2185~2199.
    [144]Peruch F. Cramail H, Deffieux A. Homopolymerization and copolymerization of styrene and norbornene with Ni-based/MAO catalysts[J]. Macromol Chem Phys.1998.199(10): 2221~2227.
    [145]Zhao C T. Ribeiro M D R, Portela M F. Pereira S. Nunes T. Homo- and copolymerisation of norbornene and styrene with nickel bis(acetyl acetonate)/methylaluminoxane system[J]. Eur Polym J,2001,37(1):45~54.
    [146]Mi X, Ma Z, Wang L Y. Ke Y C, Hu Y L. Homo- and copolymerization of norbornene and styrene with Pd- and Ni-based novel bridged dinuclear diimine complexes and MAO[J]. Macromol Chem Phys.2003.204(5-6):868~876.
    [147]Bao F. Ma R. Jiao Y H. Homo- and copolymerization of norbornene with styrene catalyzed by a series of copper(Ⅱ) complexes in the presence of methylalumnoxane[J]. Appl Organometal Chem,2006,20(6):368~374.
    [148]Gao H Y, Chen Y, Zhu F M, Wu Q. Copolymerization of norbornene and styrene catalyzed by a novel anilido-imino nickel complex/methylaluminoxane system[J]. J Polym Sci Part A:Polym Chem,2006,44(18):5237~5246.
    [149]Ban H T, Hagihara H, Tsunogae Y, Cai Z G, Shiono T. Highly thermostable and low birefringent norbornene-styrene copolymers with advanced optical properties:A potential plastic substrate for flexible displays[J].J Polym Sci Part A:Polym Chem,2011.49(1): 65~71.
    [150]Reinmuth A, Mathew J P, Melia.J,Risse W. (η3-allyl)palladium(Ⅱ) catalysts for the addition polymerization of norbornene derivatives with functional groups[J]. Macromol Rapid Commun,1996,17(3):173~180.
    [151]Mathew J P, Reinmuth A, Melia J, Swords N, Risse W. (η3-Allyl)palladium(II) and palladium(II) nitrile catalysts for the addition polymerization of norbornene derivatives with functional groups[J]. Macromolecules,1996,29(8):2755~2763.
    [152]Heinz B S, Alt F P, Heitz W. Pd(II)-catalyzed vinylic polymerization of norbornene and copolymerization with norbornene and copolymerization with norbornene carboxylic acid esters[J]. Macromol Rapid Commun,1998,19(5):251~256.
    [153]Hennis A D, Polley J D, Long G S, Sen A, Yandulov D, Lipian J, Benedikt G. M, Rhodes L F, Huffman J. Novel, efficient, palladium-based system for the polymerization of norbornene derivatives:scope and mechanism[J]. Organometallics,2001,20(13):2802~ 2812.
    [154]Funk J K Andes C E, Sen A. Addition polymerization of functionalized norbornenes:the effect of size, stereochemistry, and coordinating ability of the substituent[J]. Organometallics,2004,23(8):1680~1683.
    [155]Kang M, Sen A. Reaction of palladium 1,5-cyclooctadiene alkyl chloride with norbornene derivatives:relevance to metal-catalyzed addition polymerization of functionalized norbornenes[J]. Organometallics,2004,23(23):5396~5398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700