行星际扰动与对地效应的统计分析和模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳瞬变活动如太阳耀斑、日冕物质抛射(CME)和射电爆发等,以及冕洞太阳风高速流是空间天气的主要驱动源,是造成行星际扰动及相应地磁扰动的主要原因,对日地空间环境具有举足轻重的影响。本文借助数值模拟和统计分析相结合的方法,对太阳活动、行星际扰动和相应地磁扰动的相关性及相关的预报方法进行了研究。
     利用Hakamada-Akasofu-Fry(HAF)太阳风模型,通过比较有无爆发事件发生时的模拟结果,首次区分了第23太阳周(1996~2005)的三种行星际结构:“纯”-共转相互作用区(CIR),CIR与行星际日冕物质抛射(ICME)的相互作用结构和“纯”-ICME。在此基础上对CIR的重现型地磁活动;CIR与激波、磁暴的关系进行了统计性分析,其结果如下:(1)在第23太阳活动周共识别了157个CIR事件,大部分事件发生在下降相。(2)引入相邻卡林顿周的Kp指数的相关系数( CCKCCR )来反映地磁活动的重现性程度。CCKCCR的最大值出现在太阳活动下降相,表明重现型地磁活动在这个时期占主导地位。通过分析冕洞的纬度和CCKCCR的关系,可以看出CIR在重现型地磁活动的重要作用。(3)在1AU处,41%的CIR可以形成激波,且多为前向激波,其原因可能是:相对于背景太阳风,前向激波是远离太阳,向西且向赤道传播的,而后向激波是靠近太阳,向东且向极区传播的,因而在1AU处黄道面附近的Wind,ACE卫星观测到更多的是前向激波。(4)CIR引发的磁暴与激波没有必然联系,仅有44%与激波相伴随。(5)当Dst指数大于-100 nT时,CIR引起的磁暴的Dst指数与行星际磁场Bz,晨昏电场Ey,和太阳风-磁能耦合函数(ε)具有较好的线性相关关系。(6)由于地球和太阳相对位置的变化,CIR的地磁活动具有明显的季节效应,在二分点(春分和秋分)附近最强。这些统计结果,可以为CIR地球物理效应的中长期预报提供重要参考。
     建立了一种预报激波到达时间的数据库新方法。基于HAFv.1模式,利用大量虚拟事件建立一个激波渡越时间数据库,该数据库包括:虚拟事件的源位置,初始激波速度,发生年份以及其对应的渡越时间。只要输入太阳观测事件的源位置,初始激波速度和与第23太阳周相应的发生年份,就可以在数据库中迅速查找到该事件所对应的激波到达时间。对于1997年2月到2002年8月间的130个历史激波事件的预报试验表明数据库方法的预报能力并不亚于STOA、ISPM、HAFv.2模型,从而显示了该模型在空间天气实时预报中所具有的潜力。另外,由于太阳活动的周期性,我们选取了23个其他太阳活动周的事件,尝试用该数据库进行预报,也得到了较好的预报结果。这表明,该数据库方法可能也适用于其他太阳周。然而,该数据库方法也有它的不足之处,如没有考虑源表面磁场的短期变化,致使大尺度日球电流片位形以及背景太阳风结构等都有所偏差,使得该方法的预报结果存在一定误差。另外,为了简单起见,该数据库方法向其它太阳周的拓展也没有得到较好的太阳活动周的相位对应。这些因素将会在未来的工作中考虑。目前的工作旨在提供一种可以迅速预报激波到达时间的新方法。
     给出预报行星际激波到达时间的两种一维数值模型:一种是基于一维流体方程,采用Roe格式建立起来的激波扰动的传播模型(称之为1D-HD模型);另一种是采用时空守恒元和解元( CE/SE )方法建立起来的一维磁流体(MHD )激波传播模型(称之为1D-MHD(CE/SE)模型)。选取了一定的激波样本事件,对激波到达地球轨道附近的传播时间进行了预测,并将预报结果与STOA,ISPM,HAFv.2以及SPM模型所得结果进行了比较。结果表明,这两种模型的预报精度与其它模型相比基本相当。表明这两种模型在空间天气的激波到达时间的预报方面有潜在的应用价值。这两个模型虽然是简单的一维数值模型,但却可以达到迅速预报激波到达时间的目的,而且可以通过进一步的改进,期望可以对激波能否到达1AU及地球轨道给出判断。
Solar transient activities, such as solar ?ares, coronal mass ejections (CMEs),radio bursts, and fast solar wind from coronal hole are important drivers of spaceweather as they can induce interplanetary disturbances and trigger geomagneticstorms. They play important roles in leading to adverse solar-terrestrial environ-ment. In this paper, based on numerical simulation and statistical analysis, thecorrelations between the solar transients, interplanetary disturbances and corre-sponding geomagnetic disturbances together with the related prediction methodsare investigated.
     Three kinds of interplanetary structures:“pure”corotating interaction re-gions (CIR), interaction of CIR with interplanetary coronal mass ejection (ICME),and“pure”ICME caused by transient events, are identified for the first time byusing the Hakamada-Akasofu-Fry (HAF) model. We investigated CIRs’recur-rent geomagnetic activity and the relations among CIRs, shocks and geomagneticstorms in the heliosphere (< 1AU) during solar cycle 23 (1996~2005). The mainresults are: (1) There are 157“pure”CIRs in the 23rd solar cycle and most ofCIRs occur in the declining phase. (2) CCKCCR is calculated to represent thelevel of recurrent geomagnetic disturbances. The maximum CCKCCR appearsduring the descending phase near solar minimum so that recurrent geomagneticactivity is dominant during this period. The relation between the latitude ofcoronal hole and CCKCCR shows that CIRs play important roles in recurrentgeomagnetic activity. (3) 41% of CIRs are associated with interplanetary shocksat 1AU and most of shocks are forward shocks. This is probably the reason whyWind and ACE near the ecliptic plane are expected to see more forward shocks’propagating antisunward, westward, and equatorward than reverse shocks’prop-agating sunward, eastward, and poleward if both types of shocks form near oneAU. (4) CIR-related shock is not a necessary condition for generating a mag-netic storm, only 44% CIR-related storms were related to CIR-related shocks,but most CIR-related shocks are related to storms. (5) The Dst index that cor- responds to CIR-related storms has a better linear relationship with IMF Bz,Ey, and the coupling function (ε) when the Dst indices are higher than -100 nT.(6) The geoe?ectiveness of CIRs appears clearly to have seasonal e?ects due tothe changing relative orientation of the Earth and the Sun. The overall geomag-netic disturbance levels are higher at autumn equinox for antisunward directionof interplanetary magnetic field( IMF) and spring equinox for sunward direc-tion. These statistical results will be useful for the long-term prediction in thegeoe?ectiveness of CIRs.
     A practical database method for predicting the interplanetary shock arrivaltime at L1 point is presented. A shock transit time database based on HAFv.1(version 1 of the Hakamada-Akasofu-Fry model) is established. The databaseorganized on a multidimensional grid of source location, initial coronal shockspeed, and the year of occurrence of the hypothetical solar event. The arrivaltime at L1 for any given solar event occurring in the 23rd solar cycle can bepredicted by looking up in the grid of the database according to source location,the initial coronal shock speed, and the year of occurrence in cycle 23. Theprediction test of the 130 observed solar events during the period from February1997 to August 2002 shows that its success rate could be practically equivalentto those by the shock time of arrival (STOA) model, the interplanetary shockpropagation model (ISPM), and the HAFv.2 model. In particular, this method’sperformance for a set of events in other cycles is as good as that of the STOAand ISPM models. This gives us confidence in its application to other cycles.From the viewpoint of long-term periodicity for solar activity, it is expected thatthe database method can be applicable to the next solar cycle 24. However, thedatabase method also has its shortcomings. We do not take into account of theshort-time variations of coronal magnetic field, which will make the large-scalestructure of the heliospheric current sheet and background solar wind somewhatdeviate from the real situations. And these factors would induce some errors forprediction of the database method. Moreover, for simplicity, the phase of othersolar cycle does not well correspond to the one of cycle 23 for the applicationto other cycles. This will be considered in the future work. The present workprovides us a new method to predict the shock arrival time rapidly.
     Two shock propagation models are established to predict the arrival timeof interplanetary shocks at 1AU. One interplanetary shock propagation modelis built up based on 1D-HD equations by using Roe scheme. Another is a 1D-MHD shock propagation model by using the space-time conservation elementand solution element (CE/SE) method. Applying these models to solar eruptiveevents during the 23rd solar cycle to evaluate the forecasting skill, it is found thatour models could be practically equivalent to the other models in forecasting theshock arrival time. These results might demonstrate a potential capability of ourmodels in terms of real-time forecasting. Although these models are simple 1Dnumerical models, but they can predict the shock arrival time rapidly. Moreover,they were expected to forecast“no shock”by improving them in the future work.
引文
涂传诒等,日地空间物理学,科学出版社, 1988.
    刘四清,魏奉思,赵寄昆,陈合宏和孙炜,用三维运动学模式研究太阳暗条消失与行星际扰动,地球物理学报, 41(6), 1998.
    王家龙,张训械,黄泽荣,神经网络法用于太阳质子事件警报,天体物理学报,19(3), 318–323, 1999.
    王水,李波,赵寄昆,日冕物质抛射,天文学进展, 18(3), 192, 2000.
    林元章,太阳物理导论,科学出版社, 2000.
    章振大,日冕物理,科学出版社, 2000.
    韩正忠,唐玉华,太阳日冕物质抛射特性的模糊分类研究,天文学报, 43(4),2002.
    叶品中和汪毓明, 2000年行星际南向磁场事件及相关CME的若干分析,空间科学学报, 23(1), 7–17, 2003.
    焦维新,空间天气学,气象出版社, 2003.
    赵海娟,占腊生,戎永辉,国内外空间天气短期预报和警报及其现状,天文研究与技术, 1(1), 28–46, 2004.
    刘振兴等,太空物理学,哈尔滨工业大学出版社, 2005.
    张英,日地空间环境与空间天气预报,国外科技动态, (9), 27–35, 2006.
    王水,空间天气研究的主要科学问题,中国科学技术大学学报, 37(8), 807–812,2007.
    王水,魏奉思,中国空间天气研究进展,地球物理学进展, 22(4), 1025–1029,2007.
    王赤,空间物理和空间天气探测与研究,地球物理学进展, 10(6), 1025–1029,2008.
    魏奉思,于晟,空间天气科学成为国际科技活动热点,科学时报, 2009.
    王传兵,赵寄昆,陈合宏,李毅,王水,孙炜, and S. Akasofu,运用三维模型对行星际磁场南北分量的预测,地球物理学报, 45(6), 2002.
    Akasofu, S. I., and C. D. Fry, A first generation numerical geomagnetic stormprediction scheme, Planet Space Sci., 34, 77–92, doi:10.1016/0032-0633(86)90105-4, 1986.
    Akasofu, S. I., and L. H. Lee, A study of the interplanetay disturbances on 1-4april 1979, Planet Space Sci., 36(7), 1988.
    Alves, M. V., E. Echer, and W. D. Gonzalez, Geoe?ectiveness of corotatinginteraction regions as measured by dst index, J. Geophys. Res., 111, doi:10.1029/2005JA011379, 2006.
    Arge, C. N., and V. J. Pizzo, Improvement in the prediction of solar wind condi-tions using near-real-time solar magnetic field updates, J. Geophys. Res., 105,10,465–10,479, 2000.
    Arnoldy, R. L., Signature in interplanetary medium for substorms, J. Geophys.Res., 76, 5189, 1971.
    Badruddin, Interplanetary shocks, magnetic clouds, stream interfaces and result-ing geomagnetic disturbances, Planet. Space Sci., 46, 1015–1028, 1998.
    Ballatore, P., E?ects of fast and slow solar wind on the correlations betweeninterplanetary medium and geomagnetic activity, J. Geophys. Res., 107(A9),2002.
    Borovsky, J. E., and M. H. Denton, Di?erences between cme-driven storms andcir-driven storms, J. Geophys. Res., 111, doi:10.1029/2005JA011447, 2006.
    Burlaga, L. F., Interplanetary magnetohydrodynamics., Int. Ser. Astron. Astro-phys., Vol. 3,, 1995.
    Burlaga, L. F., J. F. Lemaire, and J. M. Turner, Interplanetary current sheets at1 AU, J. Geophys. Res., 82(11), 3191–3200, 1977.
    Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical relationshipbetween interplanetary conditions and dst, J. Geophys. Res., 80, 4204, 1975.
    Cane, H. V., I. G. Richardson, and O. C. S. Cyr, Coronal mass ejections, inter-planetary ejecta and geomagnetic storms, Geophys. Res. Lett., 27, 3591–3594,2000.
    Cargo, P., and G. Gallice, Roe matrices for ideal mhd and systematic constructionof roe matrices for systems of conservation laws, J. Comput. Phys., 136, 446–466, 1997.
    Chang, S. C., The method of space-time conservation element and solutionelement-a new approach for solving the navier-stokes and euler equations, JComput Phys, 119, 295–324, 1995.
    Chang, S. C., Robust and simple non-re?ecting boundary conditions for the eulerequations- a new approach based on the space-time ce/se method, NASA/TM-212495, 2003.
    Chao, J. K., M. B. Moldwin, and S. I. Akasofu, Simulation of january 1-7, 1978,events, J. Geophys. Res., 92, 11,183–11,188, 1987.
    Chapman, S., and J. Bartels, Geomagnetism, vol. 1, chap. IX, 1940.
    Cho, K. S., Y. J. Moon, M. Dryer, C. D. Fry, Y. D. Park, and K. S. Kim, Astatistical comparison of interplanetary shock and cme propagation models, J.Geophys. Res., 108, 1445–1452, 2003.
    Crooker, N. U., and E. W. Cliver, Postmodern view of m-regions, J. Geophys.Res., 99, 23,383–23,390, 1994.
    Dessler, A. J., and E. N. Parker, Hydromagnetic theory of geomagnetic storms,J. Geophys. Res., 64, 2239, 1959.
    Doyle, M. A., and W. J. Burke, S3-2 measurements of the polar cap potential, J.Geophys. Res., 88, 9125, 1983.
    Dryer, M., C. D. Fry, W. Sun, C. S. Deehr, Z. Smith, S. I. Akasofu, and M. D.Andrews, Prediction in real time of the 2000 july 14 heliospheric shock waveand its companions during the‘bastille’epoch, solar physics, 204, 265–284,doi:10.1023/A:1014200719867, 2001.
    Dryer, M., Z. Smith, C. D. Fry, W. Sun, C. S. Deehr, and S. I. Akasofu, Real-timepredictions of interplanetary shock arrival at l1 during the”halloween 2003”epoch, Space Weather, 2, doi:10.1029/2003SW000087, 2004.
    Dungey, J. W., Interplanetary magnetic field and the auroral zones,, Phys. Rev.Lett., 6, 47–48, 1961.
    Echer, E., W. D. Gonzalez, A. D. Lago, L. E. A. Vieira, F. L. Guarnieri, A. L. C.Gonzalez, and N. J. Schuch, Interplanetary shocks and geomagnetic activityduring solar minimum (2000) and solar minimum (1995-1996), Adv. Space Res.,36, 2318–2322, 2005.
    Fainshtein, V. G., G. V. Rudenko, and V. V. Grechnev, An investigation of thelarge-scale magnetic field variations in the corona prior to and after cme erup-tions, Sol. Phys., 181, 131–158, 1998.
    Fairfield, D. H., and L. J. Cahill, Transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 71, 155, 1966.
    Feminella, F., and M. Storini, Large-scale dynamical phenomena during solar activity cycles, Astron. And Astrophys., 322, 311–319, 1997.
    Feng, X. S., and X. H. Zhao, Geomagnetic response to magnetic clouds of di?erent polarity, Sol. Phys., 238, 167–186, 2006.
    Fenrich, F. R., and J. G. Luhmann, A new prediction method for the arrival time of interplanetary shocks, Geophys. Res. Lett., 25, 2999–3002, 1998.
    Forbush, S. E., Three unusual cosmic ray increases possibly due to charged par-ticles from the sun, Phys. Rev., 70, 771–772, 1946.
    Forsyth, R. J., and E. Marsch, Solar origin and interplanetary evolution of streaminterfaces, Space Sci. Rev., 89, 7–20, doi:10.1023/A:1005235626013, 1999.
    Fry, C. D., and S. I. Akasofu, Latitudinal dependence of solar wind speed, PlanetSpace Sci., 35, 913–920, doi:10.1016/0032-0633(87)90069-9, 1987.
    Fry, C. D., W. Sun, C. S. Deehr, M. Dryer, Z. Smith, S. I. Akasofu, M. Tokumaru,and M.Kojima, Improvements to the haf solar wind model for space weatherpredictions, J. Geophys. Res., 106, 20,985–21,002, 2001.
    Fry, C. D., M. Dryer, Z. Smith, W. Sun, C. S. Deehr, and S. I. Akasofu, Forecastingsolar wind structures and shock arrival times using an ensemble of models, J.Geophys. Res., 108, doi:10.1029/2002JA009474, 2003.
    Gabriel, S. B., and G. J. Patrick, Solar energetic particle events: phenomenologyand prediction, Space Sci. Rev., 107, 55–62, 2003.
    Gonzalez, W. D., and F. S. Mozer, A quantitative model for the potential re-sulting from reconnection with an arbitrary interplanetary magnetic field, J.Geophys. Res., 79, 4186, 1974.
    Gonzalez, W. D., and B. T. Tsurutani, Criteria of interplanetary parameterscausing intense magnetic storms (dst < -100 nt), Planet Space Sci., 35, 1101–1109, 1987.
    Gonzalez, W. D., B. T. Tsurutani, A. L. C. Gonzalez, E. J. Smith, F. Tang, and S.I. Akasofu, Solar wind-magnetosphere coupling during intense magnetic storms(1978 - 1979), J. Geophys. Res., 94, 8835, 1989.
    Gonzalez, W. D., A. L. C. Gonzales, and B. T. Tsurutani, Dual-peak solar cycledistribution of intense geomagnetic storms, Planet Space Sci., 38, 181–187,1990.
    Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T.Tsurutani, and V. M. Vasyliunas, What is a geomagneitc storm?, J. Geophys.Res., 99, 5771, 1994.
    Gonzalez, W. D., B. T. Tsurutani, and A. L. C. de Gonzalez, Interplanetary originof geomagnetic storms, Space Sci. Rev., 88, 529–562, 1999.
    Gonzalez-Esparza, J. A., A. Lara, E. Perez-Tijerina, A. Santillan, and N. Gopal-swamy, A numerical study on the acceleration and transit time of coronalmass ejections in the interplanetary medium, J. Geophys. Res., 108, doi:10.1029/2001JA009186, 2003.
    Gopalswamy, N. A., A. Lara, and R. P. Lepping, Interplanetary acceleration ofcoronal mass ejections, Geophys. Res. Lett., 27(2), 145, 2000.
    Gopalswamy, N. A., A. Lara, and S. Yashiro, Predicting the 1-au arrival times ofcoronal mass ejections, J. Geophys. Res., 106, 29,207, 2001.
    Gopalswamy, N. A., A. Lara, P. K. Manoharan, and R. A. Howard, An empiricalmodel to predict the 1-au arrival of interplanetary shocks, Adv. Space. Res.,36, 2289, 2005.
    Gosling, J. T., Field line draping about fast coronal mass ejecta: a source ofstrong out-of-the-ecliptic interplanetary magnetic fields, Geophys. Res. Lett.,14, 355, 1987.
    Gosling, J. T., Coronal mass ejections and magnetic ?ux ropes in interplane-tary space, in Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser., vol. 58,edited by C. T. Russell, E. R. Priest, and L. C. Lee, p. 343, AGU, Washing-ton,D.C., 1990.
    Gosling, J. T., The solar ?are myth, J. Geophys. Res., 98, 18,937–18,949, 1993.
    Gosling, J. T., Corotating and transient solar wind ?ows in three dimensions,Annu. Rev. Astron. Astrophys., 34, 35–73, 1996.
    Gosling, J. T., Coronal mass ejecitons: An overview, in Coronal Mass Ejecions,Geophys. Monogr. Ser., vol. 99, edited by N. Crooker, J. A. Joselyn, and J.Feynman, p. 9, AGU, Washington,D.C., 1997.
    Gosling, J. T., and V. J. Pizzo, Formation and evolution of corotating interactionregions and their three dimensional structure, Space Sci. Rev., 89, 21–52, doi:10.1023/A:1005291711900, 1999.
    Gosling, J. T., D. J. McComas, J. L. Phillips, and S. J. Bame, Geomagneticactivity associated with earth passage of interplanetary shock disturbancesand coronal mass ejections, J.Geophys.Res., 96, 7831, 1991.
    Groth, D. L., C. P. T.and De Zeeuw, T. I. Gambosi, and K. G. Powell, Global3d mhd simulation of a space weather event: Cme formation, interplanetarypropagation, and interaction with the magnetosphere, J. Geophys. Res., 25,25,053–25,078, 2000.
    Hakamada, K., and S. I. Akasofu, Simulation of three-dimensional solar winddisturbance and resulting geomagnetic storms, Space Sci. Rev., 31, 3–70, 1982.
    Hargreaves, J. K., The solar-terrestrial environment, in Cambridge Atmos. andSpace Sci. Ser, Cambridge Univ. Press, New York, 1992.
    Heinemann, M., E?ects of solar wind inhomogeneities on transit times of inter-planetary shock waves, J. Atmos. Sol.-Terr. Phys., 64, 315–325, 2002.
    Holzer, R. E., and J. A. Slavin, An evaluation of three predictors of geomagneticactivity, J. Geophys. Res., 87, 2558, 1982.
    Howard, A. T., C. D. Fry, J. C. Johnston, and D. F. Webb, On the evolutionof coronal mass ejections in the interplanetary medium, Astrophys. J., 667,610–625, 2007.
    Huang, C. Z., and S. Nutt, A Simplified Conservation Element Numerical Schemefor Solving Conservation Laws, AIAA, 2007.
    Hundhausen, A. J., The solar wind, in in Introduction to Space Physics, editedby M. G. Kivelson and C. T. Russell, pp. 91–128.
    Illing, R. M. E., and A. J. Hundhausen, Observation of a coronal transient from1.2 to 6 Solar radii, J. Geophys. Res., 90, 275, 1985.
    Jian, L., C. T. Russell, J. G. Luhmann, and R. M. Skoug, Properties of streaminteractions at one au during 1995-2004, Sol. Phys., 239, 337–392, 2006.
    Kane, R. P., A detailed comparison of cosmic ray gaps with solar gnevyshev gaps,Sol. Phys., 236, 207–226, 2006.
    Kane, R. P., Which one is the’gnevyshev’gap?, Sol. Phys., 229, 387–407, 2007.
    Klein, L. W., and L. F. Burlaga, Interplanetary magnetic clouds at 1 au, J.Geophys. Res., 87, 613–624, 1982.
    Kozyra, V. K. J. R. B. H., J. U., and R. M. Thorne, Modeling of the contribu-tion of electromagnetic ion cyclotron (emic) waves to stormtime ring-currenterosion, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by Y. K.B. T. Tsurutani, W. D. Gonzalez and J. K. Arballo, p. 187, AGU, 1997.
    Lario, D., D. K. Haggerty, E. C. Roelof, S. J. Tappin, R. J. Forsyth, and J.T. Gosling, Joint Ulysses and ACE observations of a magnetic cloud and theassociated solar energetic particle event, Space Science Reviews, 97, 277–280,doi:10.1023/A:1011829101277, 2001.
    Leinert, C., and B. V. Jackson, Global solar wind changes over solar cycle 21:a combination of Helios photometer, in situ, and interplanetary scintillationdata, Astrophys. J., 505, 984–992, 1998.
    Liemohn, M. W., J. U. Kozyra, M. R. Hairston, D. R. Weimer, G. Lu, A. J.Ridley, T. H. Zurbuchen, and R. M. Skoug, Consequences of a saturatedconvection electric field on the ring current, Geophys. Res. Lett., 29(9), doi:10.1029/2001GL014,270, 2002.
    Lindsay, G. M., C. T. Russel, and J. G. Luhmann, Coronal mass ejection andstream interaction region characteristics and their potential geoe?ectiveness,J. Geophys. Res., 100, 16,999–17,013, 1995.
    Lundstedt, H., H. Gleisner, and P. Wintoft, Operational forecasts of the geomag-netic dst index, Geophys. Res. Lett., 29(24), 2002.
    Luo, X. S., M. L. Wang, J. M. Yang, and G. Wang, The space-time cese methodapplied to phase transition of water vapor in compressible ?ows, Computers &Fluids, 36(7), 2002.
    Manoharan, P. K., N. Gopalswamy, S. Yashiro, A. Lara, G. Michalek, and R. A.Howard, In?uence of coronal mass ejection interaction on propagation of inter-planetary shocks, J. Geophys. Res., 109(A06109), doi:10.1029/2003JA010300,2004.
    McAllister, A. H., and N. U. Crooker, Coronal mass ejection,corotating in-teraction regions and geomagnetic storm, Coronal Mass Ejections, Geoohys.Monogr., 99, 270–289, 1997.
    McComas, D. J., H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, andB. E. Goldstein, The three-dimensional solar wind around solar maximum,Geophys. Res. Lett., 30(10), 2003.
    McKenna-Lawlor, M., S. M. P.and Dryer, C. D. Fry, W. Sun, D. Lario, C. S.Deehr, B. Sanahuja, V. A. Afonin, M. I. Verigin, and G. A. Kotova, Predictionsof energetic particle radiation in the close martian environment, J. Geophys.Res., 110, doi:10.1029/2004JA010587, 2005.
    McKenna-Lawlor, S. M. P., M. Dryer, M. D. Kartalev, Z. Smith, C. D. Fry, W.Sun, C. S. Deehr, K. Kecskemety, and K. Kudela, Near real-time predictionsof the arrival at earth of ?are-related shocks during solar cycle 23, J. Geophys.Res., 111, doi:10.1029/2005JA011162, 2006.
    McKenna-Lawlor, S. M. P., et al., Arrival times of ?are/halo cme associatedshocks at the earth: Comparison of the predictions of three numerical modelswith these observations, Annales Geophys., 20, 917–935, 2002.
    Mendoza, O. B., B. D. Moor, and D. S. Bernstein, Data assimilation for magne-tohydrodynamics systems, J. Comput. Appl. Math., 189, 242–259, 2006.
    Merka, J., D. Merkovab, and D. Odstrcilc, A step toward data assimilation insolar wind research, J. Atmos. Sol.-Terr. Phys., 69, 170–178, 2007.
    Moon, Y. J., M. Dryer, Z. Smith, Y. D. Park, and K. S. Cho, A revised shock timeof arrival (stoa) model for interplanetary shock propagation: Stoa-2, Geophys.Res. Lett., 29, doi:10.1029/2002GL014865, 2002.
    Mullan, D. J., Momentum ?ux invariance in the solar wind, Astrophys. J., 272,325–328, 1983.
    Munro, R. H., J. T. Gosling, E. Hiltner, R. M. MacQueen, A. I. Poland, and C.L. Ross, The association of coronal mass ejection transients with other formsof solar activity, Sol. Phys., 61, 201–215, 1979.
    Murayama, T., Coupling function between the solar wind and the Dst index, inSolar Wind Magnetosphere Coupling, Astrophysics and Space Science Library,vol. 126, edited by Y. Kamide and J. A. Slavin, pp. 119–126, 1986.
    Murayama, T., and K. Hakamada, E?ects of solar wind parameters on the de-velopment of magnetospheric substorms, Planet. Space Sci., 23, 75, 1975.
    Nayagawa, Y., and R. S. Steinolfson, Dynamical response of the solar corona, J.Geophys. Res., 207, 296–299, 1976.
    Neugebauer, M., and R. Goldstein, Particle and field signatures of coronal massejections in the solar wind, in Coronal Mass Ejecions, Geophys. Monogr. Ser.,vol. 99, edited by N.Crooker, J. Joselyn, and J.Feynman, p. 245, AGU, Wash-ington,D. C., 1997.
    Neugebauer, M., R. Goldstein, and B. E. Goldstein, Features observed in thetrailing regions of interplanetary clouds from coronal mass ejections, J. Geo-phys. Res., 102, 19,743, 1997.
    O’Brien, T. P., and R. L. McPherron, An empirical phase space analysis of ringcurrent dynamics: Solar wind control of injection and decay, J. Geophys. Res.,105(A4), 2000a.
    O’Brien, T. P., and R. L. McPherron, Forecasting the ring current index dst inreal time, J. Atmospheric Sol. Terrest. Phys., 62, 1295–1299, 2000b.
    Odstrcil, D., P. Riley, and X. P. Zhao, Numerical simulation of the 12 may 1997interplanetary cme event, J. Geophys. Res., 109(A02116), 2004.
    Perreault, P., and S. I. Akasofu, A study of geomagnetic storms, Geophys. J., 54,547–573, 1978.
    Phillips, J. L., et al., Ulysses soalr wind plasma observations at high southerlylatitudes, Geophys. J., 268, 1030–1033, 1995.
    Prigancova, A., and Y. I. Feldstein, Magnetospheric storm dynamics in terms ofenergy output rate, Planet. Space Sci., 40, 581, 1992.
    Pudovkin, M. I., S. A. Zaitseva, and L. Z. Sizova, Growth rate and decay ofmagnetospheric ring current, Planet. Space Sci., 33, 1097, 1985.
    Richardson, I. G., E. W. Cliver, and H. V. Cane, Sources of geomagnetic activityover the solar cycle: Relative importance of coronal mass ejections, high-speedstreams, and slow solar wind, J. Geophys. Res., 105, 18,203–18,214, 2000.
    Richardson, I. G., H. V. Cane, and E. W. Cliver, Sources of geomagnetic activityduring nearly three solar cycles (1972-2000), J. Geophys. Res., 107(A8), 2002.
    Richardson, I. G., et al., Major geomagnetic storms (dst≤-100 nt) gener-ated by corotating interaction regions, J. Geophys. Res., 111, doi:10.1029/2005JA011476, 2006.
    Russell, C. T., and R. L. McPherron, Semiannual variation of geomagnetic activ-ity, J. Geophys. Res., 78, 92–108, 1973.
    Russell, C. T., R. L. McPherron, and R. K. Burton, On the cause of geomagneticstorms, J. Geophys. Res., 79, 1105, 1974.
    Schwenn, R., A. D. Lago, E. Huttunen, and W. D. Gonzalez, The association ofcoronal mass ejections with their e?ects near the earth, Annales Geophysicae,23, 1033–1059, 2005.
    Sheeley, J. N. R., J. W. Harvey, and W. C. Feldman, Coronal holes, solar windstreams, and recurrent geomagnetic disturbances: 1973-1976, Sol. Phys., 49,271–278, 1976.
    Sheeley, J. N. R., R. A. Howard, and M. J. Koomen, Associations between coronalmass ejections and soft x-ray events, Astrophys. J., 272, 349–354, 1983.
    Siscoe, G., and S. C. Solomon, Aspects of data assimilation peculiar to spaceweather forecasting, Space Weather, 4(S04002), 2006.
    Smart, D. F., and M. A. Shea, A simplified model for timing the arrival of solar-?are-initiated shocks, J. Geophys. Res, 90, 183–190, 1985.
    Smith, J. A. S. R. D. Z., E. J., and S. J. Bame, Shocks and storm sudden com-mencements, in in Solar Wind-Magnetoshpere Coupling, edited by Y. Kamideand J. A. Slavin, pp. 345–365, Cambridge Univ. Press, Tokyo, 1986.
    Smith, Z., and M. Dryer, Mhd study of temporal and spatial evolution of simu-lated interplanetary shocks in the ecliptic plane within 1 au, Sol. Phys., 129,387–405, 1990.
    Smith, Z. K., and M. Dryer, The interplanetary shock propagation model: Amodel for predicting solar-?are-caused geomagnetic sudden impulses based onthe 2-1/2d mhd numerical simulation results from the interplanetary globalmodel (2d igm), NOAA Technical Memorandum, ERL/SEL-89, 1995.
    Snyder, C. W., M. Neugebauer, and V. R. Rao, The solar wind velocity and itscorrelation with solar and geomagnetic activity, J. Geophys. Res., 1963, 6361,2004.
    Srivastava, N., and P. Venkatakrishnan, Solar and interplanetary sources of majorgeomagnetic storms during 1996-2002, J. Geophys. Res., 109, 2004.
    Steinitz, R., and M. Eyni, Global properties of the solar wind i. the invariance ofthe momentum ?ux density, Astrophys. J., 241, 417, 1980.
    Steinolfson, R. S., and M. Dryer, Propagation of solar generated disturbancesthrough the solar wind critical points: One-dimensional analysis, Astro. SpaceSci., 104, 111–120, 1984.
    Storini, M., G. A. Bazilevskaya, E. O. Fluckiger, M. B. Krainev, V. S. Makhmu-tov, and A. I. Sladkova, The gnevyshev gap: A review for space weather, Adv.Space Res., 31, 895–900, 2003.
    Sun, W., S. I. Akasofu, Z. K. Smith, and M. Dryer, Calibration of the kinematicmethod of studying solar wind disturbances on the basis of a one-dimensionalmhd solution and a simulation study of the heliosphere disturbances between22 november and 6 december 1977, Planet Space Sci., 33, 933–943, 1985.
    Sun, W., M. Dryer, C. D. Fry, C. S. Deehr, Z. Smith, S. I. Akasofu, M. D. Kartalev,and K. G. Grigorov, Evaluation of solar type ii radio burst estimates of initialsolar wind shock speed using a kinematic model of the solar wind on the april2001 solar event swarm, Geophys. Res. Lett., 2002a.
    Sun, W., M. Dryer, C. D. Fry, C. S. Deehr, Z. Smith, S. I. Akasofu, M. D. Kartalev,and K. G. Grigorov, Real-time forecasting of icme shock arrivals at l1 duringthe”april fool’s day”epoch: 28 march- 21 april 2001, Annales Geophysicae,2002b.
    Sun, W., C. Deehr, C. D. Fry, M. Dryer, Z. Smith, and S. Akasofu, Simulation ofSolar Events Using the HAF Solar Wind and Magnetic Cloud Models, AGUFall Meeting Abstracts, p. B236, 2004.
    Temerin, M., and X. Li, A new model for the prediction of dst on the basis ofthe solar wind, J. Geophys. Res., 107(A12), 2002.
    Tsurutani, B. T., and W. D. Gonzalez, The interplanetary causes of magneticstorms: A review, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, editedby B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, and J. K. Arballo, p. 77,AGU, Washington,D. C., 1997.
    Tsurutani, B. T., W. D. Gonzalez, F. Tang, S. I. Akasofu, and E. J. Smith, Originof interplanetary southward magnetic fields responsible for major magneticstorms near solar maximum (1978-1979), J. Geophys. Res., 93, 8519, 1988.
    Tsurutani, B. T., W. D. Gonzalez, F. Tang, and Y. T. Lee, Great magnetic storms,Geophys. Res. Lett., 19, 73, 1992.
    Tsurutani, B. T., W. D. Gonzalez, A. L. C. Gonzalez, F. Tang, J. K. Arballo,and M. Okada, Interplanetary origin of geomagnetic activity in the decliningphase of the solar cycle, J. Geophys. Res., 100, 21,717–21,734, doi:10.1029/95JA01476, 1995a.
    Tsurutani, B. T., C. M. Ho, J. K. Arballo, B. E. Glodstein, and A. Balogh, Large-amplitude imf ?uctuations,in corotating interaction regions: Ulysses at mid-latitude, Geophys. Res. Lett., 22, 3397, 1995b.
    Tsurutani, B. T., R. L. McPherron, W. D. Gonzalez, G. Lu, J. H. A. Sobral,and N. Gopalswamy, Introduction to special section on corotating solar windstreams and recurrent geomagnetic activity: a review, J. Geophys. Res., 2006.
    Vassiliadis, D., A.J. Klimas, J.A. Valdivia, and D.N. Baker, The dst geomagneticresponse as a function of storm phase and amplitude and the solar wind electricfield, J. Geophys. Res., 104, 24,957, 1999.
    Vasyliunas, V. M., J. R. Kan, S. I. Akasofu, and G. L. Siscoe, Scaling relationsgoverning magnetospheric energy transfer, Planet. Space Sci., 30, 359, 1982.
    Vennerstroem, S., Interplanetary sources of magnetic storms: A statistical study,J. Geophys. Res., 106, 29,175, 2001.
    Wang, Y. M., and N. R. J. Sheeley, Solar wind speed and coronal ?ux-tube ex-pansion, Astrophys. J., 355, 726–732, 1990.
    Wang, Y. M., N. R. J. Sheeley, J. L. Phillips, and B. E. Goldstein, Solar windstream interactions and the wind speed-expansion factor relationship, Astro-phys. J., 488, L51–L54, 1997.
    Webb, D. F., and A. J. Hundhausen, Activity associated with the solar origin ofcoronal mass ejections, Sol. Phys., 108, 384–401, 1987.
    Wei, F. S., The blast wave propagation in a moving medium with variable density,Chin. J. Space Sci., 2, 63–72, 1982.
    Wei, F. S., and H. C. Cai, Primary application of the membership functions inthe geomagnetic disturbance predictions, Chin. J. Space Sci., 10(1), 35–41,1990.
    Wei, F. S., Y. Xu, and X. S. Feng, Prediction tests by using“isf”method for thegeomagnetic disturbances, Science in China(E), 45(5), 520–530, 2002.
    Wei, F. S., H. C. Cai, and X. S. Feng, A prediction method of geomagnetic dis-turbances based on ips observations-dynamics-fuzzy mathematics, Adv SpaceRes., 31(4), 1069–1073, 2003.
    Wei, F. S., H. C. Cai, and X. S. Feng, Prediction tests by using“isf”method forthe geomagnetic disturbances, Adv Space Res., 36(12), 2363–2367, 2005.
    Wu, C. C., and R. P. Lepping, E?ects of magnetic clouds on the occurrence ofgeomagnetic storms: The first 4 years of wind, J. Geophys. Res., 107, 1314,2002.
    Wu, C. C., C. D. Fry, D. Berdichevsky, M. Dryer, Z. Smith, and T. Detman,Predicting the arrival time of shock passages at earth, J. Geophys. Res., 227,371–386, 2005.
    Wu, C. C., X. S. Feng, S. T. Wu, M. Dryer, and C. D. Fry, E?ects of the interactionand evolution of interplanetary shocks on”background”solar wind speeds, J.Geophys. Res., 111, doi:10.1029/2006JA011615, 2006.
    Wu, S. T., A. H. Wang, C. D. Fry, X. S. Feng, C. C. Wu, and M. Dryer, Challengesof modeling solar disturbances’arrival times at the earth, Sci. China. Ser. E-Tech. Sci., 51(10), 1580–1588, doi:10.1007/s11431-008-0266-7, 2008.
    Xiong, M., H. N. Zheng, Y. M. Wang, X. R. Fu, S. Wang, and X. K. Dou, Anumerical simulation on the solar-terrestrial transit time of successive cmesduring november 4-5, 1998, Chinese J. Geophys., 48(4), 2005.
    Yashiro, S., N. Gopalswamy, G. Michalek, O. C. St. Cyr, S. P. Plunkett, N.B. Rich, and R. A. Howard, A catalog of white light coronal mass ejec-tions observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105, doi:1029/2003JA010282, 2004.
    Yu, S. T., Treating Sti? Source Terms in Conservation Laws by the Space-TimeCESE Method, AIAA, 2007.
    Zhao, X., X. S. Feng, and C. C. Wu, Characteristics of solar ?ares associatedwith interplanetary shock or nonshock events at earth, J. Geophys. Res., 111,doi:10.1029/2006JA011784, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700