加热炉炉管多场耦合力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空加热炉以其造价低、能耗低、效率高、自动化程度高等优势已成为目前油田传统加热炉的理想换代产品,因而其安全性也更加引起人们的关注。全面考虑炉管的工作环境(即管内、外流体)对炉管力学行为的影响,具有较高的应用价值。
     本文根据数值传热理论与热应力理论,验证了分别采用流体计算软件CFX和有限元分析软件ANSYS对结构进行共轭传热分析与热应力分析的正确性。在对多场耦合分析模型选取的问题上,本文利用CFX软件中的GGI(界面网格)法则,通过对耦合界面网格匹配与不匹配两种模型进行计算,对大型复杂结构采用耦合界面网格不匹配模型来进行数值模拟。在上述验证分析的基础上,根据炉管的实际工作状态,分别建立了三种炉管结构(直管段、弯管段、盘管)、管内流体、环空流体以及筒体的三维有限元力学分析模型。考虑界面力及温度传递,综合利用ANSYS软件和CFX软件,实现了对加热炉炉管的多场耦合数值模拟。又研究了管内流体的粘度和流速对盘管多场耦合效应的影响。结果表明:当粘度较小时,传热系数随着流速的升高而升高,且变化幅度较大;当粘度较大时,传热系数随着流速的升高而升高,但是变化幅度较小。随着粘度和流速的增加,盘管等效应力、总位移最大值所受的影响均较小。即管内流体粘度、流速对共轭传热分析影响明显,对多场耦合效应的影响不明显。
     本论文研究成果,更加科学地描述了加热炉炉管的力学特性,为加热炉合理设计和安全评定提供新的研究方法。同时,多场耦合数值模拟方法也可应用于石油化工、钻井采油等领域相关设备的分析研究中。
Due to the adcantaces of low cost, low energy consumption, high efficiency and high degree of automation, vacuum Furnace has become the ideal replacement of traditional oil heating ,whose security was much more concerned by people. Full account of how the working environment of tube (ie tube inside and outside the fluid) influence the mechanical behavior of tube has a high engineering value for doing the force analysis accurately.
     In this paper, basing on the theories of numerical heat transfer and thermal stress, the correctness of doing the conjugate heat transfer analysis and thermal stress analysis for structure by ANSYS software and CFX software was verified separately. On the question of how to select the model for the multi-field coupling analysis, the simulations of the coupling interface with the grid matching and not matching was done by using the GGI (interface grid) rules of CFX software, we obtain the conclusion that the not matching grid model will be choosed when the structure is large and complex.On the base of the above check analysis, the three-dimensional finite element analysis model of the three structural furnace tubes(straight pipe, bend pipe and coils), inner fluid, annulus fluid and the tube structure was established by considering its actual working conditions. Considering the interface strength and temperature transfer, the numerical simulation of multi-field coupling for Furnace tube was done by the ANSYS software and the CFX software. And then, how the viscosity and velocity of the fluid tube effect the coil was studied. The results show that:when the viscosity is low, the higher the velocity, the higher the heat transfer coefficient and the larger the amplitude becomes; when the viscosity is high, the higher the velocity, the higher the heat transfer coefficient and the smaller amplitude becomes. With the increase of the fluid rate and viscosity, the coil equivalent stress and the maximum displacement almostly not be influenced. It is that : the tube fluid viscosity and flow rate have a great effect on the conjugate heat transfer analysis ,but the effect on the multi-field coupling is not obvious.
     The results of this thesis give a more scientific description for the mechanical properties of furnace tube, offering a reasonable design and safety assessment of new research methods for the furnace. At the same time,the method of numerical simulation of multi-field coupling can also be used in the study of petrochemical, drilling and other related equipment.
引文
[1]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报,2004,18(2):123-126.
    [2]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [3]宋少云.多场耦合问题的协同求解方法研究与应用[D].华中科技大学,2009.
    [4]李志印,熊小辉,吴家鸣.计算流体力学常用数值方法简介[J].广东造船,2004(3):5- 8.
    [5] Nitikitpaiboon C,Bathe K J.An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction[J].Computers and Structures,1993,47(5):871-891.
    [6] Stuart R,Shipley L,Ghose A and so on.Dynamic analysis of high-level waste storage tanks[J]. Computers and Structures,1995,56:415-424.
    [7] Durali, Mohammad, Fazeli and so on. Investigation of dynamics and vibration of PIG in oil and gas pipelines[C]. ASME International Mechanical Engineering Congress and Exposition, 2008,9:2015-2024.
    [8] Lee, Usik, Kim and so on. Dynamics of branched pipeline systems conveying internal unsteady flow[J]. Journal of Vibration and Acoustics,1999,121(1): 114-122.
    [9] Kochupillai, Jayaraj, Ganesan and so on.A new finite element formulation based on the velocity of flow for water hammer problems[J]. International Journal of Pressure Vessels and Piping,2005,82(1): 1-14.
    [10] F. Stella, M. Giangi, F. Paglia and so on. A numerical simulation of fluid-structure interaction in internal flow[J]. Numerical Heat Transfer,2005,47: 403-418.
    [11] Berri, Sidi M. Rotational vibration response of power transmission systems[C]. Proceedings of the International Pipeline Conference,2002, B:1191-1198.
    [12] Gorman D G.,Reese J M.,ZhangY L.Vibration of a flexible pipe conveying viscous pulsating fluid flow[J]. Journal of Sound and Vibration,2000,230(2): 379-392.
    [13] Sreejith B,Jayaraj K,Ganesan N.Finite element analysis of fluid-structure interaction in pipeline systems[J]. Nuclear Engineering and Design,2004,227(3): 313-322.
    [14]王世忠,王茹.三维管道固液耦合振动分析[J].哈尔滨工业大学学报,1992,24(4):43-49.
    [15] Liang Li-fu, Liu Zongmin, Guo Qingyong. Application of the generalized quasi-Complementary energy principle to the fluid-solid coupling problem[J].Journal of Marine Science and Application,2009,(8):40-45.
    [16]王学,高普云,任钧国,等.基于ALE/SUPG同步交替法求解流固耦合问题[J].强度与环境,2009,36(1):14-21.
    [17]魏述和,张燎军,闫毅志.基于ALE有限元法的储液罐耦合竖立响应研究[J].水电能源科学,2009,27(3):84-86.
    [18]刘志远,郑源,张文佳,等.ANSYS-CFX单向流固耦合分析的方法[J].水利水电工程设计,2009,28(2):29-31.
    [19]李迎,陈红岩,俞小莉.流固耦合仿真技术在发动机稳态传热计算中的应用[J].内燃机工程,2007,28(4):19-27.
    [20]冯卫民,宋立,肖光宇.基于ADINA的压力管道流固耦合分析[J].武汉大学学报,2009,42(2):264-267.
    [21]张潇,王延荣,张小伟,等.基于多层动网格技术的流固耦合方法研究[J].船舶工程,2009,31(1):64-66.
    [22]杨吉新,张可,党慧慧.基于ANSYS的流固耦合动力学分析方法[J].船海工程,2008,37(6):86-89.
    [23] Hart R.D.,John C.M.S.T.Formulation of a Fully-coupled Thermal-Mechanical-Fluid Model for Non-linear Geologic Systems[J].Int.J.Rock.Mech.Min.Sic.&Geomech.Abstr,1986, 23(3):213-224.
    [24] Jing L,Tsang C F, Stephansson O and so on. An international co-operative research projecton mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J].Int. J. Rock. Mech. Min. Sic.& Geomech. Abstr,1995,32(5):389-398.
    [25] Guvanasen V, Chan Tin. A three-dimensional numerical model for thermo- hydro-mechanical deformation with hysteresis in a fractured rock mass[J].Int. J. Rock. Mech .Min. Sic,2000,37(1/2):89-106.
    [26] Millard A,Durin M,Stietel A.Discrete and Continuum Approaches to Simulate the Thermo-Hydro-Mechanical Couplings in a large Fractured Rock Mass[J].Int. J. Rock. Mech. Min. Sic. &.Geomech. Abstr,1995,32(5):409-434.
    [27] ME Arici. Analysis of the conjugate effect of wall and flow parameters on pipe flow heat transfer[J]. Proc Instn Mech Engrs,2001,215:307-313.
    [28] ME Arici ,ME Kaya. Conjugate heat transfer analysis for laminar ?ow in pipes having a step change in boundary conditions and wall conductivity[J].Mechanical Engineering Science, 2007,221:919-925.
    [29] Z.Li, X.Huai, Y.Tao. A study of the heat transfer characteristics of a laser rod in a concentric circular tube[J].Applied Physics B—Lasers and Optics,2007,87:301-309.
    [30] Antonio Campo,Biagio Morrone,Oronzio Manca.Approximate Analytic Estimate of Axial Fluid Conduction in Laminar Forced Convection Tube Flows with Zero-to-Uniform Step Wall Heat Fluxes[J].Heat Transfer Engineering,2003,24(4):49-58.
    [31]刘华,钟宝武,李秀娟,等.考虑凝析气藏相变作用的数学模型[J].大庆石油地质与开发,2005,24(2):46-49.
    [32]李崇山,李诚,晁丽艳,等.煤巷自燃渗流增温热流耦合场数值模拟研究[J].矿业安全与环保,2008,35(3):14-17.
    [33]董非,范秦寅,姜树李,等.内燃机流—固—热耦合数值模拟的研究[J].汽车工程,2009,31(2):146-150.
    [34]盛金昌,廖秋林,刘继山,等.基于FEMLAB的钻井过程中流固热耦合响应分析[J].工程力学,2008,25(2):219-223.
    [35]马卫国,孙洪钰,冯定.油田用加热炉技术现状与发展方向[J].石油机械,2006,34(10):70-71.
    [36]单文冬.油田用加热炉危险因素分析及安全评价探讨[J].中国安全生产科学技术,2006,2(3):94-95.
    [37]吴连生,计兰宝,王德美.管式加热炉炉管爆裂分析[J].理化检验—物理分册,1998,34(8):27-29.
    [38]雷炎森,郭素琴.糠醛装置废液加热炉炉管穿孔原因与对策[J].石油化工腐蚀与防护,2003,20(2):28-29.
    [39]顾阎如,王东,李明.加热炉炉管内壁鸡爪状裂纹的超声波检测试验[J].无损探伤,2003,27(5):18-22.
    [40]阎西祥,董绍平.延迟焦化加热炉炉管温度的红外监测[J].石油化工设备技术,1999,20(5):55-57.
    [41]廖盈,谢禹军,张俊龙,等.加热炉炉管腐蚀原因的分析与研究[J].石油化工应用,2007,27(2):64-67.
    [42]朱海鹰,严军,刘卫军.加热炉炉管焊接缺陷的事故分析[J].石油化工安全技术,2002,18(6):21-22.
    [43]阎西祥.焦化加热炉炉管结焦与控制[J].石油化工设备技术,2003,24(4):32-34.
    [44]陶文亮.加热炉炉管的失效模式和寿命预测[J].重庆大学学报(自然科学版),2006,29(4):42-45.
    [45]赵振荣.加热炉炉管剩余强度和寿命评估[J].石油化工腐蚀与防护,2006,23(2):31-34.
    [46]王振,李文武,宫成欣.基于ANSYS的火筒式加热炉地震反应分析[J].油气田地面工程,2008,27(12):9-10.
    [47]林砺宗,俞建荣.隧道式加热炉热流场模拟分析[J].华东理工大学学报(自然科学版),2006,32(8):1016-1020.
    [48]黄绍岩,赵国勇,赵峰,等.加热炉热力计算软件[J].油气田地面工程,2008,27(1):50-51.
    [49]江华,毛羽,吴德飞,等.连续重整加热炉内多火焰组合燃烧的数值模拟[J].石油大学学报(自燃科学版),2004,28(3):78-83.
    [50]廖迎新,吴敏.基于免疫FNN算法的加热炉炉温优化控制[J].国防科技大学学报,2006,28(3):116-119.
    [51] T. M. Saifulin, Yu. D. Khanin, and N. B. Trifonov. HEATING FURNACES FOR OILREFINING AND PETROCHEMICAL UNITS[J]. Chemistry and Technology of Fuels and Oils, Vol. 42, No.5, 2006:386-390.
    [52] V. I. Timoshpol’skii, M. L. German, P. S. Grinchuk. HEAT CONDUCTION AND HEAT EXCHANGE IN TECHNOLOGICAL PROCESSES. Journal of Engineering Physics and Thermophysics, Vol. 79, No. 3, 2006:419-428.
    [53]徐亚栋,钱林方,石秀东.复合材料身管三维瞬态热结构耦合分析[J].南京理工大学学报,2007,31(2):151-154.
    [54]王东方,潘琼瑶,郑百林,等.柴油机气缸盖多场耦合三维有限元分析[J].力学季刊,2005,26(3):511-516.
    [55]李维特,黄保海,毕仲波.热应力理论分析及应用[M].北京:中国电力出版社,2004.
    [56]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2008:483-486.
    [57]刘巨保,张强,罗敏,等.双层管与流体多场耦合数值模拟[J].东北石油大学学报,2010,34(5):114-121.
    [58]杨世铭,陶文铨.传热学第四版[M].北京:高等教育出版社,2008:248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700