含偶氮苯基团的丙烯酸酯类单体的ATRP及其电光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以研究偶氮苯聚合物材料的三阶非线性光学性能为出发点,设计、合成和表征了一系列带有不同取代基团和不同偶氮键个数的(甲基)丙烯酸酯类偶氮单体,并通过ARTP的聚合方法合成了不同分子量和不同分子链段组成的偶氮聚合物。对得到的偶氮聚合物进行三阶非线性光学性能的测试,首次较系统地研究偶氮聚合物分子结构与其三阶非线性光学性能之间的关系。论文主要进行了以下几个方面的工作:
     (1)合成了一组具有不同取代基和主链的偶氮单体(体系I),通过ATRP方法实现可控聚合,合成了不同分子量和不同链段组成的偶氮均聚物及其与MMA的共聚物。分别用四波混频和z-扫描的方法对样品三阶非线性光学系数进行了测定,讨论了聚合物分子量、聚合物中偶氮苯末端取代基的电子效应等因素对聚合物三阶非线性光学性能的影响。
     (2)采用微波辐照的加热方式研究了体系I中合成的偶氮单体的ATRP。对两个单体分别在不同聚合条件下的ATRP作了尝试,对所得聚合产物进行了结构的表征和三阶非线性光学系数的测定,考查微波辐射对偶氮聚合反应的促进作用以及对所得聚合物性能的影响。
     (3)在体系I单体的基础上,在丙烯酸酯主链与偶氮苯基团之间引入了不同长度的烷基链-(CH2)n(n=2,6),合成了一组含不同柔性间隔基和末端取代基的偶氮单体,考查了柔性间隔基的长度对偶氮单体的聚合活性及其聚合物性能的影响。
     (4)体系II设计了一个氨基型的偶氮苯基团,合成了取代基不同的一组氨基型偶氮单体,考查了取代基为-NO2时推一拉电子结构(push-pull,D-π-A)的形成对聚合物三阶非线性光学性能的贡献。采用ATRP的方法合成了偶氮均聚物以及二嵌段和三嵌段共聚物,一方面调节聚合物链段的柔性以提高偶氮聚合物的溶解性和成膜性,同时对聚合物的微观结构及其三阶非线性性能之间的关系进行研究。
     (5)增加偶氮苯基团共轭链中-N=N-的个数,合成含有双偶氮苯基团的单体,并聚合得到含有双偶氮侧链的聚合物,并与单偶氮体系进行对比,考查偶氮共轭链长度的增加对聚合物三阶非线性光学性能的影响。
     论文通过以上几个方面对不同结构的偶氮聚合物的三阶非线性光学性能的测试,研究和分析了偶氮聚合物的结构与其三阶非线性光学性能的关系,得到了一些规律性的结论,为制备性能优良的偶氮非线性光学材料提供了一定的理论依据。
     (1)合成了一系列含不同末端取代基偶氮苯基团的丙烯酸酯类单体,并通过ATRP的方法实现了聚合,考查了取代基电子效应造成的ATRP聚合活性以及偶氮聚合物三阶非线性光学性能的差异。结果发现,末端取代基为硝基的偶氮单体活性较低,但当硝基的强吸电子效应与强供电子的氨基分别处于偶氮苯基团的两端时,分子体系中形成的推-拉电子结构将显著增强分子的极化程度,在受激发光照射下分子具有更大的跃迁偶极距,从而使得聚合物具有较大的三阶非线性极化率。另外,由于取代基造成各个偶氮单体及其聚合物的线性透过率的差异,末端取代基为硝基的单体及其聚合物由于硝基的存在使得其受532 nm的纳秒激发光照射后产生的基态吸收截面较大,线性透过率较低,非线性折射和非线性吸收存在部分热效应的贡献。
     (2)我们采用ATRP的方法通过调节投料比和聚合时间得到了一系列不同分子量的偶氮聚合物。结果发现,偶氮单体聚合后,其三阶非线性极化率提高,并且聚合物的分子量越大,其三阶非线性极化率也越大。
     (3)微波辐射技术一直是我们课题组多年来用于聚合反应的一项有利工具。本论文所合成的偶氮单体在常规加热条件下进行ATRP的时间较长,转化率较低,因此我们采用了微波辐射这一技术实现偶氮单体的ATRP,考查微波辐射对偶氮单体的ATRP体系有无促进作用。实验结果表明,采用微波辐射加热的方法可以使该体系偶氮单体的ATRP速率迅速提高,聚合可控并且符合ATRP的活性特征。微波辐射并没有破坏聚合物的分子结构,聚合物的性能也未受影响。但随着辐照时间的进一步延长,“过热效应”的产生使ATRP反应失去可控性,部分高分子量的聚合物发生了分解,聚合物的平均分子量下降。因此,控制适当的微波辐射时间,我们可以快速有效地合成得到具有较大三阶非线性光学效应的偶氮聚合物材料。
     (4)实验中合成了含不同长度烷基链的偶氮单体及其ATRP均聚物以及新偶氮单体与MMA的无规共聚物以及嵌段共聚物,得到不同链段组成的侧链型偶氮聚合物。结果发现,在偶氮侧链中引入烷基链之后,其空间位阻的下降和自由度的提高使得新偶氮单体的ATRP活性也有明显的提高,单体及其聚合物的三阶非线性极化系数也都相应增加了。并且所得聚合物的溶解性和成膜性也有相应的提高。Z-扫描结果显示,烷基链的引入和共聚物的链段组成及其偶氮组分的含量并未改变非线性吸收和非线性折射的类型,所有单体及其聚合物仍然保持反饱和吸收和自散焦特性。
     (5)我们设计并合成了一类含有氨基型偶氮苯结构的偶氮单体,除了引入硝基,还分别引入了电子效应不同的甲氧基和溴取代基,将它们与含硝基的单体进行比较,考查推-拉电子效应对聚合物的三阶非线性光学效应所产生的贡献。结果发现,体系中含有推-拉电子结构的硝基单体及其聚合物因分子体系内部形成较强的分子极化,其三阶非线性光学系数明显要比其它偶氮单体和聚合物来得高。另外,本论文中具有推-拉型电子结构的硝基单体在532 nm激光照射下产生的激发态吸收截面小于基态吸收截面,其非线性吸收为饱和吸收。用RB3LYP/6-31G(d)方法对三个含氨基型偶氮苯基团的单体小分子进行几何优化和频率计算,得到的分子三阶非线性极化率的结果也与实验的测试结果呈现相同的变化规律。
     (6)我们从偶氮聚合物侧链上的偶氮苯基团入手,增加偶氮键的个数,合成了双偶氮聚合物。结果发现,虽然双偶氮单体及其聚合物的溶解性较差,但其三阶非线性系数的测试结果与我们预期的一样,双偶氮侧链的引入使得聚合物的三阶非线性效应有了数量级上的提高。对双偶氮共聚和嵌段聚合物的研究结果表明,不同链段序列的双偶氮嵌段聚合物表现出了不同的非线性吸收和非线性折射特性,聚合物中双偶氮组分含量的适当减少将导致双偶氮聚合物的非线性吸收由饱和吸收转变为反饱和吸收,其非线性折射由自散焦转化为自聚焦特性。
     (7)我们还合成了偶氮单体与甲基丙烯酸甲酯的共聚和嵌段聚合物,一方面通过引入MMA的柔性链段改善偶氮聚合物的溶解性和成膜性,另一方面由于偶氮单体与MMA活性的不同以及聚合条件的不同而得到了一系列不同分子量和不同链段组成的偶氮聚合物,以调节偶氮聚合物作为非线性材料所须的综合性能。在研究中我们发现,当偶氮单体与MMA的摩尔投料比为1:1时所得的共聚物既保持了偶氮聚合物较高的三阶非线性极化系数,其溶解性和成膜性也得到了进一步的改善。偶氮高分子链嵌入了MMA的柔性链段之后,不仅溶解性和成膜性得到改善,并且保持了较高的三阶非线性光学性能以及化学稳定性,并且,嵌段聚合物的结构较为清晰明了,其合成比无规共聚物具有更好的可控性。
     (8)另外,我们还利用前往新加坡国立大学短期学习交流的机会,将本论文中合成的偶氮聚合物PNAMA和:PMANAzo带去进行了它们在电学存储器件(Electric Memory devices)方面的研究。分别将偶氮聚合物薄膜制备成由ITO/Polymer/Al组成的M/I/M型三明治结构的存储器件,研究了偶氮聚合物在电学存储(Electric memorv)方面的性能,取得了令人振奋的结果。通过对偶氮聚合物器件的J-V特性曲线以及稳定性的测试发现,此两个偶氮聚合物都具有WORM(Write-only read-many-times)型的电学存储性能,并且具有较好的稳定性。
     本论文所合成的偶氮单体及其聚合物均具有较大的三阶非线性极化率系数(x(3))值达l0-10esu)和较快的响应时间(飞秒级响应),是一类具有潜力的非线性聚合物材料。
In recent years, much attention has been devoted to polymeric materials with non-linear optical (NLO) properties for electro-optical and photorefractive applications because they have many advantages such as high NLO coefficient, rapid response speed and low cocurrent dielectric constant. In addition, they exhibit good mechanical properties, high chemical stability and excellent flexibility in fabrication. Azo (azobenzene) polymers have been paid great attention for their potential applications in nonlinear optical materials in recent decades and large numbers of azobenzene-containing side-chain NLO polymers have been designed and prepared. ATRP is one of the most attractive methods for the synthesis of novel and controlled architectures in rather straightforward operating conditions. In this way, we can obtain well-defined low molecular weight polymers with narrow polydispersity and the block polymers with desired units.
     In this thesis, we based on the azobenzene-containing polymers for NLO material. Series of (methyl) acrylates containing different substituted azobenzene side chain are design, synthesized and characterized. Azobenzen-containing polymers with different side chain and different molecular weight are prepared via atom transfer radical polymerization (ATRP) technique. The third-order NLO coefficients x(3) values and response times of the azo polymers are mearsured and the influence of the molecular structure and chain composition of the polymers to their NLO properties are studied.
     The work can be summarized as the following:
     (1) A series of azobenzene-containing monomers with different substituents are synthesized and polymerized via ATRP technique. The homopolymers and copolymers containing azobenzene side chain were obtained and their third-order NLO coefficients are measured by both degenerate four-wave mixing (DFWM) and Z-scan techniques. The influences of the molecular weight, the electric effect of the substituent on the end of azobenzene side chain to the third-order NLO properties are investigated.
     (2) Microwave irradiation (MI) is adopted in the ATRP of azobenzene-containing monomers in System I with different polymerization condition. The structures of the obtained polymers are characterized and those third-order NLO coefficients are measured to confirm the effect of MI in accelerating the polymerization and holding the NLO properties of azobenzene-containing polymers.
     (3) Based on the monomer structure of System I , the soft alkyl segments with different spacer length (n=2, 6) are introduced between the acrylate main chain and azobenzene group. The kinetics of the azo monomer containing different spacer lengths by ATRP are studied and the impacts of the spacer length on the ATRP of azobenzene-containing methacrylates and their third-order NLO properties are investigated.
     (4) One type of amino-substituted azobenzene group is designed and used to prepare a new series of azobenzene-containing acrylates. The predominance of the push-pull electric effect to the third-order NLO properties of azo polymers is confirmed. The diblock and triblock copolymers with azo monomer and MMA are prepared by ATRP in order to improve the solubility and film-forming capability. And the relation between the molecular structure and the third-order NLO property of polymers is analysized.
     (5) Attempts to extend the conjugate system based on azobenzene group are performed and the biazo-containing methacrylate is synthesized and polymerized via ATRP. The polymers with bisazo side chain have much better NLO property than monoazo polymers.
     The third-order NLO properties of all"the azobenzene-containing polymers with different units are measured. The relation between the structure and the NLO properties of azo polymers is studied and discussed at length, and some significative conclusions are obtained to be propitious to the synthesis of NLO polymeric materials containing azobenzene side chain.
     (1) A series of acrylate monomers containing different azobenzene groups are designed and synthesized. The electrical effect of the end group on the azobenzene to the activity of ATRP and the NLO properties of the obtained polymers is investigated. When the push-pull electric structure is formed in the azobenzene molecule, the azo monomer and its polymers show more excellent NLO properties than others.
     (2) The NLO coefficients of the azo homopolymers are related to their molecular weight, which is adjusted by reaction time of ATRP. The x(3)values of polymers are larger than their monomers and increase with their molecular weight.
     (3) Microwave irradiation is effective to enhance the ATRP of azo monomers and the reaction time can be shortened from lots days to about one hour. And the NLO properties of the azo polymers obtained under MI process are retained.
     (4) The introduction of the soft alkyl segments with different length can enhance the activities of the polymerization of azo monomers and the NLO properties of the obtained polymers containing different spacer length are increased.
     (5) The NLO properties of bisazo monomer and its polymers are enhanced with the extension of the conjugated azobenzene structure. The NLO refraction and NLO absorption of the bisazo polymer also can be changed with the composition of their chain units.
     In addition, the memory devices based on the azobenzene-containing polymers synthesized in this thesis are fabricated and their electric memory effects are investigated when I have the opportunity to go to National University of Singapore (NUS) for a short-term visit. The device exhibited a high ON/OFF current ratio of up to 106 at room temperature, a long retention time in both ON and OFF states, a switching time of 1 ms, and number of read cycles up to 108 with a read voltage of-1.0 V. Thus, the device based on the azo polymers are potential WORM memory device, which is distinct from the optical memory properties such as holographic and photorefractive data storage of azo polymers in the past report.
     All the monomers and polymers containing azobenzene side chains are potential NLO polymeric materials which have high third-order NLO coefficients ( up to 10-11 esu ) and rapid response time ( up to femtosecond magnitude).
引文
[1]马建标,“功能高分子材料”,化学工业出版社,2000, 234
    [2] Mastragostino M., Scrosati B., Application of Electroactive Polymers, London: Champan and Hall Publishers, 1993, 223
    [3] Kobayashi T., Ajzar F., eds. Nonlinear Optics, France: Gordonand Breach Publisher, 1995, 10, 439
    [4]钱士雄,王恭明,“非线性光学-原理与进展”,复旦大学出版社,2001
    [5] Shen Y.R., The principle of nonlinear optics, John Wiely & Sons, Inc, 1984
    [6] Prasad P.N., Williama D.J., Introduction to nonlinear optical effects in molecules and polymers, John Wiely & Sons, Inc, 1991
    [7]钱鹰,孙岳明,丁建平,刘举正,有机共轭分子的结构和二阶非线性光学活性,东南大学学报,2000, 30(6), 150-153
    [8] Bloembergen N., in Nonlinear Spectroscopy, edited by Bloembergen N., North-Holland, Amsterdam, 1977
    [9] Bredas J.L., Adant C., Tackx P., Persoons A., Third-Order Nonlinear Optical Response in Organic Materials Theoretical and Experimental Aspects, Chem. Rev., 1994, 94, 243-278
    [10] Gubler U., Bosshard C., Molecular Design for Third-Order Nonlinear Optics,Advances in Polymer Science, 2002, 158, 125-191
    [11] Timofeeva T.V., Nesterov V.N., Clark R.D., Penn B., Frazier D., Antipin M.Y., Systematic study of polymorphism in crystalline non-linear optical materials, Journal of Molecular Structure, 2003, 647, 181-202
    [12] Gieseke S., NLO corrections to the photon impact factor, Nuclear Physics B (Proc. Suppl.), 2003, 121, 42-45
    [13] Katz H.E., Singer K.D., Sohn J.E., Dirk C.W., King L.A., Gordon H.M., Greatly Enhanced Second-Order Nonlinear Optical Susceptibilities in Donor-Acceptor Organic Molecules, J. Am. Chem. Soc., 1987, 109, 6561-6563
    [14] Luo J.D., Ma H., Jen A. K.-Y., Nanostructured functional dendrimers and polymers for photonics, C. R. Chimie, 2003, 6, 895-902
    [15] Abd-El-Aziz A.S., Organometallic Polymers of the Transition Metals, Macromol. Rapid Commun., 2002, 23, 995-1031
    [16] Kaino T., Ooba N., Tomaru S., et al., Molecular Design of Processable Nonlinear Optical Polymers for Photonic Device Applications, Mat. Res. Soc. Symp. Proc., 1994, 328, 449-460
    [17] Klein M. B., Dunning G. J., Valley G. J., Imaging threshold detector using a phase-conjugate resonator in BaTiO3, Opt. Lett., 1986, 11, 575-577
    [18] Heyman J.N., Craig K., Galdrikian B., Sherwin M.S., Campman K., Hopkins P.F., Fafard S., Gossard A.C., Resonant harmonic generation and dynamic screening in a double quantum well, Phys. Rev. Lett., 1994, 72, 2183-2186
    [19] Xu B., Ming N.B., Optical bistability in a two-dimensional nonlinear superlattice, Phys. Rev. Lett., 1993, 71, 1003-1006
    [20] Wright E., Toplikar E.G., Kubin R.F., Saltzer M.D., Organometallic nonlinear optical (NLO) polymers. 1. Pendant ferrocene NLO-phores in a poly (methyl methacrylate) copolymer. The firstχ(2) organometallic NLO polymer, Macromolecules, 1992, 25, 1838-1839
    [21] Sun Y., Taylor N.J., Carty A.J., Models for linear acetylide polymers: synthesis and single-crystal x-ray structures of the ruthenium (II) acetylide and diacetylides Ru(CO)2(PEt3)2[(C.tplbond.C)nR]2 (n = 1, R = SiMe3; n = 2, R = SiMe3, H), Organometallics J., 1992, 11, 4293-4300
    [22] Poter P.L., Guha S., Kang K., Frazier C.C., Effects of structural variations of platinum and palladium poly-ynes on third-order non-linearity, Polymer, 1991, 32, 1756-1760
    [23] Kurihara T., Tomaru S., Mori Y., Hikita M., Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes, Appl. Phys. Lett., 1992, 61, 1901-1903
    [24] Rochon P., Batalla E., Optically induced surface gratings on azoaromatic polymer films, Appl. Phys. Lett., 1995, 66, 136-138
    [25]魏振乾,费浩生,鲍信生,杨启光,沈玉全,傅兴发,邱玲,推拉型有机化合物的非线性特性研究,红外与毫米波学报,1995, 14(4), 310-316
    [26]黄燕萍,王深义,孙真荣,丁良恩,王祖赓,推拉型偶氮化合物双光子吸收系数的测量,功能材料,1998, 29(4), 413-414
    [27] Driessen A., Hoekstra H.J.W.M., Blom F.C., Horst F., Krijnen G.J.M., Schoot van J.B.P., Lambeck P.V., Popma T.J.A., Diemeer M.B., Evaluation of polymer based third order nonlinear integrated optics devices, Optical Materials, 1998, 9(1-4), 329-333
    [28] Zhang Y., Lu Z.H., Post-saturation nonlinear optical properties of polymers, Journal of Molecular Structure: THEOCHEM, 1999, 467(3), 233-241
    [29] Kroto H.W., Heath S.C., Curl R.F., Smalley R.E., C60: Buckminsterfullerene, Nature, 1985, 318, 162
    [30] Heath J.R., Curl R.F., Smalley R.E., The UV absorption spectrum of C60 (buckminsterfullerene): A narrow band at 3860 ?, J. Chem. Phys., 1987, 87, 4236- 4238
    [31] Yang S.H., Pettiete C.L., Conceiao J., Ups of buckminsterfullerene and other large clusters of carbon, Chem. Phys. Lett., 1987, 139, 233-238
    [32] Miller J.S., Molecular materials IV. Buckminsterfulleren - a molecular material for the future, Adv. Mater., 1991, 3, 262-265
    [33] Alex K.Y., Jen K., Drost J., Thermally stable nonlinear optical polyimides: synthesis and electro-optic properties, J. Chem. Soc., Chem. Commun., 1994, 2, 965- 966
    [34]高建荣,陈兴,陈侣柏,有机低分子三阶非线性光学材料功能材料,1996, 27(5), 465-471
    [35] Zhou G.J., Zhang S., Wu P.J., Ye C., Optical limiting properties of soluble poly (thienyleneethynylene)s, Chemical Physics Letters, 2002, 363, 610-614
    [36] Zhang T., Xi K., Yu X.H., Gu M., Guo S.L., Gu B., Wang H.T., Synthesis, properties of fullerene-containing polyurethane-urea and its optical limiting absorption Polymer, 2003, 44, 2647–2654
    [37] Udayakumar D., Kiran A.J., Adhikari A.V., Chandrasekharan K., Umesh G., Shashikala H.D., Third-order nonlinear optical studies of newly synthesized polyoxadiazoles containing 3,4-dialkoxythiophenes, Chemical Physics, 2006, 331, 125-130
    [38] Wintner E, Krausz F, L eising G., Nonlinear optical response in polyacetylene and polydiacetylenes, Synthetic Metals, 1988, 28, D159-D166
    [39] Sauteret C., Hermann J.P., Realization of Large, Stable Second Order Optical Nonoliearities through double-end Crosslinkable Chromophores, Appl. Phys. Lett., 1986, 48, 998-1006
    [40] Mazumdar S., Guo D., Dixit S.N., High energy two-photon states in finite versus infinite polyenes, J. Chem. Phys., 1992, 96, 6862-6867
    [41] Guo D., Mazumdar S., Comment on: Interchain dispersion and second hyperpolarizability of conjugated polymers, J. Chem. Phys., 1992, 97, 2170-2171
    [42] Blau W., Dennis W.M., Thermal effects in picosecond optical phase conjugation in soluble polydiacetylene, Opt. Commun., 1986, 57, 371-374
    [43] Cong P., Pang Y., Degenerate four wave mixing study of conformational transition of a polydiacetylene, poly-4-BCMU, in solution, J. Chem. Phys., 1986, 85, 1077-1080
    [44] Ho P.P., Yang N.L., Ultrafast resonant optical Kerr effect in 4-Butoxycarbonyl methylurethane polydiacetylene, J. Opt. Soc. Am. B., 1987, 4, 1025-1028
    [45] Blau W., Low-power optical bistability and phase conjugation in poly- diacetylene, Opt. Commun., 1987, 64(1), 85-88
    [46] Quiniero, Rafael T., Mrinal T., Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystal and Liquid Crystals, 1994, 256(15-19), 625-630
    [47] Tocci Michael D., Bloemer Mark J., Thin-film nonlinear optical diode, Appl. Phys. Lett., 1995, 66(18), 2324-2326
    [48] Etemad S., Fann W-S., Townsend P.D., Nonlinear optics of conjugated polymers: Progress in science and potential for technology, Synthetic Metals, 1991, 43(1-2), 3163
    [49] Bader M.A., Marowsky G., Molecular Crystals and Liquid Crystals Science and Technology, Section B: Nonlinear Optics, 2000, 25(1-4), 399-405
    [50] Yang L., Dorsinville R., Wang Q.Z., Zhou W.K., Ho P.P., Yang N.L., Alfano R.R., Zamboni R., Danieli R., Ruani G., Taliani C., Third-order optical nonlinearity in polycondensed thiophene-based polymers and polysilane polymers, J. Opt. Soc. Am. B., 1989, 6, 753-756
    [51] Sugiyama T., Optical nonlinearity of conjugated polymers, Synthetic Metals, 1989, 28, 323-328
    [52] Hess B.C., Picosecond and CW Spectroscopies of Conjugated Polymers under high pressure, Bull. Am. Phys. Soc., 1990, 35, 712
    [53] Vanlap D., Rentsch S., In: Kobayashi T., et al, eds. Nonlinear Optics. France: Gordonand Breach Publishers, 1995, 10, 79
    [54] Callender C.L., Robitaille L., Assessment of third-order optical nonlinearities in conjugated organic polymers, Opt. Eng., 1993, 32, 2246-2254
    [55] Yi W.H., Feng W., Xu Y .L., Wu H.C., Synthesis and Third-Order Optical Nonlinearities of Conjugated Polymer-Bonded Carbon Nanotubes, Japanese Journal of Applied Physics, 2005, 44, 3022-3027
    [56] Ballarin B., Facchini M., Lanzi M., Paganin L., Zanardi C., Electrochemical synthesis and spectroscopic studies of polyalkylthiophene bearing NLO chromophoric units, Journal of Electroanalytical Chemistry, 2003, 553, 97-106
    [57] Burbridge S.J., Page H. In: Kobayashi T, et al, eds. Nonlinear Optics. France: Gordonand Breach Publishers, 1995, 10, 139
    [58] Drury A., Duvey A.P., In: Kobayashi T., et al, eds. Nonlinear Optics. France: Gordonand Breach Publishers, 1995, 10, 167
    [59] Vijaya R., Murti Y.V., Optical nonlinearities in substituted conjugated polymers, Opt. & Quan. Electron, 1993, 25, 723-731
    [60] Neher D., Wolf A., Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films, Chem. Phys. Lett., 1989, 163, 116-121
    [61] Neher D., Kaltbeitzel A., Wolf A., Linear and non-linear optical properties of substituted polyphenylacetylene thin films, J. Phys. D: Appl. Phys., 1991, 24, 1193
    [62] Ronchi A., Cassano T., Tommasi R., Babudri F., Cardone A., Farinola G.M., Naso F.,χ(3) measurements in novel poly(2’, 5’-dioctyloxy- 4, 4’, 4”-terphenyleneviylene) using the Z-scan technique, Synthetic Metals, 2003, 139, 831-834
    [63]万梅香,米辛,聚苯胺溶液的三阶非线性光学效应的研究,科学通报, 1993, 38, 330-332
    [64] Wong K.S., Han S.H., V ardeny Z.V., Studies of resonant and preresonantfemtosecond degenerate four-wave mixing in unoriented conducting polymers, J. Appl. Phys., 1991, 70, 1896-1898
    [65] Wang H., Gong K.C.,世界光学大会报告之一,上海, 1993
    [66] Damman S.B., Mercx F.P.M., Lemstra P.J., Liquid crystalline main chain polymers with a poly(p-phenylene terephthalate) backbone: 3. Drawing, structure development and ultimate mechanical properties of films of the polyester with dodecyloxy side chains, Polymer, 1993, 34, 2726-2731
    [67] Chandrasekhar P., Thorne J.R.G., Hochstrassar R.M., Third-order nonlinear optical properties of poly(diphenyl amine) and poly(4-amino biphenyl), novel processible conducting polymers, Appl. Phys. Lett., 1991, 59, 1661-1663
    [68] Sekkat Z., Knoesen A., Lee V.Y., Miller R.D., Observation of Reversible Photochemical "Blow Out" of the Third-Order Molecular Hyperpolarizability of Push-Pull Azo Dye in High Glass Transition Temperature Polyimides, J. Phys. Chem. B., 1997, 101(24), 4733-4739
    [69] Tsutsumi N., Morishima M., Sakai W., Nonlinear Optical (NLO) Polymers. 3. NLO Polyimide with Dipole Moments Aligned Transverse to the Imide Linkage, Macromolecules, 1998, 31(22), 7764-7769
    [70] Chen T.-A., Jen A.K.-Y., Cai Y., Two-Step Synthesis of Side-Chain Aromatic Polyimides for Second-Order Nonlinear Optics, Macromolecules, 1996, 29(2), 535-539
    [71] Saadeh H., Wang L., Yu L., A New Synthetic Approach to Novel Polymers Exhibiting Large Electrooptic Coefficients and High Thermal Stability, Macromolecules, 2000, 33(5), 1570-1576
    [72] Tang X.B., Lu J.M., Zhang Z.B., Zhu X.L., Wang L.H., Li N.J., Polycondensation of Sodium Tetrazodiphenyl Naphthionate and Pyromellitic Dianhydride under Microware Irradiation and the Performance of the Third-Order Nonlinear Optics, Journal of Applied Polymer Science, 2003, 88, 1121-1128
    [73] Yu D., Gharavi A., Yu L.P., Novel second-order nonlinear optical, aromatic, and aliphatic polyimides exhibiting high-temperature stability, Appl. Phys. Lett., 1995, 66, 1050-1052
    [74] Sotoyama W., Tatsuura S., Yoshimura T., Electro-optic side-chain polyimide system with large optical nonlinearity and high thermal stability, Appl. Phys. Lett., 1994, 64, 2197-2199
    [75] Li Z., Zhao Y.X., Zhou J.Y., Shen Y.Q., Synthesis and characterization of two series of polyimides as nonlinear optical materials, European Polymer Journal, 2000, 36, 2417-2421
    [76] Leng W.N., Zhou Y.M., Xu Q.H., Liu J.Z., Synthesis of nonlinear optical polyimides containing benzothiazole moiety and their electro-optical and thermal properties, Polymer, 2001, 42, 9253-9259
    [77] Shibataa S., Sugihara O., Che Y., Fujimura H., Egami C., Okamoto N., Formation of channel waveguide with grating in polymer films based on simultaneous photobleaching and embossing, Optical Materials, 2002, 21, 495-498
    [78] Suzuki Y., Komatsu K., Kaino T., Honda Y., Serially grafted optical waveguide fabrication of NLO polyimide and transparent polymers, Optical Materials, 2002, 21, 521-524
    [79] Jeng R.J., Chang C.C., Chen C.P., Chen C.T., Su W.C., Thermally stable crosslinked NLO materials based on maleimides, Polymer, 2003, 44, 143-155
    [80] Qiu F.X., Zhou Y.M., Liu J.Z., The synthesis and characteristic study of 6FDA–6FHP–NLO polyimide/SiO2 nanohybrid materials, European Polymer Journal, 2004, 40, 713-720
    [81] Lu J.X., Yin J., Deng X.X., Shen Q.S., Cao Z.Q., Device-quality second-order nonlinear optical poly(ester-imide) for electro-optic applications, Optical Materials, 2004, 25, 17-23
    [82] Li N.J., Lu J.M., Yao S.C., Xia X.W., Zhu X.L., Synthesis and fluorescent properties of PAA-based new side chain polymers, Materials Letters, 2004, 58, 3115- 3118
    [83] Li N.J., Lu J.M., Yao S.C., Synthesis and Optical Properties of a New Series of Side-Chain Poly(amic acid)s With p-πConjugation, Macromol. Chem. Phys., 2005, 206, 559-565
    [84] Kurihara T., Tomaru S., Mori Y., Hikita M., Kaino T., Third-order optical nonlinearities of a processable main chain polymer with symmetrically substituted tris-azo dyes, Appl.Phys. Lett., 1992, 61, 1901-1903
    [85] Xie H.Q., Liu Z.H., Huang X.D., Guo J.S., Synthesis and non-linear optical properties of four polyurethanes containing different chromophore groups, European Polymer Journal, 2001, 37, 497-505
    [86] Zhan X.W., Liu Y.Q., Zhu D.B., Huang W.T., Gong Q.H., Femtosecond Third-Order Optical Nonlinearity of Conjugated Polymers Consisting of Fluorene and Tetraphenyldiaminobiphenvl Units: Structure-Property Relationships, J. Phys. Chem. B, 2002, 106, 1884-1888
    [87] Chen C.P., Huang G.S., Jeng R.J., Chou C.C., Su W.C., Chang H.L., Low loss second-order non-linear optical crosslinked polymers based on a phosphorus- containing maleimide, Polym. Adv. Technol., 2004, 15, 587-592
    [88] Park K.H., Lim J.T., Song S., Kwak M.G., Lee C.J., Kim N., Nonlinear optical polymers with novel benzoxazole chromophores IV. Synthesis of maleimide-styrene and maleimide-methacrylate copolymers, Reactive & Functional Polymers, 1999, 40, 169-175
    [89] Qian Y., Xiao G.M., Wang G., Sun Y.M., Cui Y.P., Yuan C.W., Synthesis and third-order optical nonlinearity in two-dimensional A-π-D-π-A carbazole-cored chromophores, Dyes and Pigments, 2006, 71, 109-117
    [90] Persico P., Centore R., Sirigu A., Casalboni M., Quatela A., Sarcinelli F., Synthesis and Nonlinear Optical Properties of Methacrylate Polymers Based on 2-(4-( N-Methyl, N-hydroxyethylamino ) phenylazo)– phenyl -6- nitrobenzoxazole Chromophore, Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41, 1841-1847
    [91] Park S.K., Do J.Y., Ju J.J., Park S., Kim M.S., Lee M.H., Nonlinear optical polymer applicable for all-optical wavelength converters in communications bands near 1.5μm, Materials Letters, 2005, 59, 2872-2875
    [92] Miller R.D., Michl J., Polysilane high polymers, Chem. Rev., 1989, 89, 1359-1410
    [93] Kajzar F., Messier J., Rosilio C., Nonlinear optical properties of thin films of polysilane, J. Appl. Phys., 1986, 60, 3040-3044
    [94] Mcgraw D.J., Siegman A.E., Miller R.D., Resolution of the nuclear and electronic contributions to the optical nonlinearity in polysilanes, Appl. Phys. Lett., 1989, 84,1713-1715
    [95] Bredas J.L., Wudl F., Heeger A.J., Polarons and bipolarons in doped polythiophene: A theoretical investigation, Solid State Commun., 1987, 63, 577-580
    [96] Hasegawa T., Iwosa Y., Nonlinear optical spectroscopy on one-dimensional excitons in silicon polymer, polysilane, Phys. Rev. Lett., 1992, 69, 668-671
    [97] Breads J.L., In Procceedings of the Nobel Symposium on Conjugated Polymers and Related Materials, Salaneck W.R., Lundstrom I., Ranby B., Eds., 1993, 187
    [98] Ma H., Liu S., Luo J.D., Suresh S., Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics, Adv. Funct. Mater., 2002, 12, 565-574
    [99] Do J.Y., Park S.K., Ju J.J., Park S., Lee M.H., Improved Electro-Optic Effect by Hyperbranched Chromophore Structures in Side-Chain Polyimide, Macromol. Chem. Phys., 2003, 204, 410-416
    [100] Meng X.R., Song Y.L., Hou H.W., Fan Y.T., Li G., Zhu Y., Novel Pb and Zn Coordination Polymers: Synthesis, Molecular Structures, and Third-Order Nonlinear Optical Properties, Inorg. Chem., 2003, 42, 1306-1315
    [101] Sekkat Z., Dumont M., Photoassisted poling of azo dye doped polymeric films at room temperature, Appl. Phys. B, 1992, 54(5), 486-489
    [102] Boris L., Sandalphon V., Meerholz K., Highly efficient photorefractive polymers for dynamic holography, Optical Engineering, 1995, 34(8), 2213-2223
    [103] Wang C., Fei H., Xia J., Optically controlled image storage in azobenzene liquid-crystalline polymer films, Appl. Phys. B., 1999, 68(6), 1117-1120
    [104] Todorov T., Nikolova L., Tomova N., Polarization holography 1: A new high-efficiency organic material with reversible photoinduced birefringence, Appl. Opt., 1984, 23(23), 4309-4312
    [105] Lu W., Yu W.L., Zhang L.Z., Chinese Journal of Lasers, 2002, A29 (9), 845-849
    [106] Palk C.S., Morawetz H., Photochemical and Thermal Isomerization of Azoaromatic Residues in the Side Chains and the Backbone of Polymers in Bulk, Macromolecules, 1972, 5, 171-177
    [107] Sandhya K.Y., Chennakattu K.S.P., Naoto T., Stable polymeric materials for nonlinear optics: a review based on azobenzene systems, Prog. Polym. Sci., 2004, 29, 45-74
    [108] Dagani R., Chemists Crucial to Progress in Nonlinear Optical-Materials, Chemistry and Engineering, 1990, 6, 21-25
    [109]高建荣,陈兴,陈侣柏,章献民,叶险峰,吡啶酮偶氮化合物三阶非线性光学性质的研究,大连理工大学学报,1997, 37(5), 533-537
    [110]黄燕萍,王深义,孙真荣,丁良恩,王祖赓,偶氮苯衍生物三阶非线性的四波混频研究,光学学报(Acta Optica Sinica), 1998,18(10), 1290-1294
    [111] Tomov I.V., Van Wonterghem B., Dovrnikov A. S., Degenerate four-wave mixing in azo-dye-doped polymers films, J. Opt. Soc. Am. B, 1991, 8(7), 1477-1485
    [112] Fei H.S., Wei Z.Q., Yang Q.G., Low-power phase conjugation in push-pull azobenzene compounds, Opt. Lett., 1995, 20(14), 1518-1520
    [113] Eganmi C., Nakagawa K., Fujiwara H., Efficient Optical Phase Conjugation in Methyl-Orange-Doped Polyvinyl Alcohol Film, Jpn. J. Appl. Phys., 1992, 31(9A), 2937-2943
    [114] Fei H.S., Wei Z.Q., Wu P.F., Biphoton holographic storage in Methyl Orange and Ethyl Orange dyes, Opt. Lett., 1994, 19(6), 411-413
    [115] Holme N.C.R., Ramanujam P.S., Hvilsted S., 10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester, Opt. Lett., 1991, 21, 902-904
    [116] Natansohu A., Rocchn P., Gosselin J., Azo polymers for reversible optical storage 1. Poly [ 4'- [ [2- (acryloyloxy) ethyl ] ethylamino ] - 4– nitroazobenzene ], Macromolecules, 1992, 25, 2268-2273
    [117] Xie S., Natanuhn A., Rechon P., Recent developments in aromatic azo polymers research, Chem. Mater., 1993, 5, 403-411
    [118] Chem A.G..S., Brady D.J., Real-time holography in azo-dye-doped liquid crystals, Opt. Lett., 1992, 17, 441-443
    [119] Xu G.., Si J., Liu X., Yang Q.G., Comparison of the temperature dependence of optical poling between guest-host and side-chain polymer films, J. Appl. Phys., 1999, 85, 681-685
    [120] Kitaoka K., Si J., Mitsuyu T., Hirao K., Optical poling of azo-dye-doped thin films using an ultrashort pulse laser, Appl. Phys. Lett., 1999, 75, 157-159
    [121] Kawata S., Kawata Y., Three-Dimensional Optical Data Storage Using Photochromic Materials, Chem. Rev., 2000, 100, 1777-1788
    [122] Steenwinckel D.V., Hendrickx E., Persoons A., Large Dynamic Ranges in Photorefractive NLO Polymers and NLO-Polymer-Dispersed Liquid Crystals Using a Bifunctional Chromophore as a Charge Transporter, Chem. Mater., 2003, 13, 1230-1237
    [123] Rodriguez F.J., Sanchez C., Villacampa B., Alcala R., Cases R., Millaruelo M., Oriol L., Optical anisotropy and non-linear optical properties of azobenzene methacrylic polymers, Polymer, 2004, 45, 2341-2348
    [124] Sylla M., Maximean D.M., Albu A.-M., Delaunay J., Synthesis characterization and nonlinear optical properties study of polymers based on coloured monomers, Polymer, 2000, 41, 3507-3511
    [125] Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., Stryland E.W.V., Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electronics, 1990, 26 (4): 760-769
    [126] Ni Y.F., Yoshihiro T., Shin-Ichiro A., Bao C., Yang G.G., Analysis of a Lens-free Z-scan System used in Study of High-Order Nonlinearities, Journal of Optoelectronics Laser, 2001, 12(12), 1253-1257
    [127]任军江,黄文昊,林健,孙真荣,黄玉华,碲铌铅玻璃的三阶非线性光学特性,光电子激光,2002, 13(6), 590-592
    [128]张灵志,郭建明,梁兆熙,毕东瀛,刘颂豪,蔡志岗,林位株,偶氮苯聚合物(PAZOS)的合成及其三阶非线性光学特性,功能高分子学报,1997, 10, 463-469
    [129]颜星中,魏雄,罗挺,蔡志岗,梁兆熙,余振新,“推-拉”型偶氮苯功能化聚酯膜的光学相位共轭和光致异构,激光技术,1997, 21(5), 272-276
    [130] Osaheni J.A., Jenekhe S.A., Nonlinear optical properties of polyanilines and derivatives, J. Phys. Chem., 1992, 96(7), 2830-2836
    [131] Chen W.C., Jenekhe S.A., Refractive index and nonlinear optical properties of polyaniline derivatives, J. Poly. Sci., Part B: Polymer Physics, 1994, 32, 195-199
    [132] Bredas J.L., Adant C., Tackx P., Persoons A., Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects, Chem. Rev., 1994,94, 243-278
    [133] Rao S.V., Srinivas N.K.M. N., Rao D.N., Giribabu L., Maiya B.G., Philip R., Kumar G.R., Studies of third-order optical nonlinearity and nonlinear absorption in tetra tolyl porphyrins using degenerate four wave mixing and Z-scan, Optics Communications, 2000, 182, 255-264
    [134] Philip R., Ravikanth M., Kumar G.R., Studies of third order optical nonlinearity in iron (Ⅲ) phthalocyanineμ-oxo dimers using picosecond four-wave mixing, Optics Communications, 1999, 165, 91-97
    [135] Kumar G.R., Ravikanth M., Banerjee S., Sevian A., Third order optical nonlinearity in basket handle porphyrins–picosecond four-wave mixing and excited state dynamics, Optics Communications, 1997, 144, 245-251
    [136] Kasatani K., Large electronic third-optical nonlinearties of cyanine dyes measured by resonant femtosecond degenerate four-ware mixing, Optical Materials, 2002, 21, 93-97
    [137] Sahraoui B., Phu X.N., Rivoire G., Nozdryn T., Cousseau J., Third-order nonlinear optical properties of new polyfluoroalkylsulfanyl-substituted tetrathiafulvalene derivatives, Synthetic Metals, 1998, 94, 57-60
    [138] Kasatani K., Subpicosecond degenerate four-wave mixing and optical Kerr effect of organic dyes in excited states, Journal of Luminescence, 2000, 87-89, 889-891
    [139] Gao J.R., Wang Q., Cheng L.B., Synthesis and third-order optical nonlinear properties of organic polyheterocyclic materials, Materials Letters, 2002, 57, 761-764
    [140] Samoc M., Samoc A., Luther-Davies B., Scherf U., Linear and nonlinear optical properties of a ladder poly(p-phenylene) polymer, Synthetic Metals, 1997, 87, 197- 200
    [141] Lee M.Y., Kim T.S., Choi Y.S., Third-order optical nonlinearities of sol-gel-processed Au-SiO2 thin fimes in the surface plasmon absorption region, Journal of Non-Crystalline Solids, 1997, 211, 143-149
    [142] Yamaki T., Asai K., Ishigure K., Sano K., Ema K., DFWM study of thin films containing surface-modified Cds nanoparticles, Synthetic Metals, 1999, 103, 2690- 2691
    [143] Ando M., Kadono K., Kamada K., Ohta K., Third-order nonlinear optical responses of nanoparticulate Co3O4 films, Thin Solid Films, 2004, 446, 271-276
    [144] Strohkendl F.P., Larsen R.J., Dalton L.R., Kafafi Z.K., Femtosecond nearly degenerate four-ware mixing in C60 films between 0.55 and 0.70μm, Chemical Physics Letters, 2000, 331, 354-35
    [145] Koynov K., Bahtiar A., Ahn T., Bubeck C., Horhold H.-H., Molecular weight dependence of birefringence of thin films of the conjugated polymer poly〔2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylenevinylene〕, Applied Physics Letters, 2004, 84(19), 3792-3794
    [146] Sun Z.R., yang X.H., Huang Y.P., Ding L.E., Qin L.J., Wang Z.G.,π-electron density dependence of third-order optical nonlinearties in poly(1,4-phenylene vinylene) derivatives, Optics Communications, 1999, 160, 289-291
    [147] Sarailou E., Gharavi A., Javadpour S., Shkunov V., Grating based electro-optic switch with azo nonlinear optical polymers, Applied Physics Letters, 2006, 89(17), 171114(1-3)
    [148] Zhan X.W., Liu Y.Q., Zhu D.B., Liu X.C., Xu G., Ye P.X., Large third-order nonlinear optical response of a conjugated copolymer consisting of 2,5-diethynyl- thiophene and carbazole units, Chemical Physics Letters, 2001, 343, 493-498
    [149] Janczarek I.F., Nunzi J-M., Sahraoui B., Kityk I.V., Berdowski J., Caminade A.M., Majoral J.-P., Martineau A.C., Frere P., Roncali J., Third-order nonlinear optical properties and two-photon absorption in branched oligothienylenevinylenes, Optics Communications, 2002, 209, 461-466
    [150]黄晓琴,崔一平,Z-scan的理论及技术研究进展,激光杂志,2001, 2(6), 1-4
    [151] Hamanaka Y., Hayashi N., Nakamura A., Omi S., Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites, Journal of Luminescence, 2000, 87-89, 859-861
    [152] Yu B.L., Yin G.S., Zhu C.S., Gan F.X., Optical nonlinear properties of PbS nanoparticles studied by the Z-scan technique, Optical Materials, 1998, 11, 17-21
    [153] Li H.P., Liu B., Kam C.H., Lam Y.L., Que W.X., Gan L.M., Chew C.H., Xu G.Q., Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles, Optical Materials, 2000, 14, 321-327
    [154] Li C., Shi G., Xu H.Y., Guang S.Y., Yin R.H., Song Y.L., Nonlinear optical propertiesof the Pbs nanorods synthesized via surfactant-assisted hydrolysis, Materials Letters, 2007, 61(8-9), 1809-1811
    [155] Gu Y.Z., Wang Y., Gan F.X., Third-order optical nonlinearities in thin films of a new subphthalocyanine, Materials Letters, 2002, 52, 404-407
    [156] Ronchi A., Cassano T., Tommasi R., Babudri F., Cardone A., Farinola G.M., Naso F.,χ(3) measurements in novel poly (2’, 5’- dioctyloxy - 4, 4’, 4”- terphenylene vinylene) using the Z-scan technique, Synthetic Metals, 2003, 139, 831-834
    [157] Wang P., Ming H., Zhang J.Y, Liang Z.C., Lu Y.H., Zhang Q.J., Xie J.P., Tian Y.P., Nonlinear optical and optical-limiting properties of Azobenzene liquid crystal polymer, Optics Communications, 2002, 203, 159-162
    [158] Li H.P., Kam C.H., Lam Y.L., Ji W., Femtosecond Z-scan measurements of nonlinear optical crystals, Optical Materials, 2001, 15, 237-242
    [159] Durr H., Bouas H., Photochromism: Molecules and systems, Elsevier, Amsterdam, 1990
    [160] Angiolini l., Bozio R., Giorgini L., Pedron D., Turco G., Dauru A., Photomodulation of the Chiroptical Properties of New Chiral Methacrylic Polymers with Chain Azobenzene Moieties, Chem. Eur., 2002, 8, 4241-4247
    [161] Hore D.K., Natansohn A.L., Rochon P.L., Anomalous Cis Isomer Orientation in a Liquid Crystalline Azo Polymer on Irradiation with Linearly-Polarized Light, J. Phys. Chem. B., 2003, 107, 2197-2204
    [162] Morikawa Y., Nagano S., Watanabe K., Kamata K., Iyoda T., Seki T., Optical Alignment and Patterning of Nanoscale Microdomains in a Block Copolymer Thin Film, Adv. Mater., 2006, 18, 883-886
    [163] Zhao Y., Bai S.Y., Asatryan K., Galstian T., Holographic Recording in a Photoactive Elastomer, Adv. Funct. Mater., 2003, 13, 781-788
    [164] Grafe A., Haupt K., Mohr G.J., Optical sensor materials for the detection of amines in organic solvents, Analytica. Chimica. Acta., 2006, 565, 42-47
    [165] He X. H., Yan D. Y., Mai Y.Y., Synthesis of novel multi-arm star azobenzene side-chain liquid crystalline copolymers with a hyperbranched core, European PolymerJournal, 2004, 40,1759-1765
    [166] Jin M., Lu Ran., Bao C.Y., Xu T.H., Zhao Y.Y., Sythesis and characterization of hyperbranched azobenzene-containing polymers via self-condensing atom transfer radical polymerization and copolymerization, Polymer, 2004, 45, 1125-1131
    [167] Studying the temperature dependence of the laser induced birefringence in azo dye doped polymer films, Mohajerani E., Nataj N.H., Optical Materials, In Press, Corrected Proof, Available online 24 August 2006
    [168] Barto R.R., Frank C.W., Bedworth P.V., Taylor R.E., Anderson W.W., Ermer S., Jen A.K.-Y., Luo J.D., Ma H., Tang H.Z., Lee M., Ren A.S., Bonding and Molecular Environment Effects on Near-Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore-Polymer Materials, Macromolecules, 2006, 39, 7566-7577
    [169] Priimagi A., Cattaneo S., Ras R.H.S., Valkama S., Ikkala O., Kauranen M., Polymer-Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules, Chem. Mater., 2005, 17, 5798-5802
    [170] Hattori T., Shibata T., Onodera S., Kaino T., Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching, J. Appl. Phys., 2000, 87, 3240-3244
    [171] Sekkal Z., Kleideiter G., Knoll W., Optical orientation of azo dye in polymer films at hign pressure, J. Opt. Soc. Am. B., 2001, 18, 1854-1857
    [172] Serak S., Kovalev A., Agashkov A., Gleeson H.F., Watson S.J., Reshetnyak V., Yaroshchuk O., Laser-induced surface and bulk reorientation of the director in azo-dye-doped liquid crystal cells, Optics Communications, 2001, 187, 235-247
    [173] Brown D., Natansohn A., Rochon P., Azo Polymers for Reversible Optical Storage 5. Orientation and Dipolar Interactions of Azobenfzene Side Groups in Copolymers and Blends Containing Methyl Methacrylate Structural Units, Macromolecules, 1995, 28, 6116-6123
    [174] Sharma L., Kimura T., Matsuda H., Investigation into New Materials for Optical Devices: The Miscibility and Solvent Effects of Azobenzene Derivative Blends, Ploymers for Advanced Technologies, 2002, 13, 450-458
    [175] Wang Y.X., Tai Oliver Y.-H., Wang C.H., Second-harmonic generation in an optically poled azo-dye/polymer film, J. Chem. Phys., 2005, 123,164704(1-5)
    [176] Labarthert F.L., Bruneel J.L., Sourisseau C., Huber M.R., Borger V., Menzel H., Microspectrometric study of azobenzene chromophore orientations in a holographic diffraction grating inscribed on a p(HEMA-co-MMA) functionalized copolymer film, J. Raman. Spectroscopy, 2001, 32,665-675
    [177] Tirelli N., Altomare A., Solaro R., Ciardelli F., Follonier S., Bosshard Ch., Gunter P., Structure-activity relationship of new NLO organic materials based on push-pull azodyes 4. Side chain polymers, Polymer, 2000, 41, 415-421
    [178] Shi J., Jiang Z.W., Cao S.K., Synthesis of carbazole-based photorefractive polymers via post-azo-coupling reaction, Reactive and Functional Polymers, 2004, 59, 87-91
    [179] Caruso U., Diana R., Fort A., Panunzi B., Roviello A., Synthesis of Polymers Containing Second Order NLO-Active Thiophene and Thiazole Based Chrimophores, Macromol. Symp., 2006, 234, 87-93
    [180] Silong S., Lutfor M.R., Rahman M. Z.Ab, Yunus W.M.Z.Wan, Haron M.J., Ahmad M.B., Yusoff W.M.D.Wan, Synthesis and Characterization of Side-Chain Liquid-Crystalline Polyacrylates Containing Azobenzene Moieties, Journal of Applied Polymer Science, 2002, 86, 2653-2661
    [181] Ortyl E., Chan S.W., Nunzi J.-M., Kucharski S., Second harmonic generation by all-optical poling and its relaxation in the polymer films containing azo sulfonamide chromophores, Optical Materials, 2006, 29, 268-272
    [182] Mori T., Yuyama K., Narita K., Minagawa K., Haraguchi M., Preparation of Nano-and Microparticles through Self-Assembly of Azobenzene-Pendent Ionomers, Journal of Applied Polymer Science, 2006,100, 3913-3918
    [183] Wang G., Tong X., Zhao Y., Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates, Macromolecules, 2004, 37, 8911-8917
    [184] Tuo X.L., Chen D., Cheng H., Wang X.G., Fabricating Water-Insoluble Polyelectrolyte into Multilayers with Layer-by-layer Self-assembly, Polymer Bulletin, 2005,54, 427-433
    [185] Deng Y.H., Li Y.B., Wang X.G., Colloidal Sphere Formation, H-Aggregation and Photoresponsive Properties of an Amphiphilic Random Copolymer Bearing Branched Azo Side Chains, Macromolecules, 2006, 39, 6590-6598
    [186] Bosc D., Foll F., Boutevin B., Rousseau A., Synthesis of a Novel Difunctional NLO Azo-Dye Chromophore and Characterizations of Crosslinkable Copolymers with Stable Electrooptic Properties, Journal of Applied Polymer Science, 1999, 74, 974-982
    [187] Angiolini L., Caretti D., Giorgini L., Salatelli E., Synthesis and Chiroptical Properties of Optically Active Photochromic Methacrylic Polymers Bearing in the Side Chain the (S)-3-Hydroxypyrrolidinyl Group Conjugated with the trans- Azoaromatic Chromophore, Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37, 3257-3268
    [188] Angiolini L., Caretti D., Giorgini L., Salatelli E., Methacrylic polymers bearing side-chain permanent dipole azobenzene chromophores spaced from the main chain by chiral moieties: synthesis and characterization, Polymer, 2001, 42, 4005-4016
    [189] Angiolini L., Caretti D., Giorgini L., Salatelli E., Synthesis and chiroptical properties of optically active methacrylic polymers bearing the (s)-and/or (R)-2- hydroxysuccinimide moiety linked to the trans-azobenzene group in the side chain, Macromol. Chem. Phys., 2000, 201, 533-542
    [190] Norman L.L., Barrett C.J., Solution Properties of Self-Assembled Amphiphilic Copolymers Determined by Isomerization Spectroscopy, J. Phys. Chem. B., 2002, 106, 8499-8503
    [191] Li Y.B., Deng Y.H., He Y.N., Tong X.L., Wang X.G., Amphiphilic Azo Polymer Spheres, Colloidal Monolayers, and Photoinduced Chromophore Orientation, Langmuir, 2005, 21, 6567-6571
    [192] Tanchak O.M., Barrett C.J., Light-Induced Reversible Volume Changes in Thin Films of Azo Polymers: The Photomechanical Effect, Macromolecules, 2005, 38, 10566-10570
    [193] Angiolini L., Benelli T., Giorgini L., Salatelli E., Bozio R., Dauru A., Pedron D., Improvement of Photoinduced Birefringence Properties of Optically Active Methacrylic Polymers through Copolymerization of Monomers Bearing Azoaromatic Moieties,Macromolecules, 2006, 39, 489-497
    [194] Angiolini L., Benelli T., Giorgini L., Salatelli E., Optically active photochromic methacrylic polymers with controlled average molecular weight and defined end-groups by atom transfer radical polymerization, Polymer, 2005, 46, 2424-2432
    [195] Sin S.L., Gan L.H., Hu X., Tam K.C., Gan Y.Y., Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film, Macromolecules, 2005, 38, 3943-3948
    [196] Ravi P. Sin S.L., Gan L.H., Gan Y.Y., Tam K.C., Xia X.L., Hu X., New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior, Polymer, 2005, 46, 137-146
    [197] Tejedor R.M., Millaruelo M., Oriol L., Serrano J.L., Alcala R., Rodriguez F. J., Villacampa B., Photoinduced supramolecular chirality in side-chain crystalline azopolymers, Journal of Materials Chemistry, 2006, 16, 1674-1680
    [198] Zheng R.S., Ma H., Zhang Y.S., Sun X.H., Wang P., Ming H., Li Z., Zhang Q., Birefringence relaxation in photosensitive polymer optical fiber perform, J. Mater. Sci.: Mater. Electron, 2006, 17, 277-280
    [199] Sun K., Liu J., Gao J.G., Su W., Zhang D.G., Wang P., Zhang Q.J., Photoinduced alignment of azobenzene side-chain polymers with short spacer: Biaxial orientation and fast response, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44, 1378-1384
    [200] Liang Z.C., Ming H., Wang P., Zheng J.Y., Xie J.P., Zhang Q.J., Nonlinearly optical-optical isomerization cycle in azobenzene liquid crystal polymers, J. Appl. Phys., Part 2, 2001, 90, 5866-5870
    [201] Jia Y.J., Wang G.M., Guo B., Su W., Zhang Q.J., An all-optical poling investigation of low absorbing azobenzene side-chain polymer films, Journal of Optics A: Pure And Applied Optics, 2004, 6, 833-836
    [202] Han Y.K., Dufour B., Wu W., Kowalewski T., Matyjaszewski K., Synthesis and Characterization of New Liquid-Crystalline Block Copolymers with p-Cyano- azobenzene Moieties and Poly(n-butyl acrylate) Segments Using Atom-Transfer Radical Polymerization, Macromolecules, 2004, 37, 9355-9365
    [203] Angeloni A.S., Caretti D., Carlini C., Chiellini E., Galli G., Altomare A., Solaro R., Laus M., Photochromic liquid-crystalline polymers Main chain and side chain polymers containing azobenzene mesogens, Liquid Crystals, 1989, 4(5), 513-527
    [204] Ruhmann R., Thiele T., Prescher D., Wolff D., A phase polymorphism N-SAd-I in liquid-crystalline polymethacrylates with 4’-trifluoromethoxyazobenzene mesogenic side groups, Macromol. Rapid Commun., 1995, 16, 161-167
    [205] Ho C., Yang K.N., Lee S.N., Mechanistic Study of Trans Cis Isomerization of the Substituted Azobenzene Moiety Bound on a Liquid-Crystalline Polymer, Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39, 2296-2307
    [206] Yin S.C., Xu H.Y., Su X.Y., Gao Y.C., Song Y.L., Wing Yip Lam J., Tang B.Z., Shi W.F., Synthesis and optical properties of azobenzene-containing poly(1-alkyne)s with different spacer lengths and ring substitutens, Polymer, 2005, 46, 10592-10600
    [207] Yaroshchuk O., Bidna T., Nadtoka O., Olkhovyk L., Syromyatnikov V., Chien L.C., The Initial and Photoinduced 3D Orientational Order in Polymethacrylates with Azobenzene Side Groups, Mol. Cryst. Liq. Cryst., 2005, 437, 133/[1377]-146[1390]
    [208] Imrie C., Attard G.S., Karasz F.E., Role of Specific Interactions in Determining the Mesogenic Behavior of Side-Chain Liquid Crystal Polymers, Macromolecules, 1996, 29, 1031-1035
    [209] Imrie C.T., Karasz F.E., Attard G.S., Side-Chain Liquid-Crystalline Copolymers Containing Spacers of Different Lengths, Macromolecules, 1992, 25, 1278-1283
    [210] Yin S.C., Xu H.Y., Su X.Y., Li G., Song Y.L., Lam J., Tang B.Z., Optical-Limiting and Nonlinear Optical Polyacetylenes: Synthesis of Azobenzene-Containing Poly(1-alkyne)s with Different Spacer and Tail Lengths, Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44, 2346-2357
    [211] Jin M., Yang X.Q., Lu R., Xu H.T., ZhaoY.Y., Synthesis of Bisazo-Containing Polymethacrylates Using Atom Transfer Radical Polymerization and the Photoalignment Behavior, Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42, 4237-4247
    [212] Cojocariu C., Rochon P., Thermotropic Side-Chain Liquid Crystalline Copolymers Containing Both Mono- and Bisazobenzene Mesogens: Synthesis and Properties,Macromolecules, 2005, 38, 9526-9538
    [213] Meng X., Natansohn A., Rochon P., Azo Polymers for reversible optical storage: 13. photoorientation of rigid side groups containing two azo bonds, Polymer, 1997, 38, 2677-2682
    [214]麻洪,段晓芳,陈萍,含偶氮类非线性光学活性侧基的聚酰亚胺的合成及表征,高分子学报,1997, 68, 652-657
    [215] Yu L.P., Chan W.K, Bao Z., Synthesis and Characterization of a Thermally Curable Second-Order Nonlinear Optical Polymer, Macromolecules, 1992, 25, 5609-5612
    [216] Qiu F.X., Cao Y.L., Xu H.L., Jiang Y., Zhou Y.M., Liu J.Z., Synthesis and properties of polymer containing azo-dye chromophores for nonlinear optical applications, Dyes and Pigments, In Press, Corrected Proof, Available online 12 September 2006
    [217] Xu H.Y., Yin S.C., Zhu W.J., Song Y.L., Tang B.Z., Synthesis and optical properties of three novel functional polyurethanes bearing nonlinear optical chromophoric pendants with differentπelectron conjugation bridge structure, Polymer, 2006, 47, 6986-6992
    [218] Apostoluk A., Nunzi J.M., Lee K.S., Second-order nonlinear optical properties and polar order relaxation dynamics in a cyano-chromophore grafted polyurethane polymer, Optics Communications, 2006, 263, 337-341
    [219] Pizzoferrato R., Sarcinelli F., Angeloni M., Casalboni M., Bertinelli F., Costa-Bizzarri P., Della-Casa C., Lanzi M., Optical characterization of alkyl- thiophenic monomers functionalized with second-order nonlinear chromophores, Chem. Phys. Lett., 2001, 343, 205-211
    [220] Zagorska M., Kulszewicz-Bajer I., ProńA., Raimond P., Kajzar F., Attias A-J., Polythiophenes functionalized with Disperse Red 1 chromophore, Synthetic Metals, 1999, 102(1-3), 1141-1142
    [221] Della-Casa C., Fraleoni A., Costa-Bizzarri P., Lanzi M., Paganin L., Synthesis and characterization of poly(3-alkylthiophenes) with NLO chromophoric groups in side chains, Macromolecular Symposia, 2002, 180, 217-222
    [222] Lanzi M., Paganin L., Della-Casa C., Fraleoni A., Facile Synthesis of Soluble Multifunctional Polyalkylthiophenes, Macromol. Rapid Commun., 2002, 23, 630-633
    [223] Della-Casa C., Costa-Bizzarri P., Lanzi M., Paganin L., Bertinelli F., Pizzoferrato R., Sarcinelli F., Casalboni M., Monomers of 3-alkyl-substituted thiophene: synthetic routes for the functionalization with non-linear optical chromophores, Synthetic Metals, 2003, 138, 409-417
    [224] Costa-Bizzarri P., Lanzi M., Paganin L., Della-Casa C., Bertinelli F., Casalboni M., Sarcinelli F., Quatela A., Versatile Synthesis of Soluble Multifunctional Thiophene Copolymers with NLO Activity, Macromol. Chem. Phys., 2003, 204, 1982-1988
    [225] Zhao X.Y., Hu X., He Y.K., Chen H.Y., Preparation and characterization of plasma-polymerized benzonitrile films with ultrafast optical Kerr effect, Polym. Eng. Sci., 2000, 40, 2551-2564
    [226] Lanzi M., Bertinelli F., Paganin L., Costa-Bizzarri P., Cesari G., Electronic Transitions of Polyalkylthiophenes Partially Derivatized with NLO Chromophores: A Theoretical and Experimental Study, Macromol. Chem. Phys., 2006, 207, 1253-1261
    [227] Darracq B., Canva M., Chaput F., Boilot J.-P., Riehl D., Levy Y., Brun A., Stable photorefractive memory effect in sol-gel materials, Appl. Phys. Lett., 1997, 70, 292-294
    [228] Yin S.C., Xu H.Y., Shi W.F., Gao Y.C., Song Y.L., Wing Yip Lam J., Tang B.Z., Synthesis and optical properties of polyacetylenes containing nonlinear optical chromophores, Polymer, 2005, 7670-7677
    [229] Hua J.L., Li Z., Qin J.G., Li S.J., Ye C., Lu Z.H., Synthesis and characterization, second-order nonlinear optical and photorefractive properties of new multifunctional polysiloxane with broad optical transparent pentafluorophenyl azo chromophore, Reactive and Functional Polymers, 2007, 67(1), 25-32
    [230] Chen Y.W., He Y.K., Chen H.Y., Wang F., Chen Z.J., Gong Q.H., Photorefractive Effect in a New Composite Based on Bifunctional Host Polymer, Journal of Applied Polymer Science, 2000, 77, 189-194
    [231] Shi J., Huang M.M., Chen Z.J., Gong Q.H., Cao S.K., Carbazole-based azo group-containing single component polymer exhibiting photorefractive performance, Journal of Materials Science, 2004, 39, 3783-3785
    [232] Maertens C., Dubois P., Jerome R., Blanche P.-A., Lemaire Ph.C., Synthesis andPolarized Light-Induced Birefringence of New Polymethacrylates Containing Carbazolyl and Azobenzene Pendant Groups, Journal of Polymer Science: Part B: Polymer Physics, 2000, 38, 205-213
    [233] Blanche P.-A., Lemaire Ph.C., Maertens C., Dubois C., Jerome R.P., Optics Communications, 2000, 185, 1-12
    [234] Wang C.S., Fei H.S., Yang Y.Q., Wei Z.Q., Qiu Y., Chen Y.M., Photoinduced anisotropy and polarization holography in azobenzene side-chain polymer, Optics Communications, 1999, 159, 58-62
    [235]傅正生,刘茂栋,薛华丽,梁卫东,王长青,淀粉与偶氮化合物接枝共聚物对金属离子吸附效果的研究,甘肃农业大学学报,2004, 39(4), 457-462
    [236] Fu Z.S., Liang W.D., Yang A.M., Wang Z.G., Role and relevance of polarity and hindrance of vinyl monomers in graft copolymerization onto potato starch, Journal of Applied Polymer Science, 2002, 85(4), 896-899
    [237] Fu Z.S., Xue H.L., Wang C.Q., Lin M.D., Yuan L., Relationship between the absorption spectra and spatial hindrance in starch graft copolymers, Journal of Applied Polymer Science, 2006, 101(4), 2123-2126
    [238] Kawata S., Yoshimasa Kawata Y., Three-Dimensional Optical Data Storage Using Photochromic Materials, Chem. Rev., 2000, 100, 1777-1788
    [239] Mustroph H., Stollenwerk M., Bressau V., Current Developments in Optical Data Storage with Organic Dyes, Angew. Chem. Int. Ed., 2006, 45, 2016– 2035
    [240] Hore D., Wu Y.L., Natansohn A., Investigation of circular Bragg reflection in an azo polymer with photoinduced chirality, J. Appl. Phys., 2003, 94(4), 2162-2166
    [241] Freiberg S., Lagugne-Labarthet F., Rochon P., Synthesis and Characterization of a Series of Azobenzene-Containing Side-Chain Liquid Crystalline Polymers, Macromolecules, 2003, 36 (8), 2680-2688
    [242] Hore D.K., Natansohn A., Rochon P., The Characterization of Photoinduced Chirality in a Liquid-Crystalline Azo Polymer on Irradiation with Circularly Polarized Light, J. Phys. Chem. B, 2003, 107(11), 2506-2518
    [243] Hore D.K., Natansohn A., Rochon P., Anomalous Cis Isomer Orientation in a LiquidCrystalline Azo Polymer on Irradiation with Linearly-Polarized Light, J. Phys. Chem. B, 2003, 107(10), 2197-2204
    [244] Geue T.M., Saphiannikova M.G., Henneberg O., X-ray investigations of formation efficiency of buried azobenzene polymer density gratings, J. Appl. Phys., 2003, 93 (6), 3161-3166
    [245] Natansohn A., Rochon P., Photoinduced Motions in Azo-Containing Polymers, Chem. Rev., 2002, 102(11), 4139-4175
    [246] Hore D.K., Natansohn A., Rochon P., Optical Anisotropy as a Probe of Structural Order by Stokes Polarimetry, J. Phys. Chem. B, 2002, 106(35), 9004-9012
    [247] Petrova T.S., Mancheva I., Nacheva E., New azobenzene polymers for light-controlled optical elements, J. Mater. Sci., 2003, 14(10-12), 823-824
    [248] Nikolova L., Todorov T., Dragostinova V., Polarization reflection holographic gratings in azobenzene-containing gelatine films, Opt. Lett., 2002, 27(2), 92-94
    [249] Nedelchev L., Nikolova L., Todorov T., Light propagation through photoinduced chiral structures in azobenzene-containing polymers, J. Opt. A- Pure Appl. Opt., 2001, 3 (4), 304-310
    [250] Nikolova L., Nedelchev L., Todorov T., Self-induced light polarization rotation in azobenzene-containing polymers, Appl. Phys. Lett., 2000, 77(5), 657-659
    [251] Zilker S.J., Bieringer T., Haarer D., Stein R.S., Egmond van J.W., Kostromine S.G., Holographic Data Storage in Amorphous Polymers, Advanced Materials, 1998, 10(11), 855-859
    [252] Yamamoto T., Ohashi A., Yoneyama S., Hasegawa M., Tsutsumi O., Kanazawa A., Shiono T., Ikeda T., Phase-Type Grating Formed by Photochemical Phase Transition of Polymer Azobenzene Light Crystal. 2. Rapid Switching of Diffraction Beams in Thin Films, J. Phys. Chem. B., 2001, 105, 2308-2313
    [253] Lee M.J., Jung D.H., Han Y.K., Photo-responsive polymers and their Applications to Optical Memory, Mol. Cryst. Liq. Cryst., 2006, 444, 41-45
    [254] Labarthet F.L., Buffeteau T., Sourisseau C., Optical erasures and unusual surface reliefs of holographic gratings inscribed on thin films of an azobenzene functionalizedpolymer, Phys. Chem. Chem. Phys., 2002, 4, 4020-4029
    [255] Ho M.S., Natansohn A., Rochon P., Azo Polymers for Reversible Optical Storage 9. Copolymers Containing Two Types of Azobenzene Side Groups, Macromolecules, 1996, 29, 44-49
    [256] Hatada K., Kitayama T., Nishiura T., Tawada M., Harazono T., Sugaya T., Synthesis and Properties of Stereoregular Polymethacrylates with Azobenzene Moiety as A Photoreactive Side-Chain Mesogenic Group, J. M. S.- Pure Appl. Chem. A., 1997, 34(7), 1183-1194
    [257] Rodriguez F.J., Sanchez C., Villacampa B., Alcala R., Cases R., Millaruelo M., Oriol L., Lorincz E., Red light induced holographic storage in an azobenzene polymethacrylate at room temperature, Optical Materials, 2006, 28, 480-487
    [258] Kim M. J., Chun Chaemin, Nakayama Tomonobu, Kim Dong Yu, Absorption Wavelength Dependent Photodynamic Motions in Donor-Acceptor Type of Azobenzene Polymer Films, Japanese Journal of Applied Physics, 2006, 45, L167- L171
    [259] Ozaki M., Nagata T., Matsui T., Yoshino K., Kajzar F., Photoinduced Surface Relief Grating on Composite Film of Conducting Polymer and Polyacrylate Containing Azo-Substituent, Japanese Journal of Applied Physics, 2000, 39, L614- L616
    [260] Matsul T., Ozakl M., Yoshino K., Kajzar F., Fabrication of Flexible Distributed Feedback Laser Using Photoinduced Surface Relief Grating on Azo-Polymer Film as a Template, Jpn. J. Appl. Phys., 2002, 41, L1386-L1388
    [261] Yager K.G., Barrett.C.J., Temperature modeling of laser-irradiated azo-polymer thin films, J. Chem. Phys., 2004, 120, 1089-1096
    [262] Baldus O., Leopold A., Hagen R., Bieringer T., Zilker S.J., Surface relief gratings generated by pulsed holography: A simple way to polymer nanostructures without isomerizing side-chains, Journal of Chemical Physics, 2001, 114, 1344-1349
    [263] Ahmadi Kandjani S., Barille R., Dabos-Seignon S., Nunzi J.-M., Ortyl E., Kucharski S., Self-Induced Diffraction Grating Storage in Polymers Films, Mol. Cryst. Liq. Cryst., 2006, 446, 99-109
    [264] Nagata T., Matsui T., Ozaki M., Yoshino K., Kajzar F., Novel optical properties ofconducting polymer-photochromic polymer systems, Syntheic Metals, 2001, 119, 607-608
    [265] Alam Md.Z., Ohmachi T., Ogata T., Nonaka T., Kurihara S., Surface Relief Gratings on Azo Polymer Films Through Reversible Photoisomerization by the Irradiation of a Monnochromatic Light, Journal of Applied Polymer Science, 2006, 102, 3123-3126
    [266] Nuyken O., Scherer C., Baindl A., Brenner A.R., Dahn U., Gartner R., Kaiser-Rohrich S., Kollefrath R., Matusche P., Voit B., Azo-group-containing polymers for use in communications technologies, Prog. Polym. Sci., 1997, 22, 93-183
    [267] Delaire J.A., Nakatani K., Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials, Chem. Rev., 2000, 100, 1817-1845
    [268] Nahata A., Shan J., Yardley J.T., Wu C.J., Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer, J. Opt. Soc. Am. B, 1993, 10(9), 1553-1564
    [269] Martinez D.R., Koch K., Ratsavong F.K., Carlisle G.O., Mechanism of Optically Inscribed High-Efficiency Diffraction Gratings in Azo Polymer Films, J. Apl. Phys., 1994, 75(8), 4273-4275
    [270] Albu A-M., Maculescu B., Vasilescu D.S., Synthesis and characterization of some polymers with applications in non-linear optics II Copolymerization of styrene with some momomers containing azo-dyes, European Polymer Journal, 1999, 35, 2203-2205
    [271] Ushiwata T., Okamoto E., Kaino T., Development of Thermally Stable Novel EO-Polymers, Mol. Cryst. Liq. Cryst., 2002, 374, 303-314
    [272] Piron R., Toussaere E., Josse D., Brasselet S., Zyss J., Towards non-linear photonics in all-optically poled polymer microcavities, Syntheic Metals, 2000, 115, 109-119
    [273] Wang J.H., Shen Y.Q., Yu C.X., Zheng J., The synthesis of a soluble diacetylene and its polymer with push-pull azobenzene and pyrimidine ring attached, Synthetic Metals, 2000, 113, 73-76
    [274] Yin S.C., Xu H.Y., Shi W.F., Bao L., Gao Y.C., Song Y.L., Tang B.Z., Preparation and optical properties of poly( 4-ethynyl - 4’- [N, N-diethylamino] azobenzene-co-phenyl- acetylene), Dyes and Pigments, 2007, 72, 119-123
    [275] Ichimura K., Photoalignment of Liquid-Crystal Systems, Chem. Rev., 2000, 100,1847-1873
    [276] Furumi S., Ichimura K., Photogeneration of High Pretilt Angles of Nematic Liquid Crystals by Non-Polarized Light Irradiation of Azobenzene-Containing Ploymer Films, Adv. Funct. Mater., 2004, 14, 247-254
    [277] Thieghi L.T., Bonvent J.J., Oliveira E.A., Giacometti J.A., Balogh D.T., Competition between anchoring and reversible photo-induced alignment of a nematic liquid crystal, Appl. Phys. A., 2003, 77, 911-914
    [278] Robello D.R., Linear Polymers for Nonlinear Optics I. Polyacrylates Bearing Aminonitro-Stilbene and–Azobenzene Dyes, Journal of Polymer Science: Part A: polymer Chemistry, 1990, 28, 1-13
    [279] Haitjema H.J., Morgen G.L., Tan Y.Y., Challa G., Photoresponsive Behavior of Azobenzene-Based (Meth)acrylic (Co)polymers in Thin Films, Macromolecules, 1994, 27, 6201-6206
    [280] Shibaev V.P., Kostromin S.G., Plate N.A., Thermotropic Liquid-Crystalline Polymers-VI. Comb-like Liquid-Crystalline Polymers of the Smectic and Nematic Types with Cyanobiphenyl Groups in the Side Chains, Eur. Polym. J., 1982, 18, 651-659
    [281] Wu Y.L., Demachi Y., Tsutsumi O., Kanazawa A., Shiono T., Ikeda T., Photoinduced Alignment of polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain.3.Effect of Structure of Photochromic Moieties on Alignment Behavior, Macromolecules, 1998, 31, 4457-4463
    [282] Hvilsted S., Andruzzi F., Kulinna C., Siesler H.W., Ramanujam P.S., Novel Side-Chain Liquid Crystalline Polyester Architecture for Reversible Optical Storage, Macromolecules, 1995, 28, 2172-2183
    [283]刘杰,张其锦,侧链型偶氮聚合物液晶的光致取向,高分子材料科学与工程,2001, 17(2), 15-20
    [284] Mooter V.G., Maris B., Samyn C., Novel Side-Chain Liquid Crystalline Polyester Architecture for Reversible Optical Storage, J. Pharma. Sci., 1997, 86(12), 1321-1327
    [285] Lu Z.R., Gao S.Q., Kopeckova P., Kopecek J., Synthesis of Bioadhesive Lectin- HPMA Copolymer-Cyclosporin Conjugates, Bioconjugate Chem., 2000, 11, 3-7
    [286] Sakuma S., Lu Z.R., Kopeckova P., Kopecek J., Biorecognizable HPMA copolymer–drug conjugates for colon-specific delivery of 9-aminocamptothecin, Journal of Controlled Release, 2001, 75, 365-379
    [287] Friend D.R., New oral delivery systems for treatment of inflammatory bowel disease, Advanced Drug Delivery Reviews, 2005, 57, 247-265
    [288] Klotz U., Schwab M., Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease, Advanced Drug Delivery Reviews, 2005, 57, 267-279
    [289] Gao S.Q., Lu Z.R., Perti B., Kopeckova P., Kopecek J., Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer, Journal of Controlled Release, 2006, 110, 323-331
    [290] Gao S.Q., Lu Z.R., Kopeckova P., Kopecek J., Biodistribution and pharmacokinetics of colon-specific HPMA copolymer–9-aminocamptothecin conjugate in mice, Journal of Controlled Release, 2007, 117, 179-185
    [291] Bragger J.L., Lloyd A.W., Soozandehfar S.H., Bloomfield S.F., Marriott C., Martin G.P., Investigations into the azo reducing activity of a common colonic microorganism, International Journal of Pharmaceutics, 1997, 157, 61-71
    [292] Rubinstein A., Tirosh B., Baluom M., Nassar T., David A., Radai R., Gliko-Kabir I., Friedman M., The rationale for peptide drug delivery to the colon and the potential of polymeric carriers as effective tools, Journal of Colltrolled Release, 1997, 46, 59-73
    [293] Chivukula P., Dusek K., Wang D., Duskova-Smrckova M., Kopeckova P., Kopecek J., Synthesis and characterization of novel aromatic azo bond-containing PH-sensitive and hydrolytically cleavable IPN hydrogels, Biomaterials, 2006, 27, 1140-1151
    [294] Andrianov K.A., Payne L.G., Polymeric carriers for oral uptake of microparticulates, Advanced Drug Delivery Reviews, 1998, 34, 155-170
    [295] Yamaola T., Makita Y., Sasatani H., Linear type azo-containing polyurethane as drug-coating material for colon-specific delivery its properties, degradation behavior, and utilization for drug formulation, Journal of Controlled Release, 2000, 66, 187-197
    [296] Vollmer M.S., Clark T.D., Steinem C., Ghadiri M.R., Photoswitchable Hydrogen-Bonding in Self-Organized Cylindrical Peptide Systems, Angew. Chem. Int. Ed.,1999, 38, 1598-1612
    [297] Holland N.B., Hugel T., Neuert G., Cattani-Scholz A., Renner C., Oesterhelt D., Moroder L., Seitz M., Gaub H.E., Single Molecule Force Spectroscopy of Azobenzene Polymers: Switching Elasticity of Single Photochromic Macromolecules, Macromolecules, 2003, 36, 2015-2023
    [298] Xie S., Natansohn A., Rochoni P., Recent developments in aromatic azo polymers research, Chem. Mater., 1993, 5, 403-411
    [299] Natansohn A., Photoinduced Motions in Azo-Containing Polymers, Chem. Rev., 2002, 102, 4139-4176
    [300] Rocha L., Dumarcher V., Malcor E., Fiorini C., Denis C., Raimond P., Geffroy B., Nunzi J.M., Photo-induced microstructured polymers for the optimisation and control of organic devices emission properties, Synthetic metals, 2002, 127, 75-79
    [301] Szwarc M., Milkovich L.M.R., Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers, J. Am. Chem. Soc., 1956, 78, 2656-2657
    [302]周其凤,胡汉杰主编,高分子化学,北京,化学工业出版社, 2001
    [303] Otsu T., Yoshida M., Tazaki T., A model for living radical polymerization, Makromol. Chem., Rapid Commun., 1982, 3, 133-140
    [304] Cunningham M. F., Living/controlled radical polymerizations in dispersed phase systems, Prog. Polym. Sci., 2002, 27, 1039-1067
    [305] Georges M. K., Veregin R. P. N., Kazmaier P. M., Hamer G. K., Narrow Molecular Weight Resins by a Free-Radical Polymerization Process, Macromolecules, 1993, 26(11), 2987-2988
    [306] Wang J.S., Matyjaszewski K., Controlled/"Living" Radical Polymerization Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes, J. Am. Chem. Soc., 1995, 117, 5614-5615
    [307] Chiefari J., Chong Y.K., Ercole F., Krstina J., Jeffery J., Le T.P., Rizzardo E., Thang S.H., Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process, Macromolecules, 1998, 31, 5559-5562
    [308] Wang J.S., Matyjaszewski K., Controlled/"Living" Radical Polymerization Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process, Macromolecules, 1995, 28(23), 7901-7910
    [309] Jian Q., Bernadette C., Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems, Progress in Polymer Science, 2001, 26, 2083-2184
    [310] Matyjaszewski K., Davis T. P., Handbook of radical polymerization, Wiley, 2002
    [311] Matyjaszewski K., Xia J.H., Atom Transfer Radical Polymerization, Chem. Rev., 2001, 101, 2921-2990
    [312] Kamigaito M., Ando T., Sawamoto M., Metal-Catalyzed Living Radical Polymerization, Chem. Rev., 2001, 101(12), 3689-3746
    [313] Zheng J.Y., Pang J.B., Qiu K.Y., Wei Y., Synthesis of Mesoporous Titanium Dioxide Materials by Using a Mixture of Organic Compounds as a Non-surfactant Template, J. Mater. Chem., 2001, 11, 3367-3372
    [314] Chen X.P., Qiu K.Y., Synthesis of Well-Defined Poly(methyl methacrylate) by Radical Polymerization with a New Initiation System TPED/FeCl3/PPh3, Macromolecules, 1999, 32, 8711-8715
    [315] Kong H., Gao C., Yan D., Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization, J. Am. Chem. Soc., 2004, 126, 412-413
    [316] Zhu X., Chen L., Yan D., Chen Q., Yao Y., Xiao Y., Hou J., Li J., Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins, Langmuir, 2004, 20, 484-490
    [317] He X., Liang H., Pan C., Complex Microstructures of Amphiphilic Diblock Copolymer in Dilute Solution, J. Phys. Chem. B., 2004, 108, 1731-1735
    [318] Yijin X., Caiyuan P., Block and Star-Block Copolymers by Mechanism Transformation. 3. S- ( PTHF - PSt )4 and S- ( PTHF– PSt - PMMA )4 from Living CROP to ATRP, Macromolecules, 2000, 33, 4750-4756
    [319] Zhang X., Xia J.H., Matyjaszewski K., End-Functional Poly(tert-butyl acrylate) StarPolymers by Controlled Radical Polymerization, Macromolecules, 2000, 33, 2340-2345
    [320] Feng X.S., Pan C.Y., Synthesis and characterization of star polymers initiated by hexafunctional discotic initiator through atom transfer radical polymerization, J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 2233-2243
    [321] Tsarevsky N.V., Matyjaszewski K., Reversible Redox Cleavage/Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization, Macromolecules, 2002, 35, 9009
    [322] Mecerreyes D., Pomposo J.A., Bengoetxea M., Grande H., Novel Pyrrole End- Functional Macromonomers Prepared by Ring-Opening and Atom-Transfer Radical Polymerizations, Macromolecules, 2000, 33, 5846-5849
    [323] Sanhu V.B., Pionteck J., Voigt D., Komber H., Voit B., Synthesis of halogen-free amino-functionalized polymethyl methacrylate by atom transfer radical polymerization (ATRP), Macromol. Symp., 2004, 210, 147-155
    [324] Wang X.S., Armes S.P., Facile Atom Transfer Radical Polymerization of Methoxy- Capped Oligo(ethylene glycol) Methacrylate in Aqueous Media at Ambient Temperature, Macromolecules, 2000, 33, 6640-6647
    [325] Marsh A., Khan A., Haddleton D.M., Hannon M.J., Atom Transfer Polymerization: Use of Uridine and Adenosine Derivatized Monomers and Initiators, Macromolecules, 1999, 32, 8725-8731
    [326] Licciardi M., Tang Y., Billingham N.C., Armes S.P., Synthesis of Novel Folic Acid-Functionalized Biocompatible Block Copolymers by Atom Transfer Radical Polymerization for Gene Delivery and Encapsulation of Hydrophobic Drugs, Biomacromolecules, 2005, 6, 1085-1096
    [327] Bontempo D., Li R.C., Ly T., Brubaker C.E., Maynard H.D., One-step synthesis of low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP, Chem. Comm., 2005 (37), 4702-4704
    [328] Tang T.J., Ye Y., Li Z.C., Du F.S., Zhang X., Li F.M., Fluorescence Study on the Aggregation Behavior of Pyrene-end-capped Polystyrene in Solution, Acta Chimica Sinica, 2002, 60(5), 931-938
    [329] Duan Q., Miura Y., Narumi A., Shen X., Sato S., Satoh T., Kakuchi T., Synthesis and thermoresponsive property of end-functionalized poly(N- isopropylacrylamide) with pyrenyl group, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1117
    [330] Such G.K., Evans R.A., Davis T.P., Control of Photochromism through Local Environment Effects Using Living Radical Polymerization (ATRP), Macromolecules, 2004, 37, 9664-9666
    [331] Tsolakis P.K., Kallitsis J.K., Synthesis and Characterization of Luminescent Rod-Coil Block Copolymers by Atom Transfer Radical Polymerization: Utilization of Novel End-Functionalized Terfluorenes as Macroinitiators, Chemistry - A European Journal, 2003, 9, 936
    [332] Yuan X., Lu J.M., Xu Q.F., Wang L.H., Atom transfer radical polymerization of styrene initiated by 2-(4-chloromethyl-phenyl)-benzoxazole with high activity and fluorescent property, Polymer, 2005, 46, 9186-9191
    [333] Yang Z., Lu J.M., Wang L.H., Synthesis and Fluorescent Properties of Zn(II) Complex with Functionalized Polystyrene Containing Salicylaldehyde End Group, Polymer Bulletin, 2005, 53, 249-257
    [334] Yang D., Li L., Wang C.C., Characterization and photoconductivity study of well- defined C60 terminated poly(tert-butyl acrylate-b-styrene), Mater. Chem. Phys., 2004, 87, 114-119
    [335] Graraszegi L., Donzel C., Carrot G., Nguyen T.Q., Hallborn T., Synthesis of thiol end- functional polystyrene via atom transfer radical polymerization, Reactive Functional Polymers, 2003, 55, 179-183
    [336] Yurteri S., Cianga I., Yagci Y., Synthesis and Characterization ofα,ω-Telechelic Polymers by Atom Transfer Radical Polymerization and Coupling Processes, Macromol. Chem. Phys., 2003, 204, 1771-178
    [337] Tang H.D., Tang J.B., Ding S.J., Radosz M., Shen Y.Q., Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids, J. Polym. Sci., Part A: polymer chemistry, 2005, 43(7), 1432-1443
    [338] Cai Y.L., Armes S.P., Synthesis of Well-Defined Y-Shaped Zwitterionic Block Copolymers via Atom-Transfer Radical Polymerization, Macromolecules, 2005, 38(2), 271-279
    [339] Tzanetos N.P., Kallitsis J.K., Synthesis and Optical Properties of Copolymers Containing Side Chain Oxadiazole Blocks and a Rigid Central Moiety, Chem. Mater., 2004, 13(16), 2648-2655
    [340] Jankova K., Jannasch P., Hvilsted S., Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization, J. Mater. Chem., 2004, 14(19), 2902-2908
    [341] Borkar S., Jankova K., Siesler H.W., Hvilsted S., New Highly Fluorinated Styrene-Based Materials with Low Surface Energy Prepared by ATRP, Macromolecules, 2004, 37(3), 788-794
    [342] Xu F.J., Cai Q.J., Li Y. L., Kang E.T., Neoh K.G., Covalent Immobilization of Glucose Oxidase on Well-Defined Poly(glycidyl methacrylates)- Si(111) Hybrids from Surface- Initiated Atom-Transfer Radical Polymerization, Biomacromolecules, 2005, 6(2), 1012- 1020
    [343] Xu F.J., Zhong S.P., Yung LY.L., Tong Y.W., Kang E.T., Neoh K.G., Thermoresponsive comb-shaped copolymer-Si(1 0 0) hybrids for accelerated temperature-dependent cell detachment, Biomaterials, 2006, 27(8), 1236-1245
    [344] Lutz J.F., Jakubowski W., Matyjaszewski K., Controlled/Living Radical Polymerization of Methacrylic Monomers in the Presence of Lewis Acids: Influence on Tacticity, Macromolicular Rapid Communications, 2004, 25, 486-492
    [345] Neugebauer D., Matyjaszewski K., Copolymerization of N,N-Dimethylacryl- amide with n-Butyl Acrylate via Atom Transfer Radical Polymerization, Macromolecules, 2003, 36, 2598-2603
    [346] Farah A.A., Pietro W.J., Atom transfer radical polymerization of N-(ω′- alkylcarbazolyl) methacrylates via the use of novel heteroleptic Ru(II) polypyridyl initiator, Inorganica Chimica Acta, 2004, 357 (13), 3813–3824
    [347] Mennicken M., Nagelsdiek R., Keul H., ATRP of Allyl Methacrylate with AlkylMethacrylates-Crosslinking of Poly(methacrylate)s with Allyl Ester Side Groups, Macromol. Chem. Phys., 2004, 205 (18), 2429-2437
    [348] Dong C.M., Faucher K.M., Chaikof E.L., Synthesis and properties of biomimetic poly ( L- glutamate )– b– poly ( 2– acryloyloxyethyllactoside )- b– poly (L - glutamate) triblock copolymers, J. Polym. Sci., Part A: Polymer chemistry, 2004, 42(22), 5754-5765
    [349] Chen Y.M., Wulff G., ABA and Star Amphiphilic Block Copolymers Composed of Polymethacrylate Bearing a Galactose Fragment and Poly(ε-caprolactone), Macromol. Rapid Commun., 2002, 23(1), 59-63
    [350] Peng B., Johannsmann D., Ruhe L., Polymer Brushes with Liquid Crystalline Side Chains, Macromolecules, 1999, 32, 6759-6766
    [351] Tian Y.Q., Watanabe K., Kong X.X., Abe J., Iyoda T., Synthesis, Nanostructures, and Functionality of Amphiphilic Liquid Crystalline Block Copolymers with Azobenzene Moieties, Macromolecules, 2002, 35(9), 3739-3747
    [352] Ravi P., Sin S.L., Gan L.H., Gan Y.Y., Tam K.C., Xia X.L., Hu X., New water soluble azobenzene-containing diblock copolymers: synthesis and aggregation behavior, Polymer, 2005, 46, 137-146
    [353] Sin S.L., Gan L.H., Hu X., Tam K.C., Gan Y.Y., Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film, Macromolecules, 2005, 38, 3943-3948
    [354] He X.H., Yan D.Y., Branched Azobenzene Side-Chain Liquid-Crystalline Copolymers Obtained by Self-Condensing ATR Copolymerization, Macromol. Rapid Commun., 2004, 25 (9), 949-953
    [355] He X.H., Yan D.Y., Mai Y.Y., Synthesis of novel multi-arm star azobenzene side- chain liquid crystalline copolymers with a hyperbranched core, Eur. Polym. J., 2004, 40(8), 1759-1765
    [356] Jin M., Lu R., Bao C.Y., Xu T.H., Zhao Y.Y., Synthesis and characterization of hyperbranched azobenzene-containing polymers via self-condensing atom transfer radical polymerization and copolymerization, Polymer, 2004, 45, 1125-1131
    [357] Carlmark A., Malmstrolm E.E., ATRP of Dendronized Aliphatic Macromonomers ofGeneration One, Two, and Three, Macromolecules, 2004, 37(20), 7491-7496
    [358] Li N.J., Lu J.M., Xu Q.F., Xia X.W., Wang L.H., Atom Transfer Radical Polymerization and Third-Order Nonlinear Optical Properties of New Azobenzene- Containing Side-Chain Polymers, Macromol. Chem. Phys., 2007, 208, 399-404
    [359] Ding S.J., Tang H.D., Radosz M., ShenY.Q., Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate, J. Polym. Sci., Part A: Polymer chemistry, 2004, 42(22), 5794-5801
    [360] Angiolini L., Benelli T., Giorgini L., Salatelli E., Optically active photochromic methacrylic polymers with controlled average molecular weight and defined end-groups by atom transfer radical polymerization, Polymer, 2005, 46, 2424-2432
    [361] Masci G., Bontempo D., Tiso N., Diociaiuti M., Mannina L., Capitani D., Crescenzi V., Atom Transfer Radical Polymerization of Potassium 3-Sulfopropyl Methacrylate: Direct Synthesis of Amphiphilic Block Copolymers with Methyl Methacrylate, Macromolecules, 2004, 37(12), 4464-4473
    [362] Ma Z., Lacroix-Desmazes P., Synthesis of hydrophilic/CO2-philic poly (ethylene oxide)-b-poly(1,1,2,2-tetrahydroperfluorodecylacrylate) block copolymers via controlled/ living radical polymerizations and their properties in liquid and supercritical CO2, J. Polym. Sci., Part A: Polymer chemistry, 2004, 42(10), 2405-2415
    [363]刘兵,胡春圃,具有预期结构的苯乙烯与丙烯酸丁酯接枝共聚物的合成与表征,高分子学报, 2002, (1), 47-52
    [364]黄昌国,万小龙,应圣康,原子转移自由基聚合制备聚(丙二醇-g-苯乙烯),高分子学报,2000, (4), 467- 471
    [365]潘全名,刘世勇,江明,原子转移自由基聚合反应(ATRP)合成嵌段-接枝共聚物的研究,99全国高分子学术论文报告会论文集,上海, 1999, 282
    [366] Celik C., Hizal G., Tunca U., Synthesis of Miktoarm Star and Miktoarm Star Block Copolymers via a Combination of Atom Transfer Radical Polymerization and Stable Free-Radical Polymerization, Journal of Polymer Science, Part A: Polymer Chemistry, 2003, 41, 2542-2548
    [367] Tunca U., Ozyurek Z., Erdogan T., Hizal G., Novel Miktofunctional Initiator for thePreparation of an ABC-Type Miktoarm Star Polymer via a Combination of Controlled Polymerization Techniques, Journal of Polymer Science: Part A: Polymer Chemistry, 2004, 42, 4228-4236
    [368] Zhao Y.L., Shuai X.T., Chen C.F., Xi F., Synthesis of Star Block Copolymers from Dendrimer Initiators by Combining Ring-Opening Polymerization and Atom Transfer Radical Polymerization, Macromolecules, 2004, 37, 8854-8862
    [369] Demirelli K., Kurt A., Coskun M.F., Coskun M., Preparation and characterization of biotinylated and enzyme-immobilized heterobifunctional latex particles as nanobio devices, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2006, 43, 573–587
    [370] Chen Y., Shen Z., Barriau E., Kautz H., Frey H., Synthesis of Multiarm Star Poly(glycerol)-block-Poly(2-hydroxyethyl methacrylate), Biomacromolecules, 2006, 7, 919-926
    [371] Jiang G.H., Wang L., Chen T., Chen C., Yu H.J., Synthesis of multi-arm star polystyrene with hyperbranched polyester initiators by atom transfer radical polymerization, Journal of Applied Polymer Science, 2006, 99, 728–733
    [372] Ishizu K., Ochi K., Architecture of Star-Block Copolymers Consisting of Triblock Arms via a N, N-Diethyldithiocarbamate-Mediated Living Radical Photo-Polymerization and Application for Nanocomposites by Using as Fillers, Macromolecules, 2006, 39, 3238-3244
    [373] Masar B., Janata M., Latalova P., Netopilik M., Vlcek P., Toman L., Graft copolymers and high-molecular-weight star-like polymers by atom transfer radical polymerization, Journal of Applied Polymer Science, 2006, 100, 3662–3672
    [374]张士福,罗宁,曾光新,原子转移自由基偶联法合成星形聚合物,合成橡胶工业, 1999, 22 (3), 155- 158
    [375] Grayson S.M., Frechet M.J., A New Approach to Heterofunctionalized Dendrimers: A Versatile Triallyl Chloride Core, Organic Letters, 2002, 4(19), 3171-3174
    [376] Hecht S., Frechet J.M.J., An Alternative Synthetic Approach toward Dendritic Macromolecules: Novel Benzene-Core Dendrimers via Alkyne Cyclotrimerization, J. Am.Chem. Soc. 1999, 121, 4084-4085
    [377] Grayson S.M., Frechet J.M.J., Convergent Dendrons and Dendrimers from Synthesis to Applications, Chem. Rev. 2001, 101, 3819-3867
    [378] Frechet J.M.J, LeducM.R., Weimer M., Living free radical polymerization and dendritic polymers, Am. Chem. Soc. Div. Polym. Chem. Prepr., 1997, 38(1), 756-757
    [379] Jiang X.L., Zhong Y.L., Yand Y., Hyperbranched copolymers of p-(chloromethyl) styrene and N-cyclo-hexylmaleimide synthesized by atom transfer radical polymerization, J. Appl. Polym. Sci., 2000, 78(11), 1992-1997
    [380] Ishizu K., Architecture of multi-component copolymer brushes: Synthesis, solution properties and application for nanodevices, Polymer Journal, 2004, 36(10), 775-792
    [381] Liu P., Liu W.M., Xue Q.J., Preparation of comb-like styrene grafted silica nanoparticles , Journal of Macromolecular Science-Pure and Applied Chemistry, 2004, A41(9), 1001-1010
    [382] Ishizu K., Satoh J., Sogabe A., Architecture and solution properties of AB-type brush-block-brush amphiphilic copolymers via ATRP techniques, Journal of Colloid and Interface Science, 2004, 274(2), 472-479
    [383] Husseman M., Malmstrom E.E., Monamara M., Controlled Synthesis of Polymer Brushes by "Living" Free Radical Polymerization Techniques, Macromolecules, 1999, 32(5), 1424-1431
    [384] Werne T., Patten T. E., The preparation of polymer-inorganic hybrid nanoparticle using controlled/“living”radical polymerization, Polymer Preprints, 1999, (2), 345-355
    [385] Jo S.M., Gaynor S.G., Matyjaszewski K., Synthesis of block, graft and star polymers from inorganic macroinitiators, Polym. Prep., 1996, 37(2), 272-280
    [386] Kotani Y., Kato M., Kamigaito M., Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymers, Macromolecules, 1996, 29(22), 6979-6982
    [387] Yoshida T., Doi M., Kanaoka S., Aoshima S., Polymer surface modification using diblock copolymers containing azobenzene, Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43, 5704-5709
    [388] Street G., Illsley D., Holder S.J., Optimization of the synthesis of poly(octadecyl acrylate) by atom transfer radical polymerization and the preparation of all comblike amphiphilic diblock copolymers, Journal of Polymer Science: Part A: Polymer Chemistry, 2005, 43, 1129-1143
    [389] Brar A.S., Saini Tripta, Atom transfer radical polymerization of 2-methoxy ethyl acrylate and its block copolymerization with acrylonitrile, European Polymer Journal, 2007, 43, 1046-1054
    [390] Vidts K.R.M., Du Prez F.E., Design of water-soluble block copolymers containing poly(4-vinylpyridine) by atom transfer radical polymerization, European Polymer Journal, 2006, 42, 43-50
    [391] Davis K.A., Matyjaszewski K., ABC Triblock Copolymers Prepared Using Atom Transfer Radical Polymerization Techniques, Macromolecules, 2001, 34, 2101-2107
    [392] Shipp D.A., Wang J.L., Matyjaszewski K., Synthesis of Acrylate and Methacrylate Block Copolymers Using Atom Transfer Radical Polymerization, Macromolecules, 1998, 31, 8005-8008
    [393] Bougard F., Jeusette M., Mespouille L., Dubois P., Lazzaroni R., Synthesis and Supramolecular Organization of Amphiphilic Diblock Copolymers Combining Poly (N, N-dimethylamino-2-ethyl methacrylate) and Poly ( -caprolactone), Langmuir, 2007, 23(5), 2339-2345
    [394] Deng Y., Yu T., Wan Y., Shi Y., Meng Y., Gu D., Zhang L., Huang Y., Liu C., Wu X., Zhao D., Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene, J. Am. Chem. Soc., 2007, 129(6), 1690-1697
    [395] Muhlebach A., Gaynor S.G., Matyjaszewski K., Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP), Macromolecules, 1998, 31, 6046-6052
    [396] Wang G., Tong X., Zhao Y., Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates, Macromolecules, 2004, 37, 8911-8917
    [397] Sin S.L., Gan L.H., Hu X., Tam K.C., Gan Y.Y., Photochemical and Thermal Isomerizations of Azobenzene-Containing Amphiphilic Diblock Copolymers in Aqueous Micellar Aggregates and in Film, Macromolecules, 2005, 38, 3943-3948
    [398] Cheng Z.P., Zhu X.L., Kang E.T., Neoh K.G., Brush-Type Amphiphilic Diblock Copolymers from“Living”/Controlled Radical Polymerizations and Their Aggregation Behavior, Langmuir, 2005, 21, 7180-7185
    [399] Gan L.H., Ravi P., Mao B.W., Tam K.C., Controlled/living polymerization of 2-(diethylamino)ethyl methacrylate and its block copolymer with tert-butyl methacrylate by atom transfer radical polymerization, Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41, 2688-2695
    [400]程广楼,胡春圃,应圣康,活性自由基反应合成苯乙烯与丙烯酸酯嵌段共聚物及相关共聚物,高分子学报,2000, (2), 210-214
    [401] Zhang Z.B., Shi Z.Q., Ying S.K., Synthesis of fluorine-containing block copolymers via ATRP 1.Synthesis and characterization of PSt-PVDF-PSt triblock copolymers, Polymer, 1998, 40(5), 1341-1345
    [402] Cui L., Tong X., Yan X.H., Liu G.J., Zhao Y., Photoactive Thermoplastic Elastomers of Azobenzene-Containing Triblock Copolymers Prepared through Atom Transfer Radical Polymerization, Macromolecules, 2004, 37, 7097-7104
    [403] Tian Y.Q., Watanabe K., Kong X. X., Abe J., Lyoda T., Synthesis, Nanostructures, and Functionality of Amphiphilic Liquid Crystalline Block Copolymers with Azobenzene Moieties, Macromolecules, 2002, 35, 3739-3747
    [404] Du J.Z., Chen Y.M., Atom-Transfer Radical Polymerization of a Reactive Monomer: 3-(Trimethoxysilyl)propyl Methacrylate, Macromolecules, 2004, 37, 6322-6328
    [405] Yu X.F., Lu S., Ye C., Li T.C., Liu T.X., Liu S.Y., Fan Q.L., Chen E.Q., Huang W., ATRP Synthesis of Oligofluorene-Based Liquid Crystalline Conjugated Block Copolymers, Macromolecules, 2006, 39, 1364-1375
    [406] Lee K.W., Wei K.H., Lin H.C., Synthesis and characterization of liquid-crystalline block copolymers with cyanoterphenyl moieties by atom transfer radical polymerization, Journal of Polymer Science: Part A: Polymer Chemistry, 2006, 44, 4593-4602
    [407] Terhune R.W., Maker P.D., Savage C.M., Optical Harmonic Generation in Calcite, Phys. Rev. Lett., 1962, 8(10), 404-406
    [408] Levine B.F., Bethea C.G., Second and third order hyperpolarizabilities of organic molecules, J. Chem. Phys., 1975, 63(6), 2666-2682
    [409] Bredas J.L., Adant C., Tackx P., Persoons A., Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects, Chem. Rev., 1994, 94(1), 243-278
    [410] Donal D.C., Bradley Mori Y., Third Harmonic Generation in Precursor Route Poly(p-Phenylene Vinylene), Japan. J. Appl. Phys., 1989, 28(2), 174-177
    [411] Minko S., Sidorenko A., Stamm M., Gafijchuk G., Senkovsky V., Voronov S., Radical Polymerization Initiated from a Solid Substrate 2. Study of the Grafting Layer Growth on the Silica Surface by in situ Ellipsometry, Macromolecules, 1999, 32(14), 4532-4538
    [412] Encinas M.V., Lissi E.A., Norambuena E., Inhibition of Styrene Polymerization byβ-Nitrostyrene A Novel Inhibition Mechanism, Macromolecules, 1998, 31(16), 5171-5174
    [413] Sauteret C., Hemann J.P., Frey R., Optical Nonlinearities in One-Dimensional- Conjugated polymer Crystals, Physical Review Letters, 1976, 36(16), 956-959
    [414]魏振乾,费浩生,鲍信先,偶氮基染料掺杂薄膜的双光子图像存储,光子学报,1995, 15(8), 1082-1087
    [415] Yin S.C., Xu H.Y., Shi W.F., Gao Y.C., Song Y.L., Tang B.Z., The enhancement effect of hydrogen bond on the third-order nonlinear optical properties, Dyes and Pigments, 2006, 71, 138-144
    [416] Gedye R., Smith F., Westaway K., Ali H., Baldisera L., Laberge L., Rousell J., The Use of Microwave Ovens for Rapid Organic Synthesis, Tetrahedron Lett., 1986, 27, 279-282
    [417] Giguere R.J., Bray T.L., Duncan S.M., Majetich G., Application of Commerial Microwave Ovens to Organic Synthesis, Tetrahedron Lett., 1986, 27, 4945-4951
    [418]金钦汉,戴树珊,黄卡玛,“微波化学”,北京:科学出版社,1999, 4
    [419] Dias A., Ciminelli V. S. T., Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology, Chem. Mater., 2003, 15, 1344-1352
    [420] Liang J., Deng Z., Jiang X., Li F., Li Y., Photoluminescence of Tetragonal ZrO2 Nanoparticles Synthesized by Microwave Irradiation, Inorg. Chem., 2002, 41, 3602-3604
    [421] Komarneni S., Li D., Newalkar B., Katsuki H., Bhalla A.S., Microwave-Polyol Process for Pt and Ag Nanoparticles, Langmuir, 2002, 18, 5959-5962
    [422] Boxall D.L., Deluga G.A., Kenik E.A., King W.D., Lukehart C.M., Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance, Chem. Mater., 2001, 13, 891-900
    [423] Hayes B.L., Microwave Synthesis: Chemistry at the Speed of Light, CEM Publishing: Matthews, NC, 2002
    [424] Barbry D., Torchy S., Accelerated Reduction of Carbonyl Compounds under Microwave Irradiation, Tetrahedron Lett., 1997, 38, 2959-2959
    [425] Perreux L., Loupy A., A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium and Mechanistic Considerations, Tetrahedron, 2001, 57, 9199-9223
    [426] Lidstro¨m P., Tierney J., Wathey B., Westman J., Corrigendum to“Microwave assisted organic synthesis-a review”, Tetrahedron, 2001, 57, 10229-10229
    [427] Larhed M., Hallberg A., Microwave-Assisted High-Speed Chemistry: a New Technique in Drug Discovery, Drug Discovery Today, 2001, 6, 406-416
    [428] Shieh W.-C., Dell S., Repic O., 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and Microwave-Accelerated Green Chemistry in Methylation of Phenols, Indoles, and Benzimidazoles with Dimethyl Carbonate, Org. Lett., 2001, 3, 4279-4281
    [429] de la Hoz A., Dy′az-Ortis A., Moreno A., Langa F., Cycloadditions under Microwave Irradiation Conditions: Methods and Applications, Eur. J. Org. Chem., 2000, 3659-3673
    [430] Alterman M., Hallberg A., Fast Microwave-Assisted Preparation of Aryl and Vinyl Nitriles and the Corresponding Tetrazoles from Organo-halides. J. Org.Chem., 2000, 65, 7984-7989
    [431] Kuslu S., Bayramoglu M., Microwave-Assisted Dissolution of Pyrite in Acidic Ferric Sulfate Solutions, Ind. Eng. Chem. Res., 2002, 41, 5145-5150
    [432] Zlotorzynski A., The Application of Microwave Radiation to Analytical andEnvironmental Chemistry, Critical Reviews in Analytical Chemistry, 1995, 25, 43-76
    [433] Pichler U., Haase A., Knapp G.., Michaelis M., Microwave-Enhanced Flow System for High-Temperature Digestion of Resistant Organic Materials, Anal. Chem., 1999, 71, 4050-4055
    [434] Numata M., Yarita T., Aoyagi Y., Takatsu A., Microwave-Assisted Steam Distillation for Simple Determination of Polychlorinated Biphenyls and Organochlorine Pesticides in Sediments, Anal. Chem., 2003, 75, 1450-1457
    [435] Raman G., Gaikar V. G., Microwave-Assisted Extraction of Piperine from Piper Nigrum, Ind. Eng. Chem. Res., 2002, 41, 2521-2528
    [436] Hudaib M., Gotti R., Pomponio R., Cavrini V., Recovery Evaluation of Lipophilic Markers from Echinacea Purpurea Roots Applying Microwave-Assisted Solvent Extraction versus Conventional Methods, Journal of Separation Science, 2003, 26, 97-104
    [437] Jacob J., Chia L.H.L., Boey F.Y.C., Thermal and Non-thermal Interaction of Microwave Radiation with Materials, J. Mater. Sci., 1995, 30, 5321-5327
    [438] De Meuse M.T., Ryan C.L., The Microwave Processing of Polymeric Materials, Advances in Polymer Technology, 1993, 12, 197-203
    [439] Wiesbrock F., Hoogenboom R., Schubert U.S., Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives, Macromol. Rapid Commun., 2004, 25, 1739–1764
    [440] Chia H.L., Jacob J., Boey F.Y.C., Microwave Radiation Effect on the Polymerization of Styrene, J. Polym. Sci. Part A: Polym. Chem., 1996, 34, 2087-2094
    [441] Jacob J., Chia L.H.L., Boey F.Y.C., Microwave Polymerization of Poly (methyl acrylate): Conversion Studies at Variable Power, J. Appl. Polym. Sci., 1997, 63, 787-797
    [442]李杰,赵建青,沈家瑞,微波作用下的甲基丙烯酸甲酯的本体聚合,高分子材料科学与工程, 1999, 15, 155-156
    [443] Liao L.Q., Liu L.J., Zhang C., He F., Zhuo R. X., Wan K., Microwave-Assisted Ring-Opening Polymerization ofε–caprolactone, J. Polym. Sci. Part A: Polym. Chem., 2002, 40, 1749-1755
    [444] Dmitrienko S.G., Goncharova L.V., Zhigulev A.V., Nosov R.E., Kuzmin N.M.,Zolotov Y.A., Sorption-Photometric Determination of Ascorbic Acid Using Molybdosilicic Heteropolyacid and Polyurethane Foam after Microwave Irradiation, Analytica Chimica Acta, 1998, 373, 131-138
    [445]李卫华,王静媛,李跃先,刘福安,李玉玮,汤心颐,微波辐照合成互穿聚合物网络及形态性能研究,高分子学报, 1994, 4, 509-512
    [446] Lu J.M., Tang X.B., Zhang Z.B., Li N.J., Li H., Wang L.H., Zhu X.L., Synthesis of side-chain polyamic acid under microwave irradiation and its third-order nonlinearities optics, Chemistry Jounal on Internet, 2003, 5(1), 3-10
    [447] Tang X.B., Lu J.M., Zhang Z.B., Zhu X.L., Wang L.H., Li N.J., Sun Z.R., Polycondensation of Sodium Tetrazodiphenyl Naphthionate and Pyromellitic Dianhydride under Microwave Irradiation and the Performance of the Third-Order Nonlinear Optics, J. Appl. Polym. Sci., 2003, 88, 1121-1128
    [448]朱秀林,顾梅,路建美,高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究,高分子材料科学与工程, 1994, 10, 46-49
    [449]顾梅,朱秀林,路建美,范荣,丙烯酰胺的微波聚合研究,高分子材料科学与工程, 1997, 13, 36-39
    [450]路建美,朱秀林,顾梅,微波法合成聚丙烯酸钠高吸水性树脂,高分子材料科学与工程, 1996, 12, 55-58
    [451]路建美,朱秀林,王丽华,余俊,朱健,微波法合成两性高吸水性树脂,石油化工, 1997, 26, 152-155
    [452]路建美,朱秀林,余俊,朱健,微波法合成阳离子高吸水性树脂,高分子材料科学与工程, 1998, 14, 28-30
    [453]路建美,朱秀林,朱健,余俊,丙烯酸钠与丙烯酰胺微波辐射共聚,高分子材料科学与工程, 1998, 14, 38-40
    [454]路建美,朱秀林,胡逢吉,李奕,黄志斌,乌头酸与丙烯酸钠的微波辐射共聚制高吸水性树脂,石油化工, 1999, 28, 36-39
    [455] Lu J.M., Zhu X.L., Zhu J., Yu J., Microwave Radiation Solid-State Copolymerization in Binary Maleic Anhydride - Dibenzyl Maleate Systems, J. Appl. Polym. Sci., 1997, 66, 129-133
    [456] Lu J.M., Zhu X.L., Ji S.J., Zhu J., Chen. Z.X., Microwave Radiation Copolymerization in Solid State of Maleic Anhydride and Allylthiourea, J. Appl. Polym. Sci., 1998, 68, 1563-1566
    [457]路建美,朱秀林,朱健,余俊,马来酸酐的微波固相聚合研究,高分子材料科学与工程, 1999, 15, 158-160
    [458]路建美,姜琦松,朱秀林,王法,顺丁烯二酸二丁基锡与硬脂酸乙烯酯微波辐射共聚合,石油化工, 2000, 29, 764-767
    [459]路建美,朱秀林,王丽华,余俊,朱健,微波法合成两性高吸水性树脂,石油化工, 1997, 26, 152-155
    [460] Cheng Z.P., Zhu X.L., Chen M., Chen J.Y., Zhang L.F., Atom Transfer Radical Polymerization of Methyl Methacrylate with Low Concentration of Initiating System under Microwave Irradiation, Polymer, 2003, 44, 2243-2247
    [461] Cheng Z.P., Zhu X.L., Zhang L.F., Zhou N.C., Xue X.R., RATRP of MMA in AIBN/FeC13/PPh3 Initiation System under Microwave Irradiation, Polym. Bull., 2003, 49, 363-369
    [462] Wang G., Zhu X.L., Cheng Z.P., Zhou N.C., Lu J.M., ATRP of Methyl Methacrylate under Microwave Irradiation, Polym. J., 2003, 4, 399-401
    [463] Zhu X.L., Chen J.Y., Cheng Z.P., Lu J.M., Zhu J., Emulsion Polymerization of Styrene Under Pulsed Microwave Irradiation, J. Appl. Polym. Sci., 2003, 89, 28-35
    [464] Chen G.J., Zhu X.L., Cheng Z.P., Xu W.J., Lu J.M., Controlled/“living”Radical Polymerization of Methyl Methacrylate with AIBN as the initiator under Microwave Irradiation, Irradiation Physics and Chemistry, 2004, 69, 129–135
    [465] Zhu X.L., Chen J.Y., Zhou N.C., Cheng Z.P., Lu J.M., Emulsion Polymerization of Methyl Methacrylate under Pulsed Microwave Irradiation, Eur. Polym. J., 2003, 39, 1187-1193
    [466] Li X., Zhu X.L., Cheng Z.P., Xu W.J., Chen G.J., ATRP of Methyl Methacrylate withα,α'- dichloroxylene / CuCl / PMDETA Initiation System under Microwave Irradiation, J. Appl. Polym. Sci., 2004, 92, 2189-2195
    [467] Chen G.J., Zhu X.L., Cheng Z.P., Lu J.M., Chen J.Y.,“Controlled/“living”RadicalPolymerization of Methyl Methacrylate with p-TsCl /CuBr/BPY Initiating System under Microwave Irradiation , Polymer International, 2004, 53, 357-363
    [468] Zhu X.L., Zhou N.C., He X.M., Cheng Z.P., Lu J.M., The Atom Transfer Radical Bulk Polymerization of Methyl Methacrylate under Microwave Irradiation, J. Appl. Polym. Sci., 2003, 88, 1787-1793
    [469] Xu W.J., Zhu X.L., Cheng Z.P., Chen G.J., Lu J.M., Atom transfer radical polymerization of n-octyl acrylate under microwave irradiation, Eur. Polym. J., 2003, 39, 1349-1353
    [470] Wu H.X., Li F., Lin Y.H., Yang M., Chen W., Cai R.F., Synthesis of Telechelic C60 End-Capped Polymers Under Microware Irradiation, Journal of Applied Polymer Science, 2006, 99, 828-834
    [471] Najun Li, Jianmei Lu, Qingfeng Xu, Xuewei Xia, Lihua Wang, Synthesis of Optical-active Azo-containing Acrylates Using Atom Transfer Radical Polymerization under Micro-wave Irradiation, European Polymer Journal, accepted
    [472] Wiesbrock F., Hoogenboom R., Abeln C.H., Schubert U.S., Single-Mode Microware Ovens as New Reaction Devices: Accelerating the Living Polymerization of 2-Ethyl-2-Oxazoline, Macromol. Rapid Commun., 2004, 25, 1895-1899
    [473] Wiesbrock F., Hoogenboom R., Leenen M.A.M., Michael A.R., Schubert U.S., Investigation of the Living Cationic Ring-Opening Polymerization of 2-Methyl-, 2-Ethyl-, 2-Nonyl-, and 2-Phenyl-2-oxazoline in a Single-Mode Microware Reactor, Macromolecules, 2005, 38, 5025-5034
    [474] Zhang H.Q., Schubert U.S., Monomode Microwave-Assisted Atom Transfet Radical Polymerization, Macromol. Rapid Commun., 2004, 25, 1225-1230
    [475] Oh S.M., Gaynor S.U., Matyjaszewki K., Controlling polymer structures by atom transfer radical polymerization and other controlled living radical polymerizations, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 1996, 37, 272-278
    [476] Matyjaszewki K., Pattern T.E., Xia J.H., Controlled/"Living" Radical Polymerization. Kinetics of the Homogeneous Atom Transfer Radical Polymerization of Styrene, J. Am. Chem. Soc., 1997, 119, 674-680
    [477] Kim C.S., Oh S.M., Kim S., Cho C.G., Preparation of anthracene-labelled poly(methyl methacrylate) via atom transfer radical polymerization, Macromol. Rapid Commun., 1998, 19, 191-196
    [478] Natansohn A., Rochon P., Pezolet M., Audet P., Brown D., To S., Azo Polymers for Reversible Optical Storage. 4. Cooperative Motion of Rigid Groups in Semicrystalline Polymers, Macromolecules, 1994, 27, 2580-2585
    [479] Natansohn A., Rochon P., Gosselin J., Xie S., Azo Polymers for Reversible Optical Storage. 1. Poly〔4’-〔〔2-(acryloyloxy)ethyl〕ethylamino〕-4-nitroazobenzene〕Macromolecules, 1992, 25, 2268-2273
    [480] Xie S., Natansohn A., Rochon P., Microstructure of Copolymers Copolymers Containing Disperse Red 1 and Methyl Methacrylate, Macromolecules, 1994, 27, 1885-1890
    [481] Natansohn A., Xie S., Rochon P., Azo Polymers for Reversible Optical Storage.2. Poly[4’-[[2-(acryloyloxy)ethylamino]-2-chloro-4-nitroazobenzene], Macromolecules, 1992, 25, 5531-5532
    [482] Xie S., natansohn A., Rochon P., Compatibility Studies of Some Azo Polymer Blends, Macromolecules, 1994, 27, 1489-1492
    [483] Ho M.S., Natansohn A., Rochon P., Azo Polymers for Reversible Optical Storage. 7. The Effect of the Size of the Photochromic Groups, Macromolecules, 1995, 28, 6124-6127
    [484] Tirelli N., Suter U.W., Altomare A., Solaro R., Ciardelli F., Follonier S., Bosshard Ch., Gunter P., Structure-Activity Relationship of New Nonlinear Optical Organic Materials Based on Push-Pull Azo Dyes. 3. Guest-Host Systems, Macromolecules, 1998, 31(7), 2152-2159
    [485] Facchetti A., Abbotto A., Beverina L., van der Boom M. E., Dutta P., Evmenenko G., Marks T. J., Pagani G. A., Azinium-( -Bridge)-Pyrrole NLO-Phores: Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties, Chem. Mater., 2002, 14(12), 4996-5005
    [486] Cristian L., Sasaki I., Lacroix P. G., Donnadieu B., Asselberghs I., Clays K., Razus A. C., Donating Strength of Azulene in Various Azulen-1-yl-Substituted Cationic Dyes:Application in Nonlinear Optics, Chem. Mater., 2004, 16(18), 3543-3551
    [487] Gopalan P., Katz H. E., McGee D. J., Erben C., Zielinski T., Bousquet D., Muller D., Grazul J., Olsson Y., Star-Shaped Azo-Based Dipolar Chromophores: Design, Synthesis, Matrix Compatibility, and Electro-optic Activity, J. Am. Chem. Soc., 2004, 126(6), 1741-1747
    [488] Wu S., Zeng F., Yao S., Tong Z., She W., Luo D., All-Optical Switching Effect in Novel Chiral Biazobenzene Polymer Films, Macromolecules, 2003, 36, 9292-9294
    [489] Sabi Y., Yamamoto M., Watanabe H., Bieringer T., Haarer D., Hager R., Kostromine S. G., Berneth H., Photoaddressable Polymers for Rewritable Optical Disc Systems, Jpn. J. Appl. Phys., 2001, 40, 1613-1618
    [490] Buffeteau T., Lagugne Labarthet F., Sourisseau C., Kostromine S., Bieringer T., Biaxial Orientation Induced in a Photoaddressable Azopolymer Thin Film As Evidenced by Polarized UV-Visible, Infrared, and Raman Spectra, Macromolecules, 2004, 37, 2880-2889
    [491] Ma T.P., Han J.P., Who is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive? IEEE Electron Device Letters, 2002
    [492] Geppert L., The New Indelible Memories, IEEE Spectrum, 2003
    [493] Lai Stefan, Lowrey T., OUM-A 180nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications, IEDM, 2001
    [494]廖专崇,黄俊义,存储技术的现状与未来,电子产品世界,2004, 1, 51-55
    [495]窦振中,存储器技术的发展及趋势,电子计算机与外部设备,1997, 21(3), 56-59
    [496] Raymo F.M., Digital Processing and Communication with Molecular Switches, Adv. Mater., 2002, 14, 401-414
    [497] Li C., Zhang D.H., Liu X.L., Han S., Tang T., Zhou C.W., Fan W., Koehne J., Han J., Meyyappan M., Rawlett A.M., Price D.W., Tour J.M., Fabrication approach for molecular memory arrays, Appl. Phys. Lett., 2003, 82, 645-647
    [498] Bandyopadhyay A., Pal A.J., Large conductance swithching and memory effects in organic molecules for data-storage applications, Applied Physics Letters, 2003, 82(8), 1215-1217
    [499] Bandhopadhyay A., Pal A.J.,Large Conductance Switching and Binary Operation inOrganic Devices: Role of Functional Groups, J. Phys. Chem. B, 2003, 107, 2531-2536
    [500] Rosenfeld S.M., Lawler G.L., Ward H.R., Electron Transfer in a New Hightly Conducting Donor-Acceptor Complex, J. Am. Chem. Soc., 1973, 95(3), 948-949
    [501] Tseng R.J., Ouyang J.Y., Chu C.W., Huang J.S., Yang Y., Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device, Applied Physics Letters, 2006, 88, 123506
    [502] Mello R.M.Q., Azevedo E.C., Meneguzzi A., Aguiar M., Akcelrud L., Hummelgen I.A., Naphthalene Containing Poly(urethane-urea) for Volatile Memory Device Applications, Macromol. Mater. Eng., 2002, 287, 466-469
    [503] Huang J., Syntheses and applications of conducting polymer polyaniline nanofibers, Pure Appl. Chem., 2006, 78, 15-27
    [504] Kusano H., Shiraishi N., Hosaka S., Kuruma I., Kitagawa M., Ichino K., Kobayashi H., Carrier transport mechanism of PVCz-based multi-layered electroluminescent devices, Synthetic Metals, 1997, 91, 341-343
    [505] Cimrova V., Neher D., Anomalous electrical characteristics, memory phenomena and microcavity effects in polymeric light-emitting diodes, Synthetic Metals, 1996, 76, 125-128
    [506] Forrest S.R., The path to ubiquitous and low-cost organic electronic appliances on plastic, Nature, 2004, 428, 911-918
    [507] Ouyang J., Chu C.W., Szmanda C.R., Ma L.P., Yang Y., Programmable polymer thin film and non-volatile memory device, Nat. Mater., 2004, 3, 918-922
    [508] Moller S., Perlov C., Jackson W., Taussig C., Forrest S.R., A polymer/ semiconductor write-once read-many-times memory, Nature, 2003, 426, 166-168
    [509] Shen G.L., Thin Film Polymer Memory, Technology & Applications, 2003, 6, 81-83
    [510] Stikeman A., Computer memory could soon earn the ultimate commercial validation: the cheap plastic knock-off, Technol. Rev., 2002, 105, 31-38
    [511] Burroughes J.H., Bradley D.D.C., Brown A.R., Marks R.N., Mackay K., Friend R.H., Burns P.L., Holmes A.B., Light-emitting diodes based on conjugated polymers, Nature, 1990, 347, 539-540
    [512] Garnier F., Hajlaoui R., Yassar A., Srivastava P., All-Polymer Field-Effect TransistorRealized by Printing Techniques, Science, 1994, 265, 1684-1686
    [513] Tessler N., Denton G.J., Friend R.H., Lasing from conjugated-polymer microcavities, Nature, 1996, 382, 695-696
    [514] Granstrim M., Petritsch K., Arias A.C., Lux A., Andersson M.R., Friend R.H., Laminated fabrication of polymeric photovoltaic diodes, Nature, 1998, 395, 257-259
    [515] Goto H., Yashima E., Electron-Induced Switching of the Supramolecular Chirality of Optically Active Polythiophene Aggregates, J. Am. Chem. Soc., 2002, 124, 7943-7949
    [516] Bandyopadhyay A., Pal A.J., Tuning of Organic Reversible Swiching via Self-Assembled Supramolecular Structures, Adv. Mater., 2003, 15(22), 1949-1951
    [517] Moller S., Forrest S.R., Perlov C., Jack son W., Taussig C., Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories, Journal of Applied Physics, 2003, 94(12), 7811-7819
    [518] Noel V., Randriamahazaka H., Chevrot C., Cyclic voltammetric studies of the relaxation processes during the oxidation of poly(3,4-ethylenedioxythiophene) in Propylene carbonate solution, Journal of Electroanalytical Chemistry, 2003, 542, 33-38
    [519] Moller S., Perlov C., Jackson W., Taussig C., Forrest S.R., A polymer/ semiconductor write-once read-many-times memory, Nature, 2003, 426, 166-169
    [520] Taylor D.M., Mills C.A., Memory effect in the current–voltage characteristic of a low-band gap conjugated polymer, J. Appl. Phys., 2001, 90, 306-309
    [521] Majumdar H.S., Bolognesi A., Pal A.J., Memory applications of a thiophene-based conjugated polymer: capacitance measurements, J. Phys. D: Appl. Phys., 2003, 36, 211-215
    [522] Majumdar H.S., Bolognesi A., Pal A.J., Switching and memory devices based on a polythiophene derivative for data-storage applications, Synthetic Metals, 2004, 140, 203-206
    [523] Marsman A.W., Hart C.M., Gelinck G.H., Geuns T.C.T., de Leeuw D.M., Doped polyaniline polymer fuses: Electrically programmable read-only-memory elements, J. Mater. Res., 2004, 19(7), 2057-2060
    [524] Vorotyntsev M.A., Skompska M., Pousson E., Goux J., Moise C., Memory effects in functionalized conducting polymer films: titanocene derivatized polypyrrole in contact withTHF solutions, J. Electroanal. Chem., 2003, 552, 307-317
    [525] Moller S., Forrest S.R., Perlov C., Jackson W., Taussig C., Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories, J. Appl. Phys., 2003, 94, 7811-7819
    [526] Chu C.W., Ouyang J., Tseng J.H., Yang Y., Organic Donor-Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices, Adv. Mater., 2005, 17, 1440-1443
    [527] Zhong G.L., Kim K., Jin J.I., Intermolecular energy transfer in photo- and electroluminescence properties of a europium(III) complex dispersed in poly(vinylcarbazole), Synth. Met., 2002, 129, 193-198
    [528] Decher G., Toward Layered Polymeric Multicomposites, Science, 1997, 277, 1232-1237
    [529] Bandyopadhyay A., Pal A.J., Large conductance switching and memory effects in organic molecules for data-storage applications, Appl. Phys. Lett., 2003, 82, 1215- 1217
    [530] Ling Q.D., Song Y., Lim S.L., Teo E.Y.H., Tan Y.P., Zhu C.X., Chan D.S.H., kwong D.L., Kang E.T., Neoh K.G., A Dynamic Random Access Memory Based on a Conjugated Copolymer Containing Electron-Donor and -Acceptor Moieties, Angew. Chem. Int. Ed., 2006, 45, 2947-2951
    [531] Ling Q.D., Chang F.C., Song Y., Zhu C.X., Liaw D.J., Chan D.S.H., Kang E.T., Neoh K.G., Synthesis and Dynamic Random Access Memory Behavior of a Functional, J. Am. Chem. Soc., 2006, 128(27), 8732-8733
    [532] Ling Q.D., Song Y., Teo E.Y.H., Lim S.L., Zhu C.X., Chan D.S.H., Kwong D.L., Kang E.T., Neoh K.G., WORM-Type Memory Device Based on a Conjugated Copolymer Containing Europium Complex in the Main Chain, Electrochemical and Solid-State Letters, 2006, 9(8), G268-G271
    [533] Song Y., Ling Q.D., Zhu C., Kang E.T., Chan D.S.H., Wang Y.H., Kwong D.L., Memory Performance of a Thin-Film Device Based on a Conjugated Copolymer Containing Fluorene and Chelated Europium Complex, IEEE Elecrton Device Letters, 2006, 27(3), 154-156
    [534] Teo E.Y.H., Ling Q.D., Song Y., Tan Y.P., Wang W., Kang E.T., Chan D.S.H., Zhu C.X., Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups, Organic Electronics, 2006, 7, 173-180
    [535] Ling Q.D., Song Y., Ding S.J., Zhu C.X., Chan D.S.H., Kwong D.L., Kang E.T., Neoh K.G., Non-Volatile Polymer Memory Device Based on a Novel Copolymer of N-Vinylcarbazole and Eu-Complexed Vinylbenzoate, Adv. Mater., 2005, 17(4), 455-459
    [536] Ling Q.D., Lim S.L., Song Y., Zhu C.X., Chan D.S.H., Kang E.T., Neoh K.G., Nonvolatile Polymer Memory Device Based on Bistable Electrical Switching in a Thin of Poly(N-vinylcarbazole) with Covalently Bonded C60, Langmuir, 2007, 23(1), 312-319
    [537] Majumdar H.S., Baral J.K., Osterbacka R., Ikkala O., Stubb H., Fullerene-based bistable devices and associated negative differential resistance effect, Organic Electronics, 2005, 6, 188-192
    [538]郑楠,刘之景,偶氮聚合物光存储研究进展,微纳电子技术,2006, 3, 130-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700