半超宽带超高频射频识别(SUUR)标签芯片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着射频识别、信息传感等信息通信技术的发展,信息网络将向无所不在的泛在网络方向演进,“泛在”将成为信息社会的重要特征。泛在网络作为未来信息社会的重要载体和基础设施,已经得到国际普遍范围的重视,各国相继将泛在网络建设提升到国家信息化战略高度。
     论文在对泛在网络进行了相关介绍的基础之上,提出了一种适用于构建泛在网络的终端系统:半超宽带超高频射频识别(SUUR)系统。并根据从系统分析到模块电路设计再到整体电路仿真与验证的方向对该系统进行了研究设计。首先,对该系统的组成及其基本工作原理进行了论述,并对相关协议标准进行了分析;接着,对SUUR无源电子标签芯片的整体结构进行了分析与设计,对标签芯片的整体性能指标进行了规划;然后,重点研究了SUUR无源电子标签芯片射频模拟前端电路的设计,包括自适应阻抗匹配电路、IR-UWB脉冲发射电路和RF接收电路等。
     为实现最大功率传输,通常需要设计一个阻抗匹配网络来实现电子标签芯片阻抗和接收天线阻抗之间的共轭匹配。由于在设计中通过仿真得到的天线及芯片的阻抗与实际值总是存在一定的偏差,因此在实际应用中,应采用网络分析仪对芯片阻抗进行测试,然后根据测试结果,对天线设计进行多次修正,调整天线阻抗,最终达到最佳能量传输。事实上,芯片阻抗的实际值也会随着输入功率的变化而产生波动,因此在使用固定的阻抗匹配网络情况下,即使通过反复测试、调试后设计的天线,在实际工作过程中也很难始终保证和芯片处在最佳匹配状态,从而影响标签的阅读距离及其整体性能,甚至有可能出现“死区”现象,不能正常工作。因此,为使电子标签天线设计简单化(在可调电容调谐范围足够大时可直接选用阻抗为50Ω通用天线)、提高标签的阅读距离并消除“死区”现象,本论文设计了一种自适应阻抗匹配系统来实现天线阻抗与芯片阻抗之间的实时、自动匹配,从而实现标签的最佳传输性能。该匹配网络包含2个独立的环路:第1个环路通过对并联LC调谐网络的控制实现对芯片阻抗实部的实时检测与自动校正,而第2个环路通过对串联LC调谐网络的控制实现对芯片阻抗虚部的实时检测与自动校正。在这2个环路中,调谐元件采用的都是与标准CMOS工艺兼容的MOS可变电容,以实现单片集成和连续调节。在第1个环路中,除了检测阻抗的实部信息外,还检测虚部的正负特性作为第2个控制准则来确保环路的稳定性。另外,本文还对该匹配系统的关键电路进行了设计,并在915MHz频率下对不同的芯片阻抗进行了仿真验证,结果表明:对于不同的芯片阻抗,都能快速地校正到目标阻抗。另外,对电容的调谐范围及调谐网络的非理想特性进行了分析,调谐网络的插入损耗低于1.5dB,系统增益可高达2.7dB。
     UWB一个重要的设计初衷就是希望能够和已有的窄带通信设备共享频谱资源。为确保UWB通信系统不干扰其他窄带系统的正常工作,一个有效的方式就是限制其发射功率谱密度,但这还不足以完全解决UWB信号对其它无线电信号的干扰问题。本论文将相互之间具有延迟时间△t的两个n阶高斯脉冲相加,得到的组合脉冲也满足IR-UWB泳冲的特性,且其功率谱密度是n阶高斯脉冲的功率谱密度与余弦函数的乘积,因此在某些特定频率处将具有陷波(功率谱密度为零),陷波频率的数值与延迟时间成反比,且对于某一个确定的延迟时间,在UWB频带内可存在一个或多个陷波频率,从而可以灵活实现对现有某一个或多个窄带通信系统干扰的抑制。
     基于Chartered0.18μm2P4M EEPROM工艺,采用低功耗设计技术对SUUR标签芯片射频模拟前端电路进行了设计,并对其进行了整体仿真验证。结果表明,该SUUR标签芯片工作中心频率为915MHz,其工作距离大于10m,很好的满足了设计指标的要求。
With the development of the information and communication technology, information network will develop to ubiquitous network. Ubiquitousness will become an important feature of the information society. As an important carrier and infrastructure in the future information society, ubiquitous network has attracted the international widespread attention, and many countries have promoted the ubiquitous network construction to national informatization strategy.
     In this thesis, a terminal system named semi-UWB Ultra-high frequency radio frequency identification (SUUR) is presented based on the introduction of ubiquitous network. The research and design is organized as follow:from the system analysis to cell block circuits design and finally to the whole RF analog front-end circuit simulation and verification. Firstly, the system structure and the operating principle are discussed, and the relevant protocols are analyzed. Secondly, the system architecture of the passive SUUR tag IC is analyzed and designed. The specifications of the SUUR tag IC are presented. Furthermore, the system architectures of the radio frequency analog front end (RF AFE) for the passive SUUR tag are studied and designed with low-power design techniques. The RF AFE circuit includes adaptive impedance matching network, RF receiver and IR-UWB pulse generator, and so on.
     To realize power transfer maximization, an impedance matching network which is used to transform the tag microchip impedance to the complex conjugate of the antenna impedance is usually designed. Usually, there is a certain deviation between the real and simulation values of chip impedance, in practical applications, a network analyzer should be used to test the chip impedance and according to the test results, adjust the antenna impedance again and again, and ultimately achieve the best energy transfer. Actually, the impedance of the microchip may also vary with the received power on the chip. Therefore, if a fixed impedance matching network is used, serious mismatching may be still exist and thus create a "dead-zone" where the tag is non-responsive even the tag is deployed in the reading range (especially closed to the reader). To simplify the design of the tag antenna (50ohms can be used if the capacitance tuning range is large enough), to improve the reading area, and to eliminate "dead zones" phenomenon, in this thesis, an adaptive impedance matching network is designed to realize real-time and automatic impedance matching between the tag and antenna thus realize the maximum power transfer and the best link quality. The adaptive impedance matching network consists of two independent loops. The first loop realizes real-time measurement and automatic correction of resistance by controlling a parallel LC tuning network, whereas the second loop achieves automatic reactance compensation by controlling a series LC tuning network. In both loops, MOS varactors which are compatible with standard CMOS processing were applied as tunable elements to realize monolithic and sequential tuning. For the first loop, besides the intermediate resistance, the sign of the intermediate reactance was also detected as the second control criterion to enforce operation into a stable region. In addition, the key circuits of the matching system are designed. For different chip impedance, the adaptive impedance matching system was simulated at frequency of915MHz, and the results showed that:all the chips impedance can be quickly corrected to the target impedance. In addition, the analysis are carried out on the non-ideal characteristics of the tuning network and the tuning range of capacitance, it is indicated that the insertion loss is less than1.5dB and the system gain can be as high as2.7dB.
     One of the important design intentions of UWB is sharing spectrum with exiting narrow band communication systems. In order to ensure that the UWB will not interfere the narrowband communication systems, an effective way is to limit the transmit power spectral density. However, it is not enough to completely solve this problem. In this thesis, a composite pulse was generated by combining two n-th derivative Gaussian pulses with delay time of At. This pulse satisfies the characteristic of the IR-UWB pulse, and its power spectral density is the product of the power spectral density of n-th derivative Gaussian pulse with cosine function. So notch frequencies will be generated at some certain frequencies and inversely proportional to the delay time. In addition, there are one or more notch frequencies in the UWB band for a certain delay time. Therefore, it is flexible to suppress interferences on one or more narrow-band communication systems.
     An overall design and simulation are conducted for the RF AFE of passive SUUR tag IC based Chartered0.18μm two-poly four-metal (2P4M) CMOS process with Schottky diodes and EEPROM. The results show that the chip's reading range is more than10m at the915MHz ISM band. The tag IC meets the requirements of the design specifications.
引文
[1]Weiser M. The computer for the 21st century [J]. Scientific American,1991,265(3): 94-104.
    [2]International Telecommunication Union. Ubiquitous network societies:the case of Japan [EB/OL]. (2006-12-11) [2010-08-25]. Geneva:ITU,2006.
    [3]International Telecommunication Union. Ubiquitous network societies:the case of Korea [EB/OL]. (2006-12-11) [2010-08-25]. Geneva:ITU,2006.
    [4]Wikipedia. Ambient network [EB/OL]. (2009-10-21) [2010-08-25]. http://en.wikipedia.org /wiki/Ambient_intelligence.
    [5]Saha D, Mukherjee A. Pervasive computing:a paradigm for the 21st century [J]. Computer, 2003,36(3):25-31.
    [6]International Telecommunication Union. Overview of ubiquitous networking and of its support in NGN. (Y. NGN-UbiNet). Geneva:ITU,2009.
    [7]朱沛胜,段世惠.泛在网络发展现状分析[J].电信网技术,2009,7:18-21.
    [8]张平,纪阳,冯志勇.移动泛在网络环境(1)[J].中兴通讯技术,2007,13(1):58-62.
    [9]续合元.泛在网络架构的研究[J].电信网技术,2009(7):22-26.
    [10]International Telecommunication Union. The Internet of things. Geneva:ITU,2005.
    [11]温家宝.2010年政府工作报告[EB/OL]. (2010-03-15) [2010-08-25]. http://www.gov.cn /20101h/con-tent_1555767.htm.
    [12]Akyildiz I F, Su W, Sanakarasubramaniam Y, et al. Wireless sensor networks:a survey [J]. Computer Networks,2002,38(4):393-422.
    [13]曹淑敏.走向宽带泛在的无线移动通信[J].世界电信,2009,22(12):43-45.
    [14]陈如明.泛在/物联/传感网与其他信息通信网络关系分析思考[J].移动通信,2010,34(8):47-51.
    [15]张平,苗杰,胡铮,田辉.泛在网络研究综述[J],北京邮电大学学报,2010,33(5):1-6.
    [16]Eric Lie. Ubiquitous network societies:the case of Singapore, ITU Workshop on Ubiquitous, Geneva Switzerland,2005.
    [17]Atsushi Umino. Japan's new IT reform strategy and u-Japan. www.soumu.go.jp/main_sosiki/joho_tsusin/eng/presentation/pdf/071122_1.pdf
    [18][德]Klaus finkenzeller.射频识别(RFID)技术——无线电感应的应答器和非接触IC卡的原理与应用(第二版)(,陈大才译)[M].北京:电子工业出版社,2001.56-71.
    [19]樊勃.无源超高频射频电子标签芯片模拟射频前端电路的分析与研究:[博士学位论文].天津:南开大学,2009.
    [20]Chawla V and Ha D S. An overview of passive RFID [J], IEEE Commun. Mag.,2007, 45(9):11-17.
    [21]Finkenzeller K. RFID handbook:fundamentals and applications in contactless smart cards and identification,2nd ed [M]. New York:Wiley,2004.
    [22]邹永祥,吴建华.RFID技术和无线传感器网络的融合—-RFSN[J].科技信息:博士专家论坛,2007.367-368.
    [23]Chawla V and Ha D S. An overview of passive RFID [J]. IEEE Commun. Mag.,2007, 45(9):11-17.
    [24]Kim D, Ingram M and Smith W. Small-scale fading for an indoor wireless channel with modulated backscatter [C]. In:Proceeding of IEEE Vehicular Technology Conference. New Jersey, USA:IEEE,2001.1616-1620.
    [25]Ha D and Schaumont P. Replacing cryptography with ultra wideband (UWB) modulation in secure RFID [C]. In:Proceeding of IEEE International Conference on RFID. Grapevine, TX:IEEE,2007.23-29.
    [26]Mutti C. and Floerkemeier C. CDMA-based RFID systems in dense scenarios:concepts and challenges [C]. In:Proceeding of IEEE International Conference on RFID. Las Vegas, NV:IEEE,2008.215-222.
    [27]Baghaei-Nejad M, Zou Z, Tenhunen H, Zheng L R. A novel passive tag with asymmetric wireless link for RFID and WSN applications [C]. In:Proceeding of IEEE International Symposium on Circuits and Systems. New Orleans, USA:IEEE,2007.1593-1596.
    [28]陆民琪,汪敏.UWB信号波形及功率谱密度的分析[J].上海大学学报(自然科学版),2005,11(4):335-340.
    [29]武伟,仇洪冰,刘贵生.高速超宽带脉冲检测电路的设计[J].光通信技术.2007,6:42-45.
    [30]Zou Z, Baghaei-Nejad M, Tenhunen H, Zheng LR. An efficient passive RFID system for ubiquitous identification and sensing using impulse UWB radio [J]. Elektrotechnik & Informationstechnik,2007,124 (11):397-403.
    [31]Davide D, Raffaele D, Christophe R, et al. Ultra-wide bandwidth RFID:the next generation [J]. Proceeding of the IEEE,2010,98 (9):1570-1582.
    [32]Umeda T, Yoshida H, Sekine S, et. al. A 950 MHz rectifier circuit for sensor network tags withlO-m distance [J]. IEEE Journal of Solid-State Circuits,2006,41(1):35-1.
    [33]Lam Y H, Ki W H, and Tsui C Y. Integrated low-loss CMOS active rectifier for wirelessly powered devices [J]. Circuit and Systems II:IEEE Transactions on express briefs,2006, 53(12):1378-1382.
    [34]-Glidden R, Bockorick C, Cooper S, et al. Design of ultra-low-lost UHF RFID tags for supply chain applications [J]. Communications magazine,2004,42(8):140-151.
    [35]Opasjumruskit K, Thanthipwan T, Sathusen O, et al. Self-powered wireless temperature sensors exploit RFID technology [J]. Pervasive Computing,2006,5(1):54-61.
    [36]Sauer C, Stanacevic M, Cauwenberghs G, et al. Power harvesting and telemetry in CMOS for implanted devices [J]. Circuits and Systems I:Regular Papers,2005,52(12): 2605-2613.
    [37]Balachandram G K and Barnett R E. A 110nA voltage regulator system with dynamic bandwidth boosting for RFID systems [J]. IEEE Journal of Solid-State Circuits,2006, 41(9):2019-2028.
    [38]Karthaus U and Fischer M. Fully integrated passive UHF RFID transponder IC with 16.7-μm minimum RF input power [J]. IEEE Journal of Solid-State Circuits,2003, 38(10):1602-1608.
    [39]Guo L H, Popov A P, Kwong D L. A small OCA on a lmm*0.5mm 2.45-GHz RFID tag-design and integration based on a CMOS-compatible manufacturing technology [J]. Electron Device Letters,2006,27(2):96-98.
    [40]Yi J, Ki W H, Tsui C Y. Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications [J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2007,54(1):153-166.
    [41]Nakamoto H, Yamazaki D, Yamamoto T, et al. A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology [J]. IEEE Journal of Solid-State Circuits,2007,42(1):101-110.
    [42]Kaiser U and Steinhagen W. A low-power transponder IC for high-performance identification systems [J]. IEEE Journal of Solid-State Circuits,1995,30(3):306-310.
    [43]Curry J P. Joehl N, Dehollain C, et al. Remotely powered addressable UHF RFID integrated system [J]. IEEE Journal of Solid-State Circuits,2005,40(11):2193-2202.
    [44]Seemann K, Hofer G, Cilek F. Single-ended ultra-low-power multistage rectifiers for passive RFID tags at UHF and microwave frequencies [C]. In:IEEE Radio and Wireless Symposium. San Diego, CA:IEEE,2006.479-482.
    [45]Barnett R, Lazar S and Jin L. Design of multistage rectifiers with low-cost impedance matching for passive RFID tags [C]. In:IEEE Radio Frequency Integrated Circuits (RFIC) symposium. San Francisco, USA:IEEE,2006.291-294.
    [46]Curty J P, Joehl N, Dehollain C, et al. A 2.45 GHz remotely powered RFID system [C]. In:IEEE Research in Microelectronics and Electronics,2005,1:153-156.
    [47]Chang C C and Lo Y C. Broadband RFID tag antenna with capacitively coupled structure [J]. Electronics Letters,2006,42(23):1322-1323.
    [48]Ukkonen L, Engels D, and Kivikoski M. Planar wire-type inverted-F RFID tag antenna mountable on metallic objects [C]. In:IEEE Antennas and Propagation Society International Symposium. New Jersey, USA:IEEE,2004.101-104.
    [49]Sung-Joo K, Byongkil Y, and Byungje L. RFID tag antenna mountable on metallic plates [C]. In:Asia-Pacific Microwave Conference Proceedings. Seoul, Korea:IEEE,2005.3-6.
    [50]Wonkyu C, Son H W, and Gilyoung C. RFID tag antenna with a meandered dipole and inductively coupled feed [C]. In:IEEE Antennas and Propagation Society International Symposium. New Jersey, USA:IEEE,2006.619-622.
    [51]Byunggil Y, Sung-Joo K, Byungwoon J, et. al. Balanced RFID Tag antenna mountable on metallic plates [C]. In:IEEE Antennas and Propagation Society International Symposium. New Jersey, USA:IEEE,2006.3237-3240.
    [52]Dobkin D M and Weigand S M. Environmental effects on RFID tag antennas [C]. In: IEEE MIT-S International Microwave Symposium Digest. Seattle:IEEE,2005.4.
    [53]Rodenbeck C T. Planar Miniature EFID antennas suitable for integration with batteries [J]. IEEE Transactions on Antennas and Propagation,2006,54(12):3700-3706.
    [54]Jaeyul C, Hosung C, Oh Y. Design of multi-layered polygonal helix antennas for RFID readers in UHF band [C]. In:IEEE Antennas and Propagation Society International Symposium,2005,28:283-286.
    [55]Weigand S M. Compact micro-strip antenna with foward-directed radiation pattern for RFID reader card [C]. In:IEEE Antennas and Propagation Society International symposium,2005,28:337-340.
    [56]Jong Moon L, Nae Soo K, Cheol Sig P. A circular polarized metallic patch antenna for RFID reader [C]. In:Asia-Pacific Conference on Communications,2005.116-118.
    [57]Xianmling Q and Ning Y.2.45GHz circularly polarized RFID reader antenna [C]. In:The Ninth International Conference on Communication Systems. Singapore:IEEE,2004. 612-615.
    [58]Leong K H, Miyamoto R Y, Itoh T. Moving forward in retro-directive antenna arrays [J]. Potentials,2003,22(3):16-21.
    [59]Salonen P, Keskilammi M, Sydanheimo L. An intelligent 2.45 GHz beam-scanning array for modern RFID reader [C]. In:IEEE International Conference on Phased Array Systems and Technology,2000.407-410.
    [60]Hansen T B and Oristaglio M L. Method for controlling the angular extent of interrogation zones in RFID [J]. Antennas and wireless propagation Letters,2006,5(1):134-137.
    [61]Salonen P and Syanheimo L. A 2.45 GHz digital beam-forming antenna for RFID reader [C]. In:55th Vehicular Technology Conference. Birmingham, Alabama, USA:IEEE,2002. 1766-1770.
    [62]Zhi Ning C, Xuan Hui W, Hui Feng L, et. al. Considerations for source pulses and antennas in UWB radio systems [J]. IEEE Transaction on Antennas and propagation,2004, 52(7):1739-1748.
    [63]Andrieu J, Nouvet S, Bertrand V. Transient characterization of a novel ultra-wide-band antenna:the scissors antenna [J]. IEEE Transactions on Antenna and Propagation,2005, 53(4):1254-1261.
    [64]Schantz H G A brief history of UWB antennas [C]. In:IEEE Conference on Ultra Wideband Systems and Technologies. Baltimore, MD, USA:IEEE,2003.209-213.
    [65]Bagga S, Vorobyov A V, Long J R. Codesign of an impulse generator and miniaturized antennas for IR-UWB [J]. IEEE Transactions on Microwave Theory and Techniques,2006, 54(4):1656-1666.
    [66]Federal Communications commission. Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems. First Report and Order. ET Docket 98-153, FCC 02-48,2002.
    [67]Boubaker N and Letaief K B. MMSE multipath diversity combining for multi-access TH-UWB in the presence of NBI [J]. IEEE Transactions on Wireless Communications, 2006,5(4):712-719.
    [68]Zhonghua L, Shihua Z, Yongliang G, et al. Space-time narrowband interference suppression with receive diversity for DS-UWB systems [J]. IEEE Transaction on Consumer Electronics,2006,2(4):1207-1212.
    [69]Jiangzhou W and Wong T. Narrowband interference suppression in time-hopping impulse radio ultra-wideband communications [J]. IEEE Transactions on Communications,2006, 54(6):1057-1067.
    [70]Lim K P, Premkumar A B. A modular approach to the computation of convolution sum using distributed arithmetic principles [J]. IEEE Transactions on Circuits and Systems Analog and Digital Signal Processing,1999,46(1):92-96.
    [71]刘晓蕾.超宽带通信系统关键电路设计研究:[硕十学位论文].哈尔滨:哈尔滨.1:业大学,2006.
    [72]Duo X, Li-Rong Z, Tjukanoff E. A DC-13GHz LNA for UWB RFID applications [C]. In: IEEE Norchip Conference. Baltimore, USA:IEEE,2004.241-244.
    [73]Meigen S, Koivisto T, Tenhunen H. UWB radio module design for wireless intelligent systems-from specification to implementation [C]. In:IEEE Conference on High Density Micro-system Design and Packaging and Component Failure Analysis.2005.1-7.
    [74]Rodriguez Duenas S, Xinzhong D, Li-Rong Z. CMOS UWB IR non-coherent receiver for RFID applications [C]. In:IEEE North-East Workshop on Circuits and systems, Island of Kos, Greece; IEEE,2006.213-216.
    [75]高毅韬.UHF频段RFID标签天线的设计:[硕士学位论文].广州:中山大学,2008.
    [76]吴晓峰,陈大才.射频识别技术(第三版)[M].北京:电子工业出版社,2006.93-95.
    [77]黄玉兰.物联网射频识别(RFID)核心技术详解[M].北京:人民邮电出版社,2010.101-105.
    [78]Briole S, Pacha C, Goser K. AC-only RFID tags for barcode replacement [C]. In:IEEE International Solid-State Circuits Conference. Digest of Technical Papers. San Francisco: IEEE,2004.428-537.
    [79]刘庆华.基于EPCGen2协议的超高频RFID技术研究:[硕士学位论文].安徽:安徽大学,2007.
    [80]吴泽海,赖声礼.一种UHF频段RFID读写器的硬件设计与实现[J].电子技术应用,2005,1:50-52.
    [81]Balanis C A. Antenna theory analysis and design,2nd Ed. [M], John Wiley & Sons, Inc., 1997.5-8.
    [82]Burder L A. RFID multiple access methods. Technical Report, ETH Zurich,2004.
    [83]Cha J R, Kim J H. Novel anti-collision algorithms for fast object identification in RFID system [C]. In:International Conference on Parallel and Distributed Systems. Shenzhen, China:IEEE,2009.54-58.
    [84]Sadeghzadeh R A and Mcewan N J. Prediction of head proximity effect on an antenna impedance using spherical waves expansions [J]. Electron. Lett.,1994,30:844-847.
    [85]Moritz J R and Sun Y. Frequency agile antenna tuning and matching [C]. In:Proc. IEEE 8th Int. HF Radio Syst. Tech. Conf., London:Institution of Electrical Engineers.2000. 169-174.
    [86]Ronde F C. A precise and sensitive X-band reflectometer providing automatic full-band display of reflection coefficient [J]. IEEE Trans. Microw. Theroy Tech.,1965, MTT-13(4): 435-440.
    [87]Firrao E L, Annema A J and Nauta B. An automatic antenna tuning system using only RF signal amplitudes [J]. IEEE Transactions on Circuits and Systems桰I:Express Briefs, 2008,55(9):833-837.
    [88]白兴文,张亚君.基于RFID天线阻抗自动匹配技术研究[J].电子器件,2010,33(2):205-208.
    [89]Kong N, Deyerle T S and Ha D S. Universal power management IC for small-scale energy harvesting with adaptive impedance Matching [C]. In:IEEE Energy Conversion Congress and Exposition, New Jersey, USA:Institute of Electrical and Electronics Engineers,2011. 3859-3863.
    [90]Zolomy A, Mernyei R, Erdelyi J, et al. Automatic antenna tuning for RF transmitter IC applying high Q antenna [C]. In:Yann Deval. Pro. IEEE RFIC Symp., New Jersey, USA: Institute of Electrical and Electronics Engineers,2004.501-504.
    [91]El-Dahshan A, Ahmed H N, El-Tager A. An interactive approach to the design of adaptive impedance matching sirsuits [C]. In:24th Canadian Conference on Electrical and Computer Engineering, New Jersey, USA:Institute of Electrical and Electronics Engineers,2011.607-610.
    [92]Blobdy P, Champeaux C, Tristant P, et al. Applications of RF MEMS to tunable filters and matching networks [C]. In:Int. Proc. Semiconductor Conf., New Jersey, USA:Institute of Electrical and Electronics Engineers,2011.111-116.
    [93]Hsu H H, Peroulis D. A CAD model for creep behavior of RF-MEMS varactprs and circuits [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(7): 1761-1768.
    [94]Sjoblom P and Sjoland H. An adaptive impedance tuning CMOS circuit for ISM 2.4-GHz band [J]. IEEE Transactions on Circuits and Systems-I, Regular Papers,-2005,52(6): 1115-1124
    [95]Castello R, Erratico P, Manzini S, et al. A 30% tuning range varactor compatible with future scaled technologies [C]. In:Symposium on VLSI Circuits. Digest Technical Papers. Honolulu, HI, USA:IEEE,1998:34-35.
    [96]Soorapanth T, Yue C P, Shaeffer D K, et al. Analysis and optimization of accumulation-mode for RF ICs [C]. In; Symposium on VLSI Circuits. Digest Technical Papers. Honolulu, HI, USA:IEEE,1998:32-33.
    [97]Torrance R R, Viswanathan T R, Hanson J V. CMOS voltage to current transducers [J]. IEEE Trans. Cinuits Syst.,1985, CAS-32:1097-1104.
    [98]葛利嘉,朱林,袁晓芳,等.超宽带无线电基础[M].北京:电子工业出版社,2005.1-2.
    [99]Lu X and Chen W. A new UWB pulse design method for multiple narrow-band interference and wide-band interference mitigation [C]. In:4th International Conference on Communications and Networking. Guilin, China:IEEE,2009:1-5.
    [100]Federal communications commission. First report and order:Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems. Washington: Government printing office,2002,1-118.
    [101]Ryckaert J, Badaroglu M, De Heyn V, et al. A 16mA UWB 3-to-5 GHz 20Mpulses/s quadrature analogue correlation receiver in 0.18um CMOS [C]. In:International Solid-State Corcuits Conference. Digest of Technical Papers. Lewiston, Maine, USA: IEEE,2006.114-115
    [102]Sadeghpour R, Nabavi A. Design and generation of UWB waveforms with interference elimination on narrow band systems [J]. IEICE Electronics express,2009,6(13):923-929.
    [103]Mir-Moghtadaei V, Jalili A, Fotowat-Ahmady A, et al. A new UWB pulse generator for narrowband interference avoidance [C], In:15 Mediterranean Electrotechnical Conference. Malta:IEEE,2010.759-763.
    [104]Liu Y P, Qun W. Improved anti-NBI UWB waveform design based on spectral factorization [C]. In:International conference on communications and mobile computing. Kunming, Yunnan, China,2009.481-484.
    [105]Wang Y, Dong X, Fair I J. Spectrum shaping and NBI suppression in UWB communications [J]. IEEE transactions on wireless communications,2007,6(5): 1944-1952.
    [106]Wu X, Tian Z, Davidson T, et al. Optimal waveform design for UWB radios [J]. IEEE transactions on signal processing,2006,54(6):2009-2021.
    [107]Wentzloff D and Chandrakasan A. Gaussian pulse generators for subbanded UWB transmitters [J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(4): 1647-1655.
    [108]Wentzloff D D and Chandrakasan A P. A 47pJ/pulse 3.1-to-5GHz all-digital UWB transmitter in 90nm CMOS [C]. In:International Solid-State Corcuits Conference. Digest of Technical Papers. Lewiston, Maine, USA:IEEE,2007:118-591.
    [109]Liang C F, Liu S T and Liu S I. A calibrated pulse generator for impulse-radio UWB applications [J]. IEEE Journal of Solid-State Circuits,2006,41(11):401-407.
    [110]Kim H and Joo Y. Fifth-derivative gaussian pulse generator for UWB system [C]. In: Proceeding IEEE Radio Frequency Integrated Circuits Symposium. Long Beach, USA; IEEE,2005.671-674.
    [111]Smaini L, Tinella C, Helal D, et al. Single-chip CMOS pulse generator for UWB systems [J]. IEEE Journal of Solid-State Circuits,2006,41(7):1551-1561.
    [112]陈力颖.无源超高频电子标签芯片设计研究:[博士学位论文].天津:天津大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700