烷基芴类化合物的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芴的聚合物是一类重要的蓝色高分子发光材料,广泛应用于高分子平板显示(PLEDs),太阳能电池,生物和化学传感器等领域。由于聚芴分子间的聚集效应或链间低聚物的形成,它的发光光谱有很大的拖尾现象,即色纯度和发光颜色稳定性差。因而,围绕聚芴分子的修饰和改性,人们做了大量的工作,合成了一些聚芴衍生物的高分子发光材料。由于在芴的9位上引入烷基侧链,可使这类高分子材料具有较好的溶解性和可加工性,被认为是很有发展前景的一类高分子。
     本文以芴为主要原料,分别采用两种不同的合成路线,合成了一系列含有不同烷基链(-C4H9,-C8H17,-C14H29)的烷基芴类小分子单体溴代烷基芴(A)和羧基烷基芴(B):R=-C4H9,-C8H17,-C14H29
     A的合成路线一:先将芴的2位和7位进行溴代反应,然后再将9位进行烷基化反应。合成溴代烷基芴时,在不同的反应条件下,分别采用TEBA、四丁基溴化铵作为相转移催化剂,甲苯、DMSO和THF做溶剂,50%NaOH和叔丁醇钾做活化剂。
     A的合成路线二:先将芴的9位进行烷基化反应,再将2位和7位进行溴代反应。9位进行烷基化反应时,在不同反应条件下,分别采用正丁基锂和叔丁醇钠作为活化剂。
     分别采用格氏反应和正丁基锂活化反应的方法合成目标产物B。
     通过1HNMR,IR对其结构进行了表征,紫外,荧光等检测方法探讨了其发光性能,得到结论如下:
     1.芴的9位上所连的烷基链越短,紫外最大吸收波长越大。由于所连的烷基链减弱了芴的共轭性,从而导致了紫外最大吸收波长的蓝移,链越长,相对蓝移程度越大。
     2.芴的9位上所接烷基链长度的增加对荧光最大吸收波长影响不大,且都在310nm左右,但是随着链长度的增加,荧光强度逐渐增加;可能是由于链长度的增加阻碍了荧光自淬灭。
     3.9,9-二烷基-2,7-二溴芴的合成路线的选择对反应条件和产率的影响表明,先将芴溴代,然后再烷基化,这样得到的产物产率高,且反应条件简单。且常温下,用THF做溶剂,叔丁醇钾做活化剂的条件下得到的产品产率最高。
     4.采用格氏试剂法合成羧基烷基芴的方法简单、不需要高温条件且产率较高。
Polyfluorene is an important class of blue light-emitting polymer material, which is widely used in flat panel displays(PLEDs), solar cells, biological and chemical sensors. As mass effect or formation of chains oligomer among the polyfluorene molecules, there is a tailing phenomena in light spectrum, meaning poor color purity and poor stability. Thus, people had done a lot of work to focus on the modification of polyfluorene, and synthesized a number of light-emitting polyfluorene derivative. Polyalkylfluorine is considered as a promising polymer due to its better solubility and processability with alkyl side chain connected to the bridge carbon.
     A series of poly alkyl fluorene monomers with different alkyl chain(-C4H9,-C8H17,-C14H29) are synthesized by using of fluorene as raw material, according to different synthetic routes, choosing different solvents and catalysts in this paper. R=-C4H9,-C8H17,-C14H29 Synthetic route 1 of A:First 2,7-dibromo fluorine is synthesized, and second it is alkylated. Alkyl bromide fluorene is prepared under different reaction conditions by using TEBA, tetrabutylammonium bromide as phase transfer catalyst, toluene, DMSO and THF as solvent, 50% NaOH and potassium tert-butoxide as activator respectively.
     Synthetic route 2 of A:First fluorene is alkylated, and second it is bromide by number 2 and 7. Alkyl fluorene is prepared under different reaction conditions by using butyl lithium and sodium tert-butoxide as activator respectively.
     Desired product B is prepared with the methods of Grignard reaction and butyl lithium as activator respectively.
     The structure was characterized by 1HNR and IR. The luminescence was detected by UV and fluorescence. Conclusions were as follows:
     1. The shorter the alkyl chain connected to fluorine is, the UV maximum absorption wavelength is greater. As the alkyl chain weaken fluorene conjugation, leading to a blue shift of maximum absorption. The longer the chain is, the greater the degree of blue shift is.
     2. The length of alkyl chain connected to fluorene had little effect on increasing the maximum absorption wavelength. Absorption wavelength was all around 310nm. However, with the chain length increaseing, the fluorescence intensity gradually increased. May be the increasing chain length hindered fluorescence quenching.
     3. The effect of choice of synthetic route on the reaction conditions and yield showed that, good yield could be got by bromide first and alkylation second, at the same time, the reaction conditions were simple. The highest yield of the product was got by using THF as solvent, potassium tert-butoxide as activator at room temperature.
     4. Synthetic steps of carboxylic-alkyl-fluorene with Grignard reagent were trouble, but conditions were simple with high yield.
引文
[1]M. Pope, H.P. Kallmann, P.Maganante. Electroluminescence in organic crystals[J]. J.Chem. Phys.,1963,38(8):2042-2043
    [2]P.S.Vincett, W.A.Barlow, R.A.Hann. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin Solid Films,1982,94: 171-174
    [3]E.J.Gau, S.C.Macdiarmjol. Electrical Conductivity in Doped Polyacetylene[J]. Phys. Rev.Lett.,1977,39:1098-1099
    [4]曲波,陈志坚,李福山,等.聚芴类有机电致发光的材料和器件[J].发光学报,2007,18(5):683-692
    [5]C.W.Tang, S.A.Vanslyke, et al. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987,519(12):913-915
    [6]J.H.Burroughes, D.C.Bradley, A.R.Brown, et al. Light-emitting diodes based on conjugated polymers[J]. Nature,1990,347(6293):539-541
    [7]Holmes A B, Bradley D, et al. Synth Met.,1993,57:4031; (b) Bruns A B, Jachson R W. J. Am. Chem Soc.,1993:115:10-17
    [8]G.Gustufsson, Y.Cao, G.M.Treacy, et al. Flexible light-emitting diodes made from soluble conducting polymers[J]. Nature,1992,357:477
    [9]G.Gu, Z.Shen, P.E.Burrows, S.R.Forrest. Transparent flexible organic light-emitting devices[J]. AdvMater,1997,9:725
    [10]杨国波,田文晶.有机电致发光领域中的液晶材料[J].液晶与显示,2003,18(4):251-261
    [11]张彤,郭小军,赵毅等.微腔有机发光器件的设计[J].液晶与显示,2003,18(5):332-337
    [12]黄再生,林祖伦,陈吉欣.有机电致发光二极管的透明阴极的研制[J].液晶与显示,2003,18(4):276-278
    [13]李文连.有机EL和LED与无机EL和LED发光机制的异同[J].液晶与显示,2001,16(1):33-37
    [14]邹应萍,谭松庭,赵斌.有机电致发光材料的研究进展[J].液晶与显示,2004,19(3):191-197
    [15]黄剑,曹镛.有机电致发光材料研究进展[J].化工新型材料,2001,29(9):10-15
    [16]J.M.Halls, D.R.Baigent. Light-emitting and photoconductive diodes fabricated with conjug-ated polymers[J]. Thin Solid Film,1996,13:276
    [17]Q.B.Pei, Y.Yang, Efficient photoluminescence and electroluminescence from a soluble polyfluorene[J]. J.Am. Chem. Soc.,1996,118(31):7416-7417
    [18]G. J. Sarnecki, R. H. Friend, A. B. Holmes, et al. The synthesis of a new regioregular conj-ugated polymer:poly(2-bromo-5-dodecyloxy-1,4-phenylenevinylene[J]. Synth.Meth., 1995,69:545
    [19]XU Yunhua, PENG Junbiao, et al. Efficient polymer white-light-emitting diodes[J]. Appl. Phys. Lett.,2005,86:1-3
    [20]Toshio Takayama, Masatoshi Kitamura, Yasushi Kobayashi, et al. Soluble polymer complexes having Alq3-typependent groups [J]. Macromol Rapid Commun,2004,25: 1171-1174
    [21]Yang Chenghsien, Lin Liehli, Hong Jinlong. Light-emitting polymers containing 2,3,4, 5-tetraphenylthiophenylmoiety and different pendent groups[J]. Polym. Int.,2005,54: 679-685
    [22]D.Braun, A.J.Heeger. Electroluminescence from Light-emitting diodes fabricated form conducting polywers[J]. Thin Solid Films,1992,216:96-102
    [23]Lux A, Holmes A B, Cervini, Davies J E. New CF3-substituted PPV-type oligomers and polymers for use as hole blocking layers in LEDs[J]. Synth Met,1997,84:293
    [24]Dottinger S E, Hohloch M, Segura J L, et al. Chemical tuning of the electronic properties of differently substituted 1,4-bis(styryl)benzenes,2,6-bis(styryl)naphthalenes, and bis(thienyl-vinylene) benzenes and naphthalenes[J]. Adv Mater,1997,9,233-236
    [25]M.Granstrom, O.Inganas. White light emission from a polymer blend light emitting diode[J]. Appl.Phys.Lett.,1996,68(2):147-9
    [26]Berggren M, Inganas O, Gustafsson G, et al. Light-emitting diodes with variable colours from polymers[J]. Nature,1994,372:444-446
    [27]Wang G M, Yuan C W, Wu H M, et al. Importance of poly(N-vinylcarbazole) dopant to poly(3-octylthiophene) electroluminescence[J].J Appl Phys,1995,78(4):2679-2683
    [28]印寿根,李晨曦,尹春,等.聚合物电致发光材料研究进展[J].高分子通报,1997,2:95-101
    [29]印寿根,李晨曦,黄文强,等.含噁二唑的聚(间亚苯乙烯)电致发光二极管[J].高分子学报,1998,2(4):248-251
    [30]Song S, Jang M S, Shim H K, et al. Highly efficient light-emitting polymers compound of both hole and electron affinity units in the conjugated main chain[J]. Macromolecules,1999, 32:1482-1487
    [3l]张田林,李海虹,原中立,等.2,5-二[4-(2-芳基乙烯基)苯基]嗯二唑的合成及发光特征[J].有机化学,2005,25(8):997-1000
    [32]J.L. Segura. The Chemistry of electroluminescent organic materials [J]. Macro molecules, 1998,49:319-344
    [33]郭志刚,侯琼,昌云,等.芴类共聚物的合成及发光性能[J].化学通报,2004,1:64-66
    [34]邹应萍,谭松庭,肖雷,等.一种含三苯胺链段的PPV类交替共聚物的合成、表征及性能[J].高分子学报,2006,2(1):129-135
    [35]M.Fukada, K.Sawada, K.Yoshino. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics[J]. T,Polym, Sci.Polym.Chem.,1993,31:2465-2471
    [36]Park Doo Jin, Noh Yong-Young, Kin Jang-Joo, et al. Synthesis and characterization of a new polyfluorene derivative with well-defined conjugation length[J]. Polymer Preprints, 2002,43(1):71-72
    [37]C.L.Chiang, C.F.Shu. Synthesis and characterization of new polyquinolines containing 9,9's-spirobifluorene units[J]. Chem.Mater.,2002,14:682-687
    [38]唐洁渊,章文贡.聚丙烯酸-铕-二苯甲酰甲烷配合物及其荧光性能的研究[J].高分子学报,2001,4:480-483
    [39]Liang F Sh, Wang G, Ma D G, et al. A novel orange-red light emiting metal-complex polymer:copolymer of bis(8-hydroxyquinone) zinc and 1,4-divinylene phenylene[J]. Chinese Journal of luminescence,2002,2(1):12-16
    [40]Zhang T., Xu Z., Tao Dl, et al. Doped organic electrouminescene from a novel rare earth complex Tb(3-metho)3phen[J].Journal of Rare Earths.2003,21(4):412-414
    [4l]王广,王利祥,景遐滨等.含萘噁二唑铍配合物的合成及光致发光和电致发光性能研究[J].高等学校化学学报,2003,24(7):1158-1160
    [42]孟凡宝,张宝砚.聚合物电致发光材料的研究现状及应用前景[J].化工新型材料.2000.28(11):29-32.
    [43]蒋智强,杨其.有机电致发光材料的研究进展及应用[J].工程塑料应用.2007,35(2):65-69
    [44]Buckley A R, Rahn M D, Hill J, et al. Energy transfer dynamics in polyfluorene-based pol-ymer blends[J]. Chem. Phys. Lett.,2001,339(5):331-336
    [45]Grice A W, Brandly D D C, Bern Iusm T, et al. High brightness and efficiency blue light-emitting polymer diodes [J]. Appl. Phys. Lett.,1998,73(5):629-631
    [46]Peiq, Yang Y. Efficient photoluminescence and electroluminescence from a soluble poly-fluorene[J]. J. Am. Chem. Soc.,1996,118(31):7416-7417
    [47]Klarner G, Lee J I, Daveym H, et al. Exciton migration and trapping in copolymers based on dialkylfluorenes[J]. Adv. Mater.,1999,11(2):115-119
    [48]Redeecker M, Bradley D D C, Inbasekaran M, et al. Nondispersive hole transport in an ele-ctroluminescent polyfluorene[J]. Appl. Phys. Lett.,1998,73(11):1565-1567

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700