基于电光调制的超宽带无线接收系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带(UWB)通信凭借超宽的频谱带宽(3.1GHz~10.6GHz)和高速率的数据传输,已广泛应用于短距离的无线通信系统中。为了增加信号的传输距离和覆盖面积,光纤以其独特的优势成为解决长距离超宽带通信的方案。光纤作为一种高效的传输介质,不仅可以实现GHz量级信号的宽带传输,而且具有低损耗、抗干扰等优势。基于光纤传输的超宽带通信(UWB over Fiber)结合了光纤通信与超宽带通信的优势,在未来的高速宽带无线通信系统中具有重大的应用价值。
     本文研究了基于Mach-Zehnder(M-Z)电光调制器外调制的UWB无线接收系统。该系统实现了跨度7GHz的超宽带无线信号的接收,将接收到的UWB信号利用M-Z电光调制器转换成光信号,最后实现UWB无线信号的光纤传输。本文研究分为两大部分:高速电光调制器理论研究和UWB接收系统的研究与实现。高速电光调制器的理论研究主要从光波导和电极结构两个方面对高速电光调制器进行分析研究。光波导的研究方面,采用等效折射率法(EIM)和有限差分束传输法(FD-BPM)进行仿真与优化,研究了两种非对称M-Z结构的电光调制器,利用光学方法实现了M-Z电光调制器π/2的初始相位偏置。电极结构的研究方面,以单层结构Wheeler变换为基本模型,研究了多层介质的Wheeler扩展变换,得到了电极特征参数与电极结构参数的表达式,该方法与有限元法的计算精度相当,但提高了计算速度。本文首次提出了补偿层型微带线(MSL)电极模型、补偿层型共面波导(CPW)电极模型和屏蔽层型CPW电极模型。通过对电极和光波导结构的分析,使得调制器可达到阻抗和速率的同时匹配,理论实现高速和宽带宽的调制。
     UWB无线接收系统分为两个子系统进行研究,一是UWB天线系统,二是UWB接收系统。第一子系统从天线的基础理论进行分析研究,对矩形贴片天线的电流分布仿真,将贴片形状进行改进,设计并制作出了UWB天线,实测带宽可达到3GHz~14GHz,符合UWB天线的定义标准(3.1GHz~10.6GHz)。第二子系统采用超外差式结构,对UWB天线接收到的UWB信号进行滤波、放大和混频处理,重点优化了低噪声放大器和低通滤波器。根据实测结果,实际制作的UWB接收系统的接收频段达到了UWB频段要求,实现了灵敏度为-80dBm的信号接收。
     本文最后搭建了UWBoF通信实验系统。UWB信号经过制作的UWB接收系统后,将其输出的中频信号加载到电光调制器的调制电极上,同时将光信号接入电光调制器的光源端口,使加载了UWB信号的光波通过光纤传输,实现了UWB信号的光调制。测试结果表明:UWBoF通信系统成功实现了超宽带频段(3GHz~10GHz)的高频信号接收;当载噪比为40dB时,该系统的灵敏度为-80dBm;该系统调制输出曲线的半波电压为3.9V。
Ultra-wideband (UWB) communication systems, with the ultra-wide bandwidth(3.1GHz~10.6GHz) and the high-speed data transmission, have been wildly used in theshort distance wireless communication systems. In order to increase the signaltransmission distance and coverage area, optical fiber is the powerful solution toprovide the long-range UWB communications, with the advantages including GHzbroadband transmission, low loss and no channel crosstalk. UWB signals transmit overfiber (UWBoF) technology has great value in high-speed broadband wirelesscommunication system in the future.
     In the paper, the UWBoF communication system based on Mach-Zehnder (M-Z)modulator is designed and implemented. In this system, the wireless signal of bandwidth with7GHz has been received first, and then this received UWB signal isconverted into optical signal by Mach-Zehnder modulator, finally, the UWB signaltransmitted over fiber has been implemented. Two main parts are studied: one is thetheoretical study of the high-speed electro-optic (E-O) modulator, another is the studyand implementation of the UWB receiver system. In the theoretical study of themodulator, optical waveguide and electrode have been analyzed. The effective indexmethod (EIM) and finite difference-beam propagation method (FD-BPM) are used tosimulate and optimize the optical waveguide structure. Two structures of theasymmetric M-Z modulators are designed which can make the initial phase differencereach π/2. The expressions of the electrode characteristic and structure parameters areobtained by the extended multilayer wheeler’s function. In the comparison with finiteelement method (FEM), the extended multilayer wheeler’s function has the samecomputational precision, but has higher computational efficiency. The compensationlayer of the microstripe line (MSL) electrode structure, the compensation layer of thecoplanar waveguide (CPW) structure and the multilayer CPW structure with shield areput forward for the first time. Combining with the optimized results of the waveguideand the electrode, the velocity matching and the impedance matching for the E-O modulator can be both achieved simultaneously, so the modulator could get thehigh-speed and wide bandwidth modulation.
     UWB wireless receiver system is divided into two sub-systems, one is the designof the UWB antenna system, and the other is the investigation and implementation ofthe UWB receiver. For the first sub-system, by analyzing and simulating the currentdistributions of rectangle patch antenna, an improved patch structure is given, and a newUWB antenna is implemented. The measurement of the band width for the implementedantenna can achieve3GHz~14GHz, which can match the standard3.1GHz~10.6GHzdefined by Federal Communications Commission (FCC). For the second sub-system,according to the UWB frequency ranges, the UWB receiver based on thesuperheterodyne structure is studied, including design and implementation of thelow-noise amplifier and low pass filter structure. In our experiment, the receivingsensitivity of the UWB receiver can achieve-80dBm when the CNR is around40dB.
     Finally, the UWB over fiber experimental system is established successfully. Afterthe UWB signal is processed by the UWB receiver, the output signal is transmitted intoRF port of the E-O modulator, meanwhile, the optical signal is input to the opticalsource port. The UWB signal has been carried by optical wave and transmitted byoptical fiber. The experiments show that the UWBoF receiving system can achieve largebandwidth reception, which can match the standard of UWB signal. The receivingsensitivity of our system is around-80dBm, when the CNR is around40dB, and thehalf-wave voltage is about3.9V.
引文
[1] J. Seeds, K. J. Williams. Microwave photonics. J. Lightw. Technol.,2006,24(12):4628-4641
    [2] C. P. Joseph. Fiber-optic communications. Beijing: Publishing House of Electronics Industry,2009,5-20
    [3] M. Ran, Y. Ben, B. Ezra, et al. Ultra-wideband radio-over-optical fibre in short-rangewireless communications: emerging technologies and applications. New York: Wiley,2009,271-327
    [4] R. S. Kshetrimayum. An introduction to UWB communication systems. IEEE Potentials,2009,28(2):9-13
    [5] W. P. Li, J. Y. Chen. Implementation of a new ultra wide-band impulse system. IEEE Photon.Technol. Lett.,2005,17(11):2418-2420
    [6] M. Ghavami, L. B. Michael, R. Kohno. Ultra wideband signals and systems incommunication engineering. U.K.: Wiley,2005,125-140
    [7] D. Porcino, W. Hirt. Ultra-wideband radio technology: potential and challenges ahead. IEEECommun. Mag.,2003,41(7):66-74
    [8] J. H. Seo, S. Y. Kwang, C. W. Young.1.244-Gb/s data distribution in60-GHz remote opticalfrequency up-conversion systems. IEEE Photon. Technol. Lett.,2006,18(12):1389-1391
    [9] D. A. Moghadam, V. T. Vakili. Characterization of indoor time reversal UWBcommunicationsystems: Spatial, temporal and frequency properties. Int. J. Commun. Syst.,2011,24:277-294
    [10] I. Oppermann. The role of UWB in4G. Wireless Pers. Commun.,2004,29(1-2):121-133
    [11] Federal Communications Commission. First Report and Order, FCC02-48, ET Docket98-153, February2002
    [12] Federal Communications Commission. Second Report and Order and Second MemorandumOpinion and Order, FCC04-285, ET Docket98-153, December2004
    [13] Federal Communication Commission. Code of Federal Regulations, Commission Title47,Chapter1, Part15, October2004
    [14] G. P. Agrawal. Fiber-Optic Communication Systems. New York: Wiley,2002,10-40
    [15] G. R. Aiello, G. D. Rogerson. Ultra-wideband wireless systems. IEEE Microwave,2003,4(2):36-47
    [16] J. Armstrong. OFDM for optical communications. J. Lightw. Technol.,2009,27(3):189-204
    [17] M. Hanawa, K. Mori, K. Nakamura, et al. Dispersion tolerant UWB-IR-over-fibertransmission under FCC indoor spectrum mask, in Proc. OFC,2009
    [18] R. Llorente, T. Alves, M. Morant, et al. Ultra-wideband radio signals distribution in FTTHnetworks. IEEE Photon. Technol. Lett.,2008,20(10):945-947
    [19] S. L. Pan, J. P. Yao. Photonic generation of chirp-free UWB signals for UWB over fiberapplications. in Proc. MWP2009, Valencia,2009
    [20] J. C. Duan, G. Pekhteryev, J. Fang, et al. Transmitting multiple HD video streams over UWBlinks. CCNC’06,2006,2:691-695
    [21] Q. Zou, A. Tarighat, A. H. Sayed. Performance analysis of multiband OFDM UWBcommunications with application to range improvement. IEEE Trans. Veh. Technol.,2007,56(6):3864-3878
    [22] J. Armstrong. OFDM for optical communications. J. Lightw. Technol.,2009,27(3):189-204
    [23] Y. L. Guennec, R. Gary. Optical frequency conversion for millimeter-wave ultra-wideband-over-fiber systems. IEEE Photon. Technol. Lett.,2007,19(13):996-998
    [24] R. Gu, S. Pan, X. Chen, et al. Influence of large signal modulation on photonic UWBgeneration based on electro-optic modulator. Opt. Exp.,2011,19(14):13686-13691
    [25] M. Jazayerifar, B. Cabon, J. A. Salehi. Transmission of multiband OFDM and impulse radioultra-wideband signals over single mode fiber. J. Lightw. Technol.,2008,26(13):2594-2603
    [26] F. Payoux, B. Charbonnier, S. Meyer. Ultra wideband over fibre transparent architecture forhigh-bit-rate home networks. Ann. Telecommun.,2008,63:455-462
    [27] R. Llorente, T. Alves, M. Morant, et al. Ultra-wideband radio signals distribution in FTTHnetworks. IEEE photonics tech. lett.,2008,20(11):945-946
    [28] S. Pan, J. Yao. A UWB over fiber system compatible with WDM-PON architecture. IEEEPhoton. Technol. Lett.,2010,22(20):1500-1502
    [29] Y. L. Guennec, A. Pizzinat. Low-cost transparent radio-over-fiber system for in-buildingdistribution of UWB signals. J. Lightw. Technol.,2009,27(14):2649-2657
    [30] N. Keiichi, M. hisanori, K. Shinsuke, et al. Approaching vehicle alert system for pedestriansusing UWB impulse radio. MHS2010,471-476
    [31] S. B. Constant, Y. Le Guennec, G. Maury, et al. Low-cost all-optical up-conversion of digitalradio signals using a directly modulated1550-nm emitting VCSEL. IEEE Photon. Technol.Lett.,2008,20(2):120-122
    [32] K. A. Aleksandra, P. Perry, P. L. Barry, et al. An IR-UWB photonic distribution system.2008,IEEE Photonics Technol. Lett.,20(22):1884-1886
    [33] M. P. Thakur, T. J. Quinlan, C. Bock.480-Mbps, bi-directional, ultra-widebandradio-over-fiber transmission using a1308/1564-nm reflective electro-absorption transducerand commercially available VCSELs. J. Lightw. Technol.,2009,27(3):266-272
    [34] S. E. Miller. Integrated Optics. Bell System Technical Journal,1969,48:2059
    [35]陈益新.集成光学三十年.上海:上海交通大学出版社,1999,15-30
    [36] J. Li, S. He. Broadband optical modulator of fiber type. Opt. exp.,2005,13(3):842-846
    [37] G. F. Lipscomb, R. Lytel, A. J. Ticknor. Organic thin films for photonic applications. Technic.Digest Series,1993,17(3):306-309
    [38] L. R. Dalton, Polymers for electro-optic modulator waveguides. Electrical and opticalpolymer systems, New York: Marcel Dekker,1998,140-156
    [39] S. W. Nalwa, S. Miyata. Nonlinear optics of organic molecules and polymers. Boca Raton FL:CRC Press,1997,18-25
    [40] D. L. Wise, G. E. Wnek, D. J. Trantolo, et al. Electrical and optical polymer systems. MarcelDekker, New York,1998,25-40
    [41] L. R. Dalton, A. W. Harper, A. Ren, et al. Polymeric electro-optic modulators: fromchromophore design to integration with semiconductor very large scale integrationelectronics and silica fiber optics. Ind. Eng. Chem. Res.,1999,38:8-33
    [42] C. M. Chen, Y. J. Yi, F. Wang, et al. Ultra-Long compact optical polymeric array waveguidetrue-time-delay line devices. IEEE J. Quant. Electro.,2010,46(5):754-761
    [43] S. S. Lee, A. H. Udupa, H. Erlig, et al. Demonstration of a photonically controlled RF phaseshifter. IEEE Microw. and Guided Wave Lett.,1999,9:357-359
    [44] D. H. Chang, H. Erlig, C. Zhang. Time stretching of102-GHz millimeter waves using novel1.55μm polymer electro optic modulator. IEEE Photon. Tech. Lett.,2000,12:537-539
    [45] A. Yacoubian, V. Chuyanov, S. M. Garner, et al. EO polymer-based integrated-opticalacoustic spectrum analyzer. IEEE J. Sel. Top. Quant. Electron.,2000,6:810-816
    [46] A. Yacoubian, V. Chuyanov, S. M. Garner, et al. Acoustic spectrum analysis using polymerintegrated optics In: Organic thin films for photonics applications. Washington DC: OpticalSociety of America,1999,5-25
    [47]谭志飞.集成光学.南京:东南大学出版社,1989,15-20
    [48] H. L. Ma, Y. Chen, M. Li, et al. Transient response of a resonator fiber optic gyro withtriangular wave phase modulation, Appl. Optic.,2010,49(32):6253-6263
    [49] D. Meglio, P. Lugli, R. Sabella. Analysis and optimization of InGaAsP electro-absorptionmodulators. IEEE, J. Quan. Electron.,1995,31:261-268
    [50] T. Ido, S. Tanaka, M. Suzuki. Ultra-high-speed multi-quantum-well electro-absorption opticalmodulators with integrated wave-guides. J. Lightw. Technol.,1996,14(9):2026-2034
    [51] H. Miyamoto, H. Ohta, K. Tabuse, et al. Evaluation of LiNbO3intensity modulator usingelectrodes buried in buffer layaer. Electron. Lett.,1992,28(11):976-977
    [52] L. Wooten, K. Kissa, A. Yi-Yan. A review of lithium niobate modulators for fiber-opticcommunications systems. IEEE Journal of Selected Topic in Quantum Electronics,2000,6(1):69-82
    [53] R. Dinu, D. Jin, G. Yu, et al. Environmental stress testing of electro–optic polymermodulators. J. Lightw. Technol.,2009,27:1527-1532
    [54] A. Chen, V. Chuyanov, H. Zhang. Low Vπ electro-optic polymer waveguide modulatorsusing the full potential of high μβ chromophores and a constant bias voltage. Proc. SPIE1998,1146-1158
    [55] P. Labbé, A. Donval, R. Hierle. Electro-optic polymer based devices and technology foroptical telecommunication. C. R. Physique,2002,3:543-554
    [56] L. N. Binh. Tilted traveling wave electrodes and impacts on high-speed operation ofintegrated electro-optic modulators: modelingand experimental demonstration. OpticalEngineering,2009,48(9):097005
    [57] D. Chen and H. R. Fetterman. Demonstration of110GHz electro-optic polymer modulators.Appl. Phys. Lett.,1997,70:3335-3337
    [58] B. M. Rahman, V. Haxha, et al. Grattan. Design optimization of polymer electroopticmodulator. J. Lightw. Technol.,2006,24:3506-3513
    [59] T. Gorman, S. Haxha, J. J. Ju. Ultra-high-speed deeply etched electrooptic polymermodulator with profiled cross section. J. Lightw. Technol.,2009,27:68-76
    [60] Y. Q. Shi, W. S. Wang, J. H. Beach. Fabrication and characterization of high speedpolyurethane-disperse red19integrated electro-optic modulators for analog systemapplications. IEEE. Quant. Electron.,1996,2(2):289-299
    [61] G. R. Mohlman. Optically nonlinear polymeric switches and modulators. Proc.SPIE,1990,1337:215-225
    [62] Y. Shi, C. Zhang, H. Zhang. Low(Sub-1-Volt) halfwave voltage polymeric electro-Opticmodulators achieved by controlling chromophore shape. Science,2000,288(7):119-122
    [63] H. Robinson, L. R. Dalton, A. W. Harper. The molecular and supramolecular engineering ofpolymeric electro-optic materials. Chemical Physics,1999,245(1):35-50
    [64] L. R. Dalton, W. H. Steier, B. H. Robinson. From molecules to opto-chips:organicelectro-optic materials. J. materials Chemistry,1999,9(9):1905-1920
    [65] W. H. Steier, A. Chen, S. Lee. Polymer electro-optic devices for integrated optics. ChemicalPhysics,1999,245(3):487-506
    [66] G. R. Mohlman. Optically nonlinear polymeric switches and modulators. Proc. SPIE,1990,1337:215-225
    [67] G. Girton, S. L. Kwiatkowski, G. F. Lipscomb.20GHz electro-optic polymer Mach-Zehndermodulator. Appl. Phys. Lett.,1991,58(16):1730-1732
    [68] C. Teng. Traveling wave polymer optical intensity modulator with more than40GHz of3-dBelectrical bandwidth, Appl. Phys. Lett.,1992,60(13):1538-1540
    [69] B. A. Smith, M. Jurich, W. E. Moemer. Polymeric electro-optic phase modulator. Proc SPIE,1994,2025:499
    [70] W. S. Wang, D. T. Chen.40GHz polymer electro-optic phase modulator. IEEE Photon. Lett.,1995,7(6):638-640
    [71] W. S. Wang, D. T. Chen. Optical heterodyne detection of60GHz electro-optic modulationfrom polymer waveguide modulators. Appl. Phys. Lett.,1995,67(13):1806-1809
    [72]刘子龙.聚合物电光调制器的研究:[博士学位论文],武汉:华中科技大学,2005
    [73] R. Song, W. H. Steier. Overlap integral factor enhancement using buried electrode structurein polymer Mach-Zehnder modulator. Appl. Phys. Lett.,2008,92:031103
    [74] Y. Enami, D. Mathine, C. T. Derose, et al. Peyghambarian. Hybrid cross-linkablepolymer/sol-gel waveguide modulators with0.65V half wave voltage at1550nm. Appl.Phys. Lett.,2007,91:093505
    [75] C. T. DeRose, D. Mathine, Y. Enami. Electrooptic ploymer modulator with single-mode tomultimode waveguide transitions. IEEE Photon. Technol. Lett.,2008,20(12);1051-1053
    [76] IEEE Standard definitions of terms for antennas. IEEE Std.145, New York, NY10017,1983
    [77] J. D.Kraus. Antennas: For All Applications3rd.北京:电子工业出版社,2008,490-680
    [78] S. Honda, M. Ito, H. Seki, et al. A disc monopole antenna with l:8impedance bandwidethand omnidircetional radiation pattem. In Proc. Int. Symp. Antennas Propagat., Sapporo,1992,1145-1148
    [79] T. Mike, R. L. Wolfson. Wideband arrayable planar radiator. U. S. parent5,319,377,1994
    [80] F. Fan, Z. Yan, T. Zhang, et al. Ultra-wideband planar monopole antenna with dual stopbands.Microwave Opt. Technol. Lett.,2010,52(1):138-141
    [81] S. Chamaani, S. A. Mirtaheri, K. Paran. Coplanar waveguide-fed ultra wideband planarmonopole antenna optimization. IET Microwaves, Antennas and Propagat.,2010,4(9):1264-1274
    [82] C. Ghbadi, J. Nourinia. A novel band-notched planar monopole antenna for ultrawidebandapplications. IEEE Antennas and Wireless Propagat. Lett.,2010,9:608-611
    [83] M. N. Moghadasi, H. Rousta, B. S. Virdee. Compact UWB planar monopole antenna. IEEEAntennas and Wireless Propagat. Lett.,2009,8:1382-1385
    [84] Z. Zhang, G. Fu, S. Gong, et al. Multiband planar monopole antenna for mobile handsets.Microwave Opt. Technol. Lett.,2010,52(11):2395-2397
    [85] R. Hatem, L. Aberbour, C. Craeye. On the radiation resistance of a planar monopole antennawith reduced groundplane. IEEE Antennas and Wireless Propagat. Lett.,2010,9:732-736
    [86] Y. B. Yang, F. S. Zhang, F. Zhang, et al. A novel compact CPW-fed planar monopole antennawith modified stair-style ground for ultra-wideband applications. Microwave and Opt.Technol. Lett.,2010,52(9):2100-2104
    [87] N. P. Agrawall, G. Kumar, K. P. Ray. Wide band planar monopole antennas. IEEE Trans.Antennas Propagat.,1998,46(2):294-295
    [88] E. Lee, P. S. Hall, P. Gardner. Compact wideband planar monopole antenna. Electron Lett.,1999,35(25):2157-2158
    [89] M. J. Ammann. Control of the impedance bandwith of wideband planar monopole antennasusig a beveling technique. Microwave Opt. Tech. Lett.,2001,30(4):229-232
    [90] Z. N. Chen, M. Y. Chia, M. J. Ammann. Optimization and comparison for broadbandmonopoles. IEE Proc. Microwave, Antennas Propagt.,2003,150(6):429-435
    [91] S. Y. Suh, W. L. Stutaman, W. A. Davis. A new ultra wideband printed monopole antenna: theplanar inverted cone antenna (PICA). IEEE Trans. Antennas propagate.,2004,52(5):1361-1365
    [92] Z. Kim, W. I. Son, W. G. Lim. Integrated planar monopole antenna with microstrip resonatorshaving band-notched characteristics. IEEE Trans. Antennas Propagat.,2010,58(9):780-784
    [93] J. Liang,C. C. Chiau, X. Chen, et al. Printed cireular disc monopole anterma. IEEE Eleetron.Lett.,2004,40(2):1246-1247
    [94] T. Yang, W. A. Davis. Planar half-disk antenna struetures for Ultra-Widebandcommunications. IEEE Trans. Antennas Propagat.,2004,3(20):2508-2511
    [95] J. Liang, C. C. Chiau, X. Chen, et al. Printed circular ring monopole Aantennas. Microwaveand Opt.Tech.Lett.,2004,45(5):372-375
    [96] W. S. Chen, S. C. Wu, K. N. Yang. A study of the printed heart monopole antenna for IEEE802.16a/UWB applications. IEEE Antennas Propagat. SymP, Albuquerque, Mexico, July2006:1685-1688
    [97] J. P. Kim, T. O. Yoon. Design of an ultra wide-band printed monopole antenna using FDTDand genetic algorithm. IEEE Microwave and Wireless Components Lett.,2005,15(6):395-397
    [98] K. Kiminami, A. Hirata. Double-sided Printed bow-tie antenna for UWB communications.IEEE Antennas and Wireless Propagat. Lett.,2004,3(1):152-153
    [99]昌庆江.Radio over Fiber宽带无线接入网络的关键技术研究:[博士学位论文],上海:上海交通大学,2009
    [100] Y. Chung, N. Dagli. An assessment of finite difference beam propagation method. IEEE J.Quan. Electron.,1990,26(8):1335-1339
    [101] J. A. Fleck, J. R. Morris. Time-Dependent propagation of high energy laser beams throughthe atmosphere. Appl. Phys.,1976,10:129-160
    [102] M. D. Feit, A. Fleck. Light propagation in graded-index optical fibers. App. Opt.,1978,17(24):3990-3998
    [103] G. R. Hadley. Transparent boundary condition for beam propagation. Opt. Lett.,1991,16:624-626
    [104] C. Vassallo, J. M. Keur. Comparison of a few transparent boundary conditions for finite-difference optical mode-solvers. J. Lightw. Technol.,1997,15(2):397-400
    [105] R. A. Soref, J. Schmidtchen, K. Petermann. Large single-mode rib waveguides in GeSi-Siand Si-on-SiO2. IEEE J. Quantum Electron.,1991,27(8):1971-1974
    [106] S. P. Pogossian, L. Vescan, A. Vonsovici. The single-mode condition for semiconductor ridgewaveguides with large cross section. J. Lightwave Technol.,1998,16(10):1851-1853
    [107] U. Fisher, T. Zinke, J. R. Kropp.0.1dB/cm waveguide losses in single-mode SOI ridgewaveguides. IEEE Photon. Technol. Lett.,1996,8(5):647-648
    [108] B. Li, J. Vemagiri, R. Dinu. Design and modeling of traveling-wave electro-optic polymermodulator for ultrahigh speed applications. J. Lighw. Technol.,2009,27(5):606-611
    [109] C. T. DeRose, D. Mathine, Y. Enami, et al. Norwood. electrooptic polymer modulator withsingle-mode to multimode waveguide transitions. IEEE Photon Technol. Lett.,2008,20:1051-1053
    [110] C. Zhang, L. R. Doltan. Low Vπ Electrooptic Modulators from CLD-1: ChromophoreDesign and Synthesis, Material Processing, and Characterization. Chem. Mater.,2001,13:3043-3050
    [111] A. K. Verma, A. Bhupall. Dielectric loss of multilayer microstrip line. Opt. Technol. Lett.,1998,17(6):368-370
    [112] R. Song, H. Song, W. H. Steier, et al. Analysis and demonstration of Mach–Zehnder polymermodulators using in-plane coplanar waveguide structure. IEEE J. Quant. Electron.,2007,43(8):633-639
    [113] E. Chen, S. Y. Chou. Characteristics of coplanar transmission lines on multilayer substrates:modeling and experiments. IEEE Trans. Microwave Theory Tech.,2007,45(6):939-945
    [114] R. Mittra, T. Itoh. A new technique for the analysis of the dispersion characteristics ofmicrostrip lines. IEEE Trans Microwave Theory Tech.,1971,19:47-56
    [115] S. M. Musa, M. N. Sadiku. Calculating the capacitance of shielded microstrip lines. Excerptfrom the Proceedings of the COMSOL Conference, Boston,2007
    [116] M. E. Davies, E. W. Williams, A.C. Celestini. Finite boundary corrections to the coplanarwaveguide analysis. IEEE Trans. Microwave Theory Tech.,1973,21:549-546
    [117] T. Jang, J. Choi, S. Lim. Compact coplanar waveguide (CPW)-fed zeroth-order resonantantennas with extended bandwidth and high efficiency on vialess single layer. IEEE Trans.Antennas Propagat.,2011,59(2):363-372
    [118] S. K. Koul, B. H. Bhat. Transmission Lines and coplanar strips with anisotropic substratesfor MIC electrooptic modulator, and SAW Application. IEEE Trans Microwave TheoryTech.,1983,31:1051-1059
    [119] T. A. Driscoll, L. N. Trefethen. Schwarz-Christoffel Mapping. London and New York:Cambridge University Press,2002,30-45
    [120] J. Svacina. Analysis of multilayer microstrip lines by a conformal mapping method. IEEETrans. Microwave Theory Tech.,1992,40:769-772
    [121] M. Koshiba, Y. Tsuji, M. Nishio. Finite-element modeling of broad-band traveling-waveoptical modulators. IEEE Trans. Microwave Theory Tech.,1999,47(9):1627-1633
    [122] H. A. Wheeler. Transmission line properties of parallel wide strips by a conformal mapping approximation. IEEE Trans. Microwave Theory Tech.,1964, MTT-12:280-283
    [123] H. A. Wheeler. Transmission line properties of parallel strips separated by a dielectric sheet.IEEE Trans. Microwave Theory Tech.,1965, MTT-13:172-175
    [124] G. W. Slade, K. J. Webb. Computation of characteristic impedance for multiple microstriptransmission lines using a vector finite element method. IEEE Trans. Microwave TheoryTech.,1992,40(1):34-40
    [125] Y. Wen, X. X. Zhang, H. D. Liu, et al. Investigation of multilayer microstrip electrode for anasymmetric Mach-Zehnder modulator. Opt. Quant. Electron.,2009,41:1007-1017
    [126] Y. Wen, X. X. Zhang, H. D. Liu, et al. Investigation of velocity and impedance matching forElectro-Optic modulator. Optical Engineering,2011,50(7):071106
    [127] D. A. Rowe, B. Y. Lao. Numerical analysis of shielded coplanar waveguides. IEEE Trans.Microwave Theory Tech.,1983,31(11):911-915
    [128] R. C. Johnson. Antenna Engineering Handbook3rd. New York: McGraw-Hill,1993,290-350
    [129]丁婕琛.新型超宽带天线的研究、设计和制作:[博士学位论文],浙江:浙江大学,2008
    [130]胡树豪.实用射频技术.北京:电子工业出版社,2004,183-191
    [131] C. Drentea.新型无线电通信接收机.成都:成都电讯工程学院出版社,1988,7-9
    [132]陈艳华,李朝晖,夏玮.ADS应用详解:射频电路设计与仿真.北京:人民邮电出版社,2008,263-283
    [133] J. S. Hong and M. J. Lancaster. Microstrip filters for RF/microwave applications. New York:Wiley,2001,38-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700