出生后大鼠卵巢中卵子再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来有研究报道说明出生后的幼年和成年小鼠卵巢表面上皮(ovariansurface epithelium,OSE)有生殖干细胞(germline stem cells,GSCs)和卵泡更新过程。这些报道引发了许多质疑和争论。我们对大鼠卵巢进行了类似研究以检查大鼠卵巢内是否也具有GSCs和卵泡更新过程。
     我们选择大鼠的vasa类似物RVLG(rat vasa-like gene)N端的部分片段作为抗原制备抗体识别大鼠卵巢中的生殖细胞。首先克隆了RVLG基因的cDNA5'端约627 bp片段,序列测定结果表明,我们所克隆的RVLG cDNA片段比GenBank中报道的大鼠RVLG cDNA(NM_001077647)相应部位多60 bp。与大鼠RVLG基因序列(NW_001084795.1)比对后确定所多出来的60 bp系第7内含子的5'端和第8内含子的3'端两处选择性剪接的结果,导致第7外显子3'端多出45 bp,第9外显子5'端多出15bp。进一步克隆RVLG cDNA全长序列后发现第一次克隆中出现的60 bp只保留了第7外显子3'端的45 bp,而没有第9外显子5'端的15 bp。将该片段插入原核表达载体pGEX-4T1,转入大肠杆菌BL21(DE3)中成功地诱导表达了GST-pRVLG融合蛋白,目的蛋白占菌体总蛋白的10%以上。用纯化后的GST-pRVLG融合蛋白免疫昆明(KM)小鼠,最后给小鼠腹腔注射S180细胞制备了抗RVLG的腹水多克隆抗体。Westernblot鉴定RVLG腹水多克隆抗体的特异性表明制备的抗体可特异性地识别RVLG蛋白。
     我们研究了幼年和成年期大鼠卵巢表面是否存在可以维持新生卵子发生的GSCs,以及新生卵子发生所需的一些减数分裂标记基因的表达情况。卵巢组织切片观察表面上皮没有找到大的卵圆形细胞,免疫组织化学检查卵巢皮层也没有找到RVLG阳性细胞及RVLG、BrdU双阳性细胞。RT-PCR检测出生后大鼠卵巢,也没有发现减数分裂特异性基因Scp1、Scp3和Spo11的转录。Westernblot和免疫组织化学法均未能检测到减数分裂进入标记DMC1、STRA8及SCP3。我们的实验未能观察到成年大鼠卵巢上皮有处于分裂期的生殖细胞和进入减数分裂的细胞,不能支持出生后的大鼠卵巢内存在GSCs和新的卵子发生的猜想。
Recently several reports provided evidences that indicate ovarian surface epithelium(OSE) of juvenile and adult mice contains germline stem cells(GSCs) that sustain postnatal follicular renewal.But their reports have met with skepticism and doubts.Here we carried out some relevant researches in rat to examine whether GSCs and neo-oogenesis exist in adult rat ovaries.
     In order to identify germ cells in ovary,we prepared a mouse anti-RVLG polyclonal antibody.A 627-bp cDNA fragment of RVLG(rat vasa-like gene) was cloned and sequence analysis showed that it was 60-bp longer than that released in the GenBank(NM_001077647).Aligment with the RVLG-containing genomic DNA sequence(NW_001084795.1) indicated that 45-bp fragment is located at the 3' of exon 7,other 15-bp at the 5' of exon 9,both resulting from an alternative splicing of the RVLG pre-mRNA in its intron 7 and intron 8.To further study the alternative splicing pattern in the whole ORF,we cloned the full-length of RVLG cDNA.Sequence analysis revealed the existence of the 45-bp,but the other 15-bp is absent.
     The R VLG cDNA fragment was inserted into the prokaryotic expression vector pGEX-4T-1,and transformed into E.coli BL21(DE3) to express the GST-pRVLG fusion protein.The GST-pRVLG fusion protein was expressed in E.coli BL21 (DE3) at a high level which accounts for more than 10%of the total bacterial cellular protein.The mouse anti-rat RVLG polyclonal antibody was generated by immunizing KM mouse with purified GST-pRVLG fusion protein followed by celiacly injecting the mouse with S180 cells.The antibody recognizes RVLG protein specifically and its titer is about 1:20000.
     We analyzed the presence of GSCs in the ovarian surface epithelium(OSE) and the expression of meiotic marker genes,which are required for neo-oogenesis, in juvenile and young adult rat ovaries.No large ovoid cells were observed in the OSE,and the RVLG expressing,BrdU incorporating germ cells were not identified in the postnatal ovarian cortex by immunohistochemical analysis.Transcription of SCP1,SCP3 and SPO11,three early meiotic-specific and oogenesis-associated genes,was undetectable in postnatal rat ovaries using RT-PCR.The early meiocytes expressing meiotic entry markers such as DMC1,STRA8 and SCP3, were not observed using Western blotting and immunohistochemical methods in juvenile and young rat ovarian cortex.Taken together,we didn't observe proliferating germline cells and meiosis in the postnatal rat ovary.Thus our data didn't support the postulation that GSCs and neo-oogenesis may exist in the postnatal rat ovary.
引文
[1]Rocak S,Linder P.DEAD-box proteins:The driving forces behind RNA metabolism.Nat Rev Mol Cell Biol,2004,5(3):232-241.
    [2]Schu P,Bach T,Wieschaus E.Maternal effect mutations altering the anterior-posterior pattern of the Drosophila embryo.Rouxps Arch Dev Biol,1986,195(5):302-317.
    [3]Komiya T,Itoh K,Ikenishi K,Furusawa M.Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis.Dev Biol,1994,162:354-363.
    [4]Fujiwara Y,Komiya T,Kawabata H,Sato M,Fujimoto H,Furusawa M,Noce T.Isolation of a DEAD- family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage.Proc Natl Acad Sci USA,1994,91(25):12258-12262.
    [5]Mochizuki K,Nishimiya-Fujisawa C,Fujisawa T.Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra.Dev Genes Evol,2001,211:299-308.
    [6]Nakao H.Isolation and characterization of a Bombyx vasa-like gene.Dev Genes Evol,1999,209:312-316.
    [7]柴春利,钱平,关国平,徐伟,李文学,夏庆友,鲁成.家蚕VASA基因的结构及表达型研究.蚕业科学,2006,32(4):469-476.
    [8]Chang CC,Dearden P,Akam M.Germ line development in the grasshopper Schistocerca gregaria:vasa as a marker.Dev Biol,2002,252:100-118.
    [9]Fabioux C,Huvet A,Lelong C.Oyster vasa-like gene as marker of the germline cell development in Crassost rea gigas.Biochem Biophys Res Commun,2004,320:592-598.
    [10]Tsunekawa N,Naito M,Sakai Y.Isolationof chicken vasa homolog gene and tracing the origin of primordial germ cells.Development,2000,127:2741-2750.
    [11]Castrillo DH,Quade BJ,Wang TY,Quigley C,Crum CP.The human VASA gene is specifically expressed in the germ cell lineage.Proc Natl Acad Sci USA,2000,97:9585-9590.
    [12]吕道远,宋平,陈云贵,彭茂宇,桂建芳.黄鳝性腺自然逆转过程中vasa基因的表达分析.动物学报,2005,51(3):469-475.
    [13]陈云贵,叶鼎,宋平,吕道远,桂建芳.金鱼配子发生中vasa基因的表达和分布特征.动物学研究,2005,26(2):179-183.
    [14]徐红艳,彭金霞,桂建芳,洪云汗.银鲫种系细胞标记分子Vasa:cDNA克隆及其抗体制备.动物学报,2005,51(4):732-742.
    [15]Yoon C,Kawakami K,Hopkins N.Zebrafish vasa homolog RNA is localized to the cleavage planes of 2-and 4-cell-stage embryos and its expressed in the primordial germ cells.Development,1997,124:3157-3166.
    [16]Kobayashi T,Kajiura Kobayashi H,Nagahama Y.Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia Oreochromis niloticus. Mechanisms of Development, 2000, 99: 139-142.
    [17] Komiya T, Tangawa Y. Clonoing of a gene of the DEAD box protein family which is specifically expressed in germ cells in rat. Biochem Biophys Res Commun, 1995, 207 (1): 405-410.
    [18] Yoon C, Kawakami K, Hopkins N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2-and 4-cell-stage embryos and is expressed in the primordial germ cells. Development, 1997, 124(16): 3157-3165.
    [19] Liang L, Diehl-Jones W, Lasko P. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development, 1994,120 (5): 1201-1211.
    [20] Knaut H, Pelegri F, Bohmann K, Schwarz H, Volhard CN. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. Cell Biology, 2000, 149(4): 875-888.
    [21] Raz E. The function and regulation of rasa-like genes in germ-cell development. Genome Biol, 2000, 1(3): 1-6.
    [22] Tanaka SS, Toyooka Y, Akasu R. The mouse homolog of Drosophila vasa is required for the development of male germ cells. Gene Development, 2000, 14 (7): 841-853.
    [23] Noce T, Okamoto-Ito S, Tsunekawa N. Vasa homolog genes in mammalian germ cell development. Cell Struct Funct, 2001,26: 131-136.
    [1]K(o|¨)hler G,Milstein C.Continuous cultures of fused cells secreting antibody of predefined specificity.Nature,1975,256(5517):495-497.
    [2]巩薇,卫礼,贺争鸣.鼠痘病毒抗体制备方法的研究.中国实验动物学杂志,2001,11(1):41-43.
    [3]吕琦,邓双胜,马岚.一种大量制备鼠源性多克隆抗体的方法.云南大学学报(自然科学版),2006,28(6):544-546.
    [4]邓瑞春,张明伟,白云秀,汪劲松,毛宁.一种新的制备多克隆抗体的方法.生物技术通讯,2001,12(1):34-35.
    [5]杨晨晨,张蓓,王俊芳,张春桃,王俨,许晏,王星,张静萍,张琰,温浩,林仁勇.抗泡球蚴重组Em18抗原多克隆抗体的纯化与鉴定.新疆医科大学学报,2007,30(4):339-342.
    [6]Fujiwara Y,Komiya T,Kawabata H,Sato M,Fujimoto H,Furusawa M,Noce T.Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage.Dev Bio,1994,91(25):12258-12262.
    [1] Borum K. Oogenesis in the mouse. A study of the origin of the mature ova. Exp Cell Res, 1967, 45(1): 39-47.
    [2] Peters H, Crone M. DNA synthesis in oocytes of mammals. Arch Anat Microsc Morphol Exp, 1967, 56(3): 160-170.
    [3] Rudkin GT, Griech HA. On the persistence of oocyte nuclei from fetus to maturity in the laboratory mouse. J Cell Biol, 1962, 12: 169-175.
    [4] Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res, 1951, 6: 63-109.
    [5] David GF, Anand Kumar TC, Baker TG. Uptake of tritiated thymidine by primordial germinal cells in the ovaries of the adult slender loris. J Reprod Fertil, 1974,41(2): 447-451.
    [6] Duke KL. Ovogenetic activity of the fetal-type in the ovary of the adult slow loris, Nycticebus coucang. Folia Primatol(Basel), 1967,7: 150-154.
    
    [7] Ioannou JM. Oogenesis in adult prosimians. J Embryol Exp Morphol, 1968,17: 139-145.
    [8] Telfer EE. Germline stem cells in the postnatal mammalian ovary: a phenomenon of prosimian primates and mice? Reprod Biol Endocrinol, 2004, 2:24.
    [9] Gosden RG, Laing SC, Felicio LS, Nelson JF, Finch CE. Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biol Reprod, 1983, 28: 255-260.
    [10] Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 2004,428: 145-150.
    [11] Johnson J, Bagley J, Gregor B. Oocyte Generation in Adult Mammalian Ovaries by Putative Germ Cells in Bone Marrow and Peripheral Blood. Cell, 2005,122: 303-315.
    [12] Kerr JB, Duckeet R, Myers M. Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction, 2006, 132: 95-109.
    [13] Zou K, Yuan Z, Yang ZJ, Luo HC, Sun KJ, Zhou L, Xiang J, Shi LJ, Yu QS, Zhang Y, Hou RY, and Wu J. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nature cell biology, 2009,11: 631-636.
    [14] Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature, 2006,441: 1109-1114.
    [15] Veitia RA, Gluckman E, Fellous M, and Soulier J. Recovery of female fertility after chemotherapy, irradiation and bone marrow allograft: further evidence against massive oocyte regeneration by bone marrow-derived germline stem cells. Stem Cells, 2007,25: 1334-1335.
    [16] Lee HJ, Selesniemi K, NiikuraY, Niikura T, Klein R, Dombkowski DM, Tilly JL. Bone Marrow Transplantation Generates Immature Oocytes and Rescues Long-Term Fertility in a Preclinical Mouse Model of Chemotherapy-Induced Premature Ovarian Failure. Journal of clinical oncology, 2007, 25: 3198-3204.
    [17] Bukovsky A, Svetlikova M, Caudle MR.Oogenesis in cultures derived from adult human ovaries. Reproductive Biology and Endocrinology, 2005, 3:1-17.
    [18] Greenfeld C, Flaws JA. Renewed debate over postnatal oogenesis in the mammalian ovary. Bioessays, 2004, 26(8): 829-832.
    [19] Telfer EE, Gosden RG, Byskov AG, Spears N, Albertini D, Andersen CY, Anderson R, Braw-Tal R, Clarke H, Gougeon A, McLaughlin E, McLaren A, McNatty K, Schatten G, Silber S, Tsafriri A. On regenerating the ovary and generating controversy. Cell, 2005, 122(6): 821-822.
    [20] Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult humans ovaries. Reproductive Biology and Endocrinology, 2004, 2: 1-30.
    [21] Bukovsky A, Michael R, Caudle, Wimalasena J, Ayala ME, Dominguez R. Oogenesis in Adult Mammals, Including Humans. Endocrine, 2005, 26(3): 301-316.
    [22] Liu YF, Wu C, Lyu QF, Yang DZ, Albertini DF, Keefe DL, Liu L. Germline stem cells and neo-oogenesis in the adult human ovary. Developmental Biology, 2007, 306: 112-120.
    [23] de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M,Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev, 2005,19: 1376-1389.
    [24] Paredes A, Garcia-Rudaz C, Kerr B, Tapia V, Dissen GA, Costa ME, Cornea A, Ojeda SR. Loss of synaptonemal complex protein-1, a synaptonemal complex protein, contributes to the initiation of follicular assembly in the developing rat ovary. Endocrinology, 2005, 146(12): 5267-5277.
    [25] Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol, 2006, 173: 497-507.
    [26] Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell, 2000, 5: 73-83.
    [27] Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science, 2002, 296: 1115-1118.
    [28] Baudat F, Manova, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell, 2000, 6: 989-998.
    [29] Romanienko PJ, Camerini-Otero RD. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell, 2000, 6: 975-987.
    [30] Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmcl, a germline-specific RecA homolog. Mol Cell, 1998,1: 697-705.
    [31] Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmcl is required for homologous chromosome synapsis during meiosis. Mol Cell, 1998, 1:707-718.
    
    [32] Hunt PA, Hassold TJ. Sex matters in meiosis. Science, 2002,296: 2181-2183.
    [33] Menke DB, Koubova J, Page DC. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev Biol, 2003, 262: 303-312.
    [34] Bullejos M, Koopman P. Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol Reprod Dev, 2004, 68: 422-428.
    [35] Cohen P, Pollard JW. Regulation of meiotic recombination and prophase I progression in mammals. Bioessays, 2001, 23(11): 996-1009.
    [36] Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt Ans MM, Page DC. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci USA, 2008, 105: 14976-14980.
    [37] Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nature Genetics, 2006, 38: 1430 - 1434.
    [38] Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C. A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBOJ, 1992,11:5091-5100.
    [39] Lammers JH, Offenberg, HH, van Aalderen M, Vink AC, Dietrich AJ, Heyting C. The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Mol Cell Biol, 1994, 14(2): 1137-1146.
    [40] Ollinger R, Alsheimer M, Benavente R. Mammalian protein SCP1 forms synaptonemal complex-like structure in the absence of meiotic chromosomes. Mol Biol Cell, 2005,16: 212-217.
    [41] Romanienko PJ, Camerini-Otero RD. The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell, 2000, 6: 975-987.
    [42] Novak I, Lightfoot DA, Wang H, Eriksson A, Mahdy E, Hoog C. Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells, 2006,24:1931-1936.
    [43] Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell, 2007, 12(2): 195-206.
    [44] Honda A, Hirose M, Hara K, Matoba S, Inoue, K, Miki H, Hiura H, Kanatsu-Shinohara M, Kanai Y, Kono T, Shinohara T, Ogura A. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc Natl Acad Sci USA, 2007, 104(30): 12389-12394.
    [1] Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: Evidence for accelerated loss and adult ultimate exhaustion. J Clin Endocrinol Metab, 1987, 65: 1231-1237.
    
    [2] Lin H. The Tao of stem cells in the germline. Annu Rev Genet, 1997, 31: 455-491.
    
    [3] Sprading AH, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature, 2001, 414: 98-104.
    
    [4] Lin H. The stem-cell niche theory: lessons from flies. Nat Rev Genet, 2002, 3: 931-940.
    [5] Arai H. On the postnatal development of the ovary (albono rat), which especial reference to the number of ova. Am J Anat, 1920, 27: 405-462.
    
    [6] Davenport CB. Reegeneration of ovaries in mice. J Exp Zool, 1925,42: 1-12.
    [7] Pearl R, Schoppe WE. Studies on the physiology of reproduction in the domestic fowl. J Exp Zool, 1921,34:101-18.
    
    [8] Allen E. Ovogenesis during sexual maturity. Am J Anat, 1923, 31:4 39-70.
    [9] Parkes AS, Fielding U, Brambell WR. Ovarian regenereration in the mouse after complete double ovariectomy. Proc Roy Soc London Ser B, 1927,101: 328-354.
    [10] Morris MA. Pregnancy following removal of both ovaries and tubes. Boston Med Surg J, 1901,144: 86-87.
    
    [11] Zuckerman S. The number of oocytes in the mature ovary. Rec Prog Horm Res, 1951, 6: 63-109.
    
    [12] Rudkin GT, Griech HA. On the persistence of oocyte nucleifrom fetus to maturity in the laboratory mouse. J. Cell Biol, 1962, 12: 169-175.
    [13] Borum K. Oogenesis in the mouse. A study of the origin of themature ova. Exp Cell Res, 1967,45:39-47.
    [14] Peters H, Crone M. DNA synthesis in oocytes of mammals. Arch Anat Microsc Morphol Exp, 1967,56:160-170.
    [15] Pansky B, Mossman HW. The regenerative capacity of the rabbit ovary. Anat Rec, 1953, 116: 19-40.
    
    [16] Vermande-Van EG Neo-ovogenesis in the adult monkey. Anat Rec, 1956, 125: 207-224.
    [17] Artem'eva NS. Regenerative capacity of the rat ovary after compensatory hypertrophy. Bull Exp Biol Med, 1961, 51: 76-81.
    [18] Duke KL. Ovogenetic activity of the fetal-type in the ovary of the adul slow loris. Nycicebus coucang, 1967,7: 150-154.
    
    [19]Loannou JM. Oogenesis in adult prosimians. J Embryol Exp Morphol, 1968, 17: 139-145.
    [20] Butler H, Juma MB. Oogenesis in an adult prosimian. Nature, 1970,226: 552-553.
    [21] David GF, Anand Kumar TC, Baker TG Uptake of tritiated thymidine by primordial germlinal cells in the ovaries of the adult slender loris. J Reprod Fertil, 1974,41: 447-451.
    [22] Bukovsky A, Keenan JA, Caudle MR, Wimalasena J, Upadhyaya NB, Van Meter SE. Immunohistochemical studies of the adult human ovary: possible contribution of immune and epithelial factors to folliculogenesis. Am J Reprod Immunol, 1995, 33: 323-340.
    [23] Bukovsky A, Caudle MR, Svetlikova M, and Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human's ovaries. Reproductive Biology and Endocrinology, 2004, 2: 1-30.
    [24] Bukovsky A, Michael R, Caudle MR, Wimalasena J, Ayala ME, and Dominguez R. Oogenesis in Adult Mammals, Including Humans. Endocrine, 2005,26: 1-16.
    [25] Bukovsky A, MartaSvetlikova, MichaelRCaudle. Oogenesis in cultures derived from adult human ovaries. Reproductive Biology and Endocrinology, 2005, 3: 1-17.
    [26] Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature, 2004,428: 145-150.
    [27] Johnson J,Bagley J, Gregor B. Oocyte Generation in Adult Mammalian Ovaries by Putative Germ Cells in Bone Marrow and Peripheral Blood. Cell, 2005,122: 303-315.
    [28] Kerr JB, Duckeet R, Myers M. Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproductiond and Fertility, 2006, 1470-1626.
    [29] Liu YF, Wu C, Lyu Q, Albertini DF, Keefe DL, Liu L. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol, 2007, 306: 112-120.
    [30] Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature, 2006,441:1109-1114.
    [31] Lee HJ, Selesniemi K, Niikura Y, Niikura T, Klein R, Dombkowski DM, Tilly JL. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol, 2007, 25(22): 3198-3204.
    [32] Veitia RA, Gluckman E, Fellous M, Soulier J. Recovery of female fertility after chemotherapy, irradiation and bone marrow allograft: further evidence against massive oocyte regeneration by bone marrow-derived germline stem cells. Stem Cells, 2007, 25: 1334-1335.
    [33] Skaznik-Wikiel M, Tilly JC, Lee HJ, Niikura Y, Kaneko-Tarui T, Johnson J, Tilly JL. Serious doubts over "Eggs Forever?" Differentiation, 2007, 75: 93-99.
    [34] Johnson J, Skaznik-Wikiel M, Lee HJ, Niikura Y, Tilly JC, Tilly JL. Setting the record straight on data supporting postnatal oogenesis in female mammals. Cell Cycle, 2005, 4: 1471-1477.
    
    [35] Tilly JL, Johnson J. Recent arguments against germ cell renewal in the adult human ovary. Cell Cycle, 2007, 6: 879-883.
    [36] Byskov AG, Faddy MJ, Lemmen JG, Andersen CY. Eggs forever? Differentiation, 2005, 73: 438-446.
    [37] Bazer FW. Strong science challenges conventional wisdonrnew perspectives on ovarian biology. Reprod Biol Endocrinol, 2004, 2: 28.
    [38] Jennifer Couzin. Textbook rewrite? adult mammal may produe eggs after all. Science, 2004, 303:1593.
    [39] Feng HL, Han YB, Hershlag A, Yang H. New hope for infertility therapy: fabricating gametes from stem cells. Arch Androl, 2006, 52(4): 233-238.
    [40] Kayisli, Umit A, Seli, et al. Stem cells and fertility: what does the future hold? Obstetrics & Gynecology, 2006, 18(3): 338-343.
    [41 Manipalviratn S, Huang A, Decherney AH. Future of infertility treatment. Int Surg, 2006, 91 (5 Suppl): S3-14.
    [42] Bukovsky A, Copas P, Virant-Klun I. Potential new strategies for the treatment of ovarian infertility and degenerative diseases with autologous ovarian stem cells. Expert Opin Biol Ther, 2006, 6: 341-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700