决明子配方颗粒制备及提取过程动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
决明子是临床上具有降脂、降压、通便、明目等功效的常用中药,本论文对其配方颗粒的制备工艺、药理药效、制备过程中成分的变化规律以及提取过程的动力学机理进行研究。
     (1)本实验首先建立了决明子总蒽醌的紫外-可见分光光度测定方法,该方法简便、准确、可靠。以总蒽醌为考察指标,用正交试验设计结合单因素试验优化了决明子水提、乙醇提取和微波辅助-乙醇提取工艺。比较了不同提取溶剂最佳工艺下决明子总蒽醌的提取率,乙醇提取为94.91%,水提为27.55%。比较了乙醇提取过程中采用不同加热方式对决明子总蒽醌提取率的影响,其中普通加热方式的乙醇回流提取为94.91%,微波辅助提取为79.11%。选择普通加热方式下乙醇回流提取作为决明子配方颗粒制备的提取方法,其最佳提取工艺为70%乙醇,提取温度80℃,提取1.5小时,液固比8,药材粒度40目,提取2次。
     (2)本实验得到了决明子总蒽醌大孔树脂纯化的工艺路线。从AB-8、D-101-I、DA-201、DM-130、DM-301、NKA-Ⅱ、NKA-9七种大孔树脂中筛选出DM-130大孔树脂作为纯化决明子总蒽醌的树脂。分别从pH值、提取液浓度、流速、不同种类的洗脱剂、不同浓度乙醇洗脱剂等方面考察并优化了该树脂的吸附和洗脱工艺条件。最佳的吸附、解吸条件是:提取液pH值7-8、提取液浓度0.4g药材/mL、吸附流速2BV/h、上柱液体积与树脂重量比为10:1、洗脱液为0.02500M氢氧化钠-70%乙醇溶液、洗脱流速2BV/h。在最佳纯化工艺条件下,决明子总蒽醌的转移率可达到近60%,并且工艺稳定。
     (3)本实验建立了决明子乙醇提取物浸膏的喷雾、真空和冷冻干燥工艺,比较了干燥后产品的吸湿性和溶解性,并对喷雾、真空和冷冻三种干燥工艺下决明子配方颗粒的蒽醌含量进行测定。在吸湿性上,以冷冻干燥颗粒最易吸湿,其次是真空干燥,喷雾干燥比较稳定。在溶解性上,以喷雾干燥颗粒最易溶解,其次是冷冻干燥,真空干燥颗粒不易溶解。真空干燥和冷冻干燥的总蒽醌和结合蒽醌含量相当并高于喷雾干燥,游离蒽醌以喷雾干燥最高。
     (4)本实验研究了决明子总蒽醌在其配方颗粒制备过程中不同阶段的转移率和原药材及不同干燥工艺下配方颗粒的成分变化规律。决明子总蒽醌从原药材到配方颗粒制备过程中各阶段的转移率分别为:醇提液为94.91%,醇沉后为68.15%,真空干燥后为69.19%,冷冻干燥后为62.35%,喷雾干燥后为59.68%。其中总蒽醌在醇沉阶段的损失最大,损失率可达近30%,各干燥工艺阶段总蒽醌的损失以喷雾干燥最大,其次是冷冻干燥,真空干燥几乎没有影响。采用高效液相色谱法对原药材及三种干燥工艺配方颗粒的指纹图谱进行保留时间的相似度评价,原药材、真空干燥配方颗粒和冷冻干燥配方颗粒的相似度在0.98以上,喷雾干燥的相似度为0.7046,真空干燥和冷冻干燥对成分的破坏较小,喷雾干燥对成分有一定的破坏作用。
     (5)本实验选择通便和调脂两个药理指标,研究不同干燥工艺下决明子配方颗粒与传统水煎液的药效差别。在对正常小鼠的肠推进实验中,三种配方颗粒均能保留饮片促进正常小鼠肠运动的功能,且作用略优于传统饮片。在对便秘模型小鼠的实验中,决明子醇提物经喷雾、冷冻、真空干燥获得的三种配方颗粒均能保留饮片的泻下功能,并有优于传统水提液的趋势,其中以冷冻干燥的效果最好,其次是喷雾干燥和真空干燥。在对高脂血症模型小鼠的实验中,三种配方颗粒均能保留饮片的降血脂功能,即具有降低TC、TG和LDL-C,升高HDL-C的功效,并有优于传统水提液的趋势,其中以冷冻干燥的效果最好,其次是喷雾干燥和真空干燥。考虑到冷冻干燥技术的不足及三种配方颗粒的性状、蒽醌的含量,选择喷雾干燥作为决明子配方颗粒制备的干燥工艺。
     (6)根据中药材提取的非稳态扩散过程,以Fick第二扩散定律为基础建立了决明子总蒽醌和大黄酚乙醇回流提取的一级一项动力学数学模型。该模型能较好地描述决明子总蒽醌和大黄酚提取的动态过程。决明子总蒽醌和大黄酚的提取均符合一级动力学方程特征,说明该提取过程属于内部扩散控制的相内反应过程。计算获得了决明子总蒽醌和大黄酚提取的表观速率常数、相对萃余率、活化能及半衰期等一系列有价值的动力学参数。在两区质量传递模型的基础上对一级一项动力学方程进行优化,建立了一级两项动力学方程,数据拟合效果较好,快速项和慢速项的相应参数随温度变化有一定的物理意义。一级两项动力学方程能更好地反映决明子总蒽醌和大黄酚提取过程的动力学机制,对决明子蒽醌类成分的提取有重要的理论意义。
     本论文在中医药学基本理论的指导下开展实验研究,将分析化学、物理化学、中药化学、中药制剂、中药药理、统计学等多个学科领域相结合,探讨了决明子配方颗粒制备工艺、成分变化规律和提取过程的动力学机理等内容,为配方颗粒的研究提供了实践和理论依据。
With lowering lipid and blood pressure, catharsis, eyesight and other effects, Semen Cassiae is a traditional Chinese medicine commonly used in clinical. In this paper, preparation technology of Semen Cassiae prescription granules, pharmacological activities of granules, changes of composition during preparation process and kinetic mechanism of the extraction process were studied.
     (1) In this part, the UV-vis spectrophotometric determination method on total anthraquinones of Semen Cassia was established. This method is simple, accurate and reliable. Indicated by the content of total anthraquinones, water extraction, ethanol extraction and microwave-assisted extraction were optimized respectively by orthogonal tests based on their single factor tests. The yields of total anthraquinones by the best extraction technologies of the different solvents extraction methods were compared. Ethanol extraction is the best, the extraction rate is 94.91%, the rate of water extraction is 27.55%. The yields of total anthraquinones by different heating modes in ethanol extraction process were compared. The extraction rate of ethanol extraction by normal heating mode is 94.91%, the rate of microwave-assisted extraction is 79.11%. Ethanol extraction by normal heating mode is choosed as the extraction method in the preparation process of Semen Cassiae prescription granules. The optimum extraction process is as follows:extraction temperature was 80℃, reflux extraction with 8-fold 70% alcohol for 2 times,1.5h every time, the granularity of Semen Cassiae power was 40 mesh sieve.
     (2) The route of separation and purification of total anthraquinones in Semen Cassiae by macroporous resin was obtained. In this part, from the AB-8, D-101-I, DA-201, DM-130, DM-301, NKA-II and NKA-9 seven macroporous resins, DM-130 was choosed to separate and purify the total anthraquinones of Semen Cassiae. Extract concentration, pH, flow rate, different eluants, eluants of different ethanol concentration and other factors were investigated. The adsorption and desorption crafts of DM-130 macroporous resin were optimized. The appropriate adsorption conditions is:the extract concentration 0.4g/mL, pH 7~8, flow rate 2BV/h, the liquid volume and the resin weight ratio of 10:1; the appropriate desorption conditions is:the 70% ethanol used as eluant and the concentration of NaOH is 0.025 mol/L, and the flow rate is 2BV/h. By DM-130 macroporous resin confirmatory test under the best adsorption and desorption conditions, the total anthraquinones of Semen Cassiae transfer rate can reach nearly 60%, and the process is stable.
     (3) The technologies of spray drying, vacuum drying and freeze drying was established. The water absorption and water soluble capability of products treated with the three drying methods were investigated. The total, dissociative and conjugated anthraquinones of the three kinds of products were determined. The order of water absorption capability is:freeze drying, vacuum drying and spray drying. The order of soluble capability is:spray drying, freeze drying and vacuum drying. Compared the anthraquinone content of the three kinds of drying products, the total and conjugated anthraquinones content of vacuum drying approach freeze drying, and they are higher than spray drying. The content of dissociative anthraquinone in spray drying product is the highest.
     (4) The transfer rate changes of total anthraquinones in the preparation process of Semen Cassiae prescription granules were studied. The transfer rates of total anthraquinones during the preparation process of Semen Cassiae prescription granules were:the yield of ethanol extraction was 94.91%, the yield was 68.15% after alcohol precipitation, the yields were 69.19%,62.35% and 59.68% by vacuum, freeze, and spray drying respectively. The stage of alcohol precipitation caused the biggest loss of total anthraquinones, the loss rate was up to nearly 30%. Among the three drying methods, spray drying caused the biggest loss of total anthraquinones, followed by freeze drying, vacuum drying had little impact. The chromatographic fingerprints of original medicine and granules treated with the three drying methods were obtained by RP-HPI-C. According to retention time, data were analysed by fingerprint similarity evaluation software to compare the similarity of the samples. The similarity of original herbs, vacuum-dried and freeze-dried granules was above 0.98, the similarity of spray-dried granules was 0.7046. The results showed that vacuum drying and freeze drying methods have little destruction on the composition of the samples, spray drying method has a certain degree of destructive effect on the samples.
     (5) The pharmacodynamic of Semen Cassiae prescription granules and its traditional decoction was compared by laxative test and lipid test. In the intestinal propulsion experiments, the three kinds of Semen Cassiae prescription granules can increase the intestinal movement in normal mice, and they have similar effect with the traditional water extraction. The three kinds of granules were used in constipation mice. The results showed that the spray, freeze, vacuum drying granules can be reserved the purgative function, and have a trend of being better than the traditional water extraction group. Among these granules, the purgative effect of freeze drying is best, followed by spray drying and vacuum drying. The three kinds of drying granules were used in hyperlipidemic mice. The results show that all of them have the function of reducing blood lipid, and have a trend of being better than the water extraction group. They can reduce TC, TG and LDL-C, increase HDL-C. Among these granules, the regulating blood lipid effect of freeze drying is best, followed by spray drying and vacuum drying. Considering the lack of freeze drying technology, the characteristics of Semen Cassiae prescription granules and the content of anthraquinones, we choose spray drying in the preparation technology of Semen Cassiae prescription granules, and create its quality standard.
     (6) According to the non-steady state diffusion process of traditional Chinese medicine extraction, the Fick's second law of diffusion was used to establish the one-component kinetic model(OKM) equation of extracting total anthraquinones and chrysophanol from Semen Cassiae by ethanol. The model can describe the dynamic extraction process of total anthraquinone and chrysophanol from Semen Cassiae. The results showed that the kinetics on the extraction of total anthraquinone and chrysophanol match the first-order rate equation, and the rate-determining step for extraction is the diffusion of total anthraquinone and chrysophanol through particles. The kinetics parameters, such as k(rate constant), Ea (activation energy), y (residual rate of extraction) and t(?)(half life) are obtained from the calculation. Based on two-region mass transfer model, the one-component kinetic model (OKM) equation was optimized and the two-component kinetic model (TKM) equation was developed. The research showed that the regression results of the TKM fit the experimental data well, and the changes of the parameters with temperature have some physical meaning. The TKM can reflect the dynamic mechanism better of the extraction process of total anthraquinone and chrysophanol, which has an important theoretical significance for extracting anthraquinones from Semen Cassiae.
     This research was conducted under the basic theory of traditional Chinese medicine. It combined analytical chemistry, physical chemistry, Chinese medicinal chemistry, Chinese medicine preparation, pharmacology, statistics and other disciplines to explore the preparation technology, composition changes and kinetic mechanism of the extraction process of the Semen Cassiae prescription granules. It can provide a practical and theoretical basis for prescription granules research.
引文
[1]梁生旺.中药制剂分析[M].北京:中国中医药出版社,2003:25
    [2]陈长洲,冯艳妮.中药配方颗粒研制回顾与产业化展望[J].世界科学技术-中药现代化.2002,4(4):69-71
    [3]李松林,宋景政,徐宏喜.中药配方颗粒研究浅析[J].中草药.2009,40(增刊):1-6
    [4]李爱君,陈曦.人们对中药配方颗粒剂的“疑惑”[J].首都医药.2010,(2):28-29
    [5]杨晓光.十字路口上的中药配方颗粒[J].首都医药.2001,8(10):10
    [6]郭用庄,翟旭峰,廖彩霞,等.试论中药配方颗粒质量标准的控制[J].世界科学技术-中药现代化.2002,4(4):55-57
    [7]付静,陈明.中药配方颗粒工艺研究概况[J].北京中医.2007,26(8):522-524
    [8]仇法新,高福君.中药配方颗粒的发展现状及应用前景[J].中国药房.2007,18(3):163-165
    [9]李卫民,金波,冯毅凡.中药现代化与超临界流体萃取技术[M].北京:中国医药科技出版社,2002
    [10]陈培胜,刘法锦,郭用庄.新技术在中药配方颗粒生产中的应用[J].世界科学技术-中药现代化.2002,4(5):66-68
    [11]葛云初,黎阳.超临界流体萃取技术及其在中药提取中的应用[J].现代药物与临床.2009,24(5):279-282
    [12]Johnston K P, Harrison K L, Clarke M J, et al. Water-in-carbon dioxide microemulsions:An environment for hydrophiles including proteins[J]. Science,1996,271:624
    [13]Tena M T, Castro M D L, Valcarcel M.Improved super-critical fluid extraction of sulphonamides[J]. Chromatographia,1995,40(3/4):197-201
    [14]谷丽丽,张雪梅,田莉瑛,等.中药超微粉碎技术的应用及进展[J].生命科学仪器.2008,6(8):49-52
    [15]朱莉.超微粉碎技术及其在中药加工中的应用[J].云南大学学报(自然科学版增刊).2004,(26):128-131
    [16]李核,李攻科,张展霞.微波辅助萃取技术的进展[J].分析化学.2003,31(10):1261-1268
    [17]Ganzler K, Salgo A, Valko K J. Microwave extraction-a novel sample preparation method for chromatography[J]. J Chromatogr A,1986, (371): 299-306
    [18]Pare J R J, Belanger J M R, Staffords S. Microwave-assisted process (MAP -TM)-a new tool for the analytical [J]. Trends Anal Chem,1994,13 (4): 176-184
    [19]元英进,刘明言,董岸杰.中药现代化生产关键技术[M].北京:化学工业出版社,2002
    [20]冯年平,吴春三,韩朝阳.微波萃取技术在中药提取中的应用[J].世界科学技术-中药现代化.2002,4(2):49
    [21]Ganzler K. Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique[J]. J Chromatogr,1990, (520):257
    [22]李攻科,杜甫佑,肖小华.微波辅助萃取在中药现代化中的应用[J].精细化工.2007,24(12):1184-1191
    [23]Pan X J, Liu H Z, Jia G H, et al. Microwave-assisted extraction of glycyrrhizic acid from licorice root[J]. Biochemical Engineering J,2000, (5): 173-177
    [24]刘传斌,李宁,鲁济清,等.微波能用于干酵母中海藻糖高效液相色谱分析样品制备的研究[J].分析化学.1999,27(1):24-29.
    [25]M J Incorvia Mattina, W A Iannucci Berger, C L Densonm. Microwave assisted extraction of taxanes from Taxus Biomass[J]. Journal of Agriculture and Food chemistry,1997, (45):4691-4696
    [26]Hernwimon S, Pavasant P, Shotipruk A. Microwave assisted extraction of antioxidative anthraquinones from root of Morinda citrifolia[J]. Sep Purif Technol,2007, (54):44-50
    [27]孙秀梅,张兆旺.用“半仿生提取法”研制中药配方颗粒的设想[J].世界科学技术-中医药现代化.2004,6(3):59-62
    [28]刘明言,余根,王红.中药提取液浓缩新工艺和新技术进展[J].中国中药杂志.2006,31(3):184-187
    [29]闫磊,何再安,刘焱文.大孔吸附树脂在中药研究中的应用[J].时珍国医国药.2006,17(12):2585-2586
    [30]李平华,王兴文.大孔吸附树脂在中药有效成分分离纯化中的研究进展[J].云南中医学院学报.2003,26(3):43-46
    [31]关德祺,丁安伟.透视在香港销售的中药配方颗粒[J].中华现代中医学杂志.2005,1(1):30-32
    [32]徐成海,张志军,张世伟,等.真空干燥现状与发展趋势分析[J].干燥技术与设备.2009,7(5):207-213
    [33]邱志芳,陈勇,王龙虎,等.中药浸膏干燥技术研究进展[J].世界科学技术-中 医药现代化.2008,10(2):122-126
    [34]范碧亭.中药药剂学[M].上海:上海科学技术出版社,1998:138
    [35]肖丹,边燕红.白芷配方颗粒的喷雾干燥工艺研究[J].中草药.2006,37(6):874-876
    [36]涂瑶生,毕晓黎.中药配方颗粒国际化有关问题的思考[J].世界科学技术-中医药现代化.2007,9(2):77-81
    [37]周霞,万军,吴纯洁,等.中药配方颗粒的研究现状及问题[J].中国药房.2006,17(1):72-73
    [38]李诗梅,韩华,崔晓萍,等.中药颗粒剂的生产现状及展望[J].江苏药学与临床研究.1998,6(3):7
    [39]王元清.中药配方颗粒质量标准研究概况[J].江苏中医.2001,22(9):51
    [40]田进国,朱文荣,任健,等.茯苓、党参、重楼等13种中药配方颗粒红外指纹图谱的研究[J].中成药.2004,26(7):517-519
    [41]汤俊明,孙素琴,袁子民,等.中药配方颗粒红外指纹图谱的无损快速鉴别研究[J].光谱学与光谱分析.2004,24(5):554-556
    [42]敖宗华.5种中药饮片及其免煎饮片有效成分的对照研究[J].中药新药与临床药理.2002,13(3):183-184
    [43]丁青龙.虎杖“生药袋包颗粒”和免煎颗粒及其饮片汤剂的对比研究[J].中国现代应用药学杂志.1999,16(4):22-25
    [44]丁青龙.丹参生药颗粒、饮片及饮片提取颗粒中原儿茶醛含量的比较[J].解放军药学学报.2000,16(1):34-36
    [45]丁青龙.黄芪生药袋泡颗粒和免煎颗粒及其饮片汤剂的对比研究[J].现代中西医结合杂志.2000,9(20):1980-1982
    [46]朱青.生大黄、熟大黄及其免煎颗粒中大黄素含量比较[J].山东中医药大学学报.2001,25(3):230-231
    [47]徐以亮,徐海波,李松.HPLC测定独活药材及配方颗粒中蛇床子素的含量[J].中成药.2005,27(1):105-106
    [48]蔡进章,潘晓军,林观样.高效液相色谱法测定番泻叶及其配方颗粒中番泻苷A的含量[J].中国医院药学杂志.2007,27(5):696-697
    [49]谢晓梅,戴淑娟,夏红梅,等.高效液相色谱法测定牡丹皮配方颗粒和饮片中丹皮酚含量[J].中国实验方剂学杂志.2006,12(12):28-29
    [50]奚雁玉,李松.高效液相色谱法测定黄连配方颗粒及饮片中盐酸小檗碱的含量[J].时珍国医国药.2003,14(8):450-451
    [51]袁旭江,朱盛山,李苑新,等.广霍香配方颗粒及其药材质量关系研究[J].时珍国医国药.2006,17(9):1618-1619
    [52]刘振丽,宋志前,张玲,等.枳实配方颗粒与水煎剂主要化学成分含量比较[J].中国药房.2007,18(6):438-440
    [53]王奎兴.复方二妙散三种剂型的药效学研究[J].现代中西医结合杂志.2002,11(7):597-598
    [54]张秀桥.三黄泻心汤传统汤剂与中药配方颗粒汤剂中盐酸小檗碱含量测定的比较[J].中国医院药学杂志.2002,22(7):408-409
    [55]余子川,刘焱文,方颖,等.二陈汤配方颗粒与传统煎剂中的氨基酸成分的分析比较[J].湖北中医学院学报.2002,4(3):34
    [56]余子川,刘焱文,方颖,等.二陈汤配方颗粒与传统煎剂中的橙皮苷含量的比较研究[J].中成药.2003,25(1):73-74
    [57]雷鹏,刘韶,李新中,等.葛根芩连汤饮片汤剂、配方颗粒汤剂中黄芩苷含量比较[J].中国医院药学杂志.2005,25(11):1008-1010
    [58]雷鹏,刘韶,李新中,等.黄连解毒汤传统汤剂与配方颗粒汤剂主要活性成分含量比较[J].中药新药与临床药理.2005,16(5):353-356
    [59]钱大玮,孔铭,段金廒,等.麻仁方汤剂与其分煎配方颗粒剂的特征(指纹)图谱比较[J].中国医院药学杂志.2007,27(4):434-437
    [60]朱玲英,孔铭,钱大玮,等.清金方饮片汤剂与其免煎配方颗粒的指纹图谱比较[J].时珍国医国药.2007,18(2):305-306
    [61]孔铭,钱大玮,鞠建明,等.月月舒饮片汤剂与其免煎配方颗粒的指纹图谱比较[J].中国实验方剂学杂志.2007,13(3):5-6
    [62]马跃平,刘晓秋,陈发奎,等.泻心汤配方颗粒与标准汤剂的HPLC指纹图谱对照研究[J].中成药.2006,28(3):317-321
    [63]贝立民.中药免煎颗粒与水煎剂疗效对比观察[J].云南中医中药杂志.2000,21(5):31-33
    [64]曾锐,祝勇军,俞脉文,等.小青龙汤单味浓缩配方颗粒与传统饮片汤剂临床疗效对比研究[J].中国中医急症.2006,15(11):1233-1234
    [65]张美玉,李丰.中药配方颗粒治疗白癜风临床观察[J].北京中医.2007,26(6):361-362
    [66]杨荫文,孔凡成.两组中药配方颗粒与水煎剂临床疗效对比研究[J].中医研究.2007,20(4):51-52
    [67]欧建锋,魏国强,陈振隆.中药免煎颗粒独活寄生汤治疗腰痛疗效观察[J].中国中医药信息杂志.2004,11(11):1003
    [68]李永辉.中药配方颗粒熏洗治疗骨折后关节僵硬[J].湖北中医杂志.2004,26(11):30
    [69]唐波,汤小宁.葛根芩连汤精制颗粒治疗湿热泄泻临床研究[J].时珍国医国药. 2000,11(10):926
    [70]黄勤挽,黄媛莉,韩丽,等.川芎配方颗粒的药理等效性实验[J].华西药学杂志.2007,22(2):154-157
    [71]饶凡,杨宁宁,曾莹.咽炎颗粒及其配方颗粒比较研究[J].华西药学.2007,22(1):110-111
    [72]钟萌.小儿平喘配方颗粒与煎剂颗粒的抗炎作用比较[J].中国中医药信息杂志.2006,13(12):24-26
    [73]陈斌,蔡光先,戴飞跃,等.开胃进食汤超微配方颗粒对正常小鼠胃肠动力的影响[J].湖南中医药大学学报.2007,27(3):14-15
    [74]林海清.元胡止痛方水煎与免煎剂止痛效果比较[J].中医药信息.1998,(2):23
    [75]郝延军,桑育黎,赵余庆.决明子的研究进展[J].中草药.2001,32(9):858-859
    [76]吕翠婷,黎海彬,李续娥,等.中药决明子的研究进展[J].食品科技.2006,(8):295-298
    [77]陈秋东,徐志南,于平,等.中药决明子中蒽醌类活性成分的生化研究进展[J].中药材.2002,25(6):442-445
    [78]郭洪祝.决明“发根”蒽醌类化学成分的研究[J].北京医科大学学报.1998,(1):23
    [79]Li CH, Wei XY, Li XE, et.al.A new anthranquinone glycoside from the seeds of Cassia obtusifolia[J]. Letter of Chinese Chemical.2004, 15(12):1448-1450
    [80]张加雄,万丽,胡轶娟,等.决明子脂肪酸成分分析[J].时珍国医国药.2006,17(8):1381
    [81]薛建海,肖统海,李蔚东,等.决明子不同提取方法中氨基酸的分析[J].基层中药杂志.1995,9(1):32
    [82]李续娥,马伟,郭宝江.新西兰兔灌胃决明子后吸收入血的氨基酸分析[J].华南师范大学学报(自然科学版).2003,(3):112-115
    [83]刘训红,陶春洪,储益.决明子及其炮制品中营养成分的分析[J].中国中药杂志.1993,18(5):283-285
    [84]李琨,刘安军,王稳航,等.决明子活性成分对小鼠肠道菌相的影响[J].天津科技大学学报.2005,20(2):19-21
    [85]周红燕,陈建伟.生、炒决明子中无机元素的分析测定[J].广东微量元素科学.2007,14(2):23-26
    [86]刘菊秀,苗戎,狄俊英,等.决明子降压作用的实验研究[J].天津中药.1990,(5):37
    [87]李续娥,郭宝江.决明子蛋白质和蒽醌苷对高脂血症大鼠血脂的影响[J].中国中 药杂志.2002,27(5):374-377
    [88]李楚华,李续娥,郭宝江.决明子提取物降脂作用研究[J].华南师范大学学报.2002,(4):29-33
    [89]张加雄.决明子降血脂有效成分的研究[D].成都:成都中医药大学,2005
    [90]韩昌志.决明子煎剂对家兔和狗睫状肌中乳酸脱氢酶活性的影响[J].同济医科大学学报.1994,23(6):470
    [91]何菊英,刘松青.决明子的药理作用及其临床应用.药学实验杂志.2001,19(2):111-113
    [92]张加雄,万丽,胡轶娟,等.决明子提取物泻下作用的研究[J].时珍国医国药.2005,16(6):467-468
    [93]林冬静,金政.决明子提取物对急性肝损伤保护作用的实验研究[J].时珍国医国药.2006,17(2):214-215
    [94]高梵,隋海霞,刘海波.决明子乙醇提取物的亚慢性毒性研究[J].中国食品卫生杂志.2004,16(5):410-416
    [95]张启伟,周钟鸣,阴健,等.温度对决明子化学成分和药理作用的影响[J].中国中药杂志.1996,21(11):663-703
    [96]李续娥,刘峰壁.煎煮时间对决明子中蒽醌类浸出量影响的研究[J].中国中药杂志.1999,24(3):150
    [97]李晓明,王跃生,闫寒,等.超微粉碎决明子对其大黄酚溶出量的影响[J].中国实验方剂学杂志.2001,7(6):6-8
    [98]马云理,徐杰远.决明子蒽醌提取方法的研究[J].齐鲁药事.2004,23(7):41-42
    [99]钟先锋,邓泽元,黄桂东.决明子有效成分的提取.南昌大学学报(理科版).2004,28(1):96-98
    [100]杨黎燕,杨秉勤,郎惠云,等.决明子蒽醌提取方法的研究[J].西部粮油科技.2003,(2):59-61
    [101]王海棠,吕本莲,尹卫平,等.正交实验法研究决明子提取工艺[J].天然产物研究与开发.2003,15(2):141-143
    [102]林洁茹,周华.决明子降脂颗粒中决明子提取工艺的研究[J].中药新药与临床药理.2001,12(2):115
    [103]冯年平,沈岚,韩朝阳,等.决明子微波萃取法与常用提取方法的比较[J].中成药.2004,26(3):189-191
    [104]王慕邹.植物药中蒽醌衍生物的化学分析[J].药学学报.1986,21(3):230
    [105]北中进,他.HPLCによる决明子の多成分分析法[J].生药学杂志.1995,49(2):181
    [106]Long V D. Aqueous extraction of black leaf tea III, Experiments with a
    stirred column[J]. J Food Technol,1979, (14):449-462
    [107]Spiro M, Siddique S. Kinetics and equilibria of tea infusion:Kinetics of Extraction of Theaflavins and Caffeine from Koonsong Broken Pekoe [J]. J Sci Food Agric,1981, (32):1135-1139
    [108]Spiro M, Jago D S. Kinetics and equilibria of tea infusion (Part III), Rotating-disc experiments interpreted by a steady-state mode[J]. J Chem Soc Faraday Trans,1982, (78):295-305
    [109]Spiro M, Selwood R M. Kinetics and mechanism of caffeine infusion from coffee:The Effect of Particle Size[J]. J Sci Food Agric,1984, (35):915-924
    [110]Price W E. Kinetics and equilibria of tea infusion[D]. London:University of London,1985
    [111]So G C, MacDonald D G. Kinetics of oil extraction from canola (rapeseed) [J]. The Canadian Journal of Chemical Engineering,1986, (64):80-86
    [112]Spiro M, Kandiah M. Extraction of ginger rhizome:Kinetic studies with acetone[J]. International Journal of Food Science and Technology,1989, (24):589-600
    [113]Zanoni B, Pagliarini E, Peri C. Modelling the aqueous extraction of soluble substances from ground roasted coffee[J]. J Sci Food Agric, 1992, (58):275-279
    [114]李有润,郑青.中草药提取过程的数学模拟与优化[J].中草药.1997,28(7):399-401
    [115]储茂泉,古宏晨,刘国杰.中草药浸提过程的动力学模型[J].中草药.2000,31(7):504-506
    [116]储茂泉,古宏晨,刘国杰.中草药浸提温度对有效成分浸出浓度的影响[J].中草药.2001,32(1):22-23
    [117]储茂泉,刘国杰.中药提取过程的动力学[J].药学学报.2002,37(7):559-562
    [118]欧阳平,张高勇,康保安,等.苦叶七中类黄酮提取的动力学及相关热力学研究[J].中成药.2004,26(12):991-995
    [119]徐春龙,林书玉,王成会,等.超声提取中草药成分的动力学模型[J].陕西师范大学学报(自然科学版).2009,37(2):33-37
    [120]王唯涌,韩鲁佳,王振,等.植物功能成分浸提过程动力学研究进展[J].中国农业大学学报.2006,11(1):100-104
    [121]张小梅,杨荣平,励娜,等.决明子中蒽醌类成分的含量测定[J].时珍国医国药.2007,18(1):97-98.
    [122]国家药典委员会.中国药典一部[S].北京:化学工业出版社,2005:附录VA.
    [123]邓佳,刘学文.微波法提取决明子中蒽醌工艺条件的优化研究[J].食品研究与开发.2006,27(9):36-37
    [124]张晓玲.大孔吸附树脂在中草药制剂中的应用[J].黑龙江医药.2007,31(3):237-238.
    [125]许汉林,熊利容,陈军,等.H1020大孔树脂分离纯化大黄蒽醌的研究[J].中国医院药学杂志.2007,27(5):619-622
    [126]方洪壮,李晓宁,梁逸曾.决明子的HPLC指纹特征聚类分析评价研究[J].中成药.2007,29(8):1187-1189
    [127]张萍,陈建伟.决明子饮片的HPLC指纹图谱研究[J].中草药.2007,38(3)372-375
    [128]陈奇.中药药理研究方法学[M].第2版.北京:人民卫生出版社,2006
    [129]李仪奎.中药药理研究方法[M].第2版.上海:上海科学技术出版社,2006:621
    [130]叶任高,陆再英.内科学[M].第6版.北京:人民卫生出版社,2004:821
    [131]BERMUDEZ PV, SOUKIA, CANO PC, et al. Ciprofibrate treatment decreases non-high density lipoprotein cholesterol and triglycerides and increases high density lipoprotein cholesterol in patients with Fredericks on type IV dyslipidemia phenotype[J]. Am J Ther,2007,14 (2):213-220
    [132]冯年平,郁威.中药提取分离技术原理与应用[M].北京:中国医药科技出版社,2005:10-34
    [133]李淑芬,姜忠义.高等制药工程[M].北京:化学工业出版社,2004:8-47
    [134]覃诚真,杨子超.萃取化学[M].桂林:广西师范大学出版社,1991:263-299
    [135]Simeonov E,Tsibranska I,Minchev A.Solid-liquid extraction from plants-experimental kinetics and modeling[J]. Chemical Engneering Journal,1999, (73): 255-259
    [136]王唯涌,韩鲁佳.黄芩黄酮浸提过程动力学模型适用性分析[J].农业机械学报.2009,40(4):116-120
    [137]范华均.微波辅助提取石蒜和虎杖中有效成分及其机理研究[D].广州:中山大学,2006:137-138
    [138]Piret EL, Ebel RA, Kiang CT, et al. Diffusion rates in extraction of porous solids. I.Single phase extractions[J]. Chem Eng Progr,1951,47 (8):405-414
    [139]宋洪波,毛志怀,Guoping Liang.植物物料红茶的浸提动力学研究[J].农业工程学报.2005,21(3):24-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700