流固—热流固耦合理论研究及其在疏松砂岩油藏防砂中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外疏松砂岩油藏生产中广泛存在着出砂问题,出砂是此类油藏开采中遇到的难题之一,它已成为制约油田进一步开发的重要因素。目前对疏松砂岩油藏的出砂机理及预测研究还不够深入,防砂技术也没有和疏松砂岩油藏特点有机结合,工艺的选择存在一定的盲目性和随意性。本文立足于油藏出砂机理研究,将岩石受力变形和地层流体渗流结合起来,开发出砂管理技术;并加强防砂工艺技术适应性评价研究,为防砂工艺的优化选择和进步提供支持。
     采用岩石力学理论和方法,试验测试了典型疏松砂岩油藏的岩石变形破坏规律和强度参数,其应力应变是非线性关系,本构方程应该选择Druck-Prager准则处理;同时实验研究了不同含水情况下岩芯力学特性和出砂量、出砂指数的变化规律,为不同含水阶段出砂预测研究提供了基础。
     应用有效应力定律和连续介质力学理论,考虑了流体渗流、储层变形或破坏、液化砂粒运移等众多因素,建立了基于流固耦合形式的动态定量出砂预测模型。出砂机制主要有储层结构破坏产生粗砂和储层剥蚀产生细砂这两类,出砂过程分为两部分:第一部分主要包括孔隙性岩层骨架的变形或破坏作用,第二部分包括流体的流动和砂粒的运移。在理论研究的基础上开发了软件系统,应用顺序Galerkin有限元进行了求解验证,重点模拟分析了油藏、地层、生产参数对出砂趋势的影响和主要防砂工艺下近井地带地质力学参数的时空演化情况。结果表明:随着地层破坏和出砂,炮眼和井筒周围应力会重新分布,地层参数的变化受出砂和应力作用的复杂影响,出砂量是一个波动变化的过程——这一现象与现场和室内的观测是基本一致的。
     稠油油藏原油黏度高一般采用注蒸汽开采,本文考虑了热对流的影响,建立了蒸汽注入条件下对地层压力、变形和有效应力评价的热-流-固耦合数学模型,采用FEPG软件对注蒸汽井进行了数值模拟。计算结果表明,由于地层流体高温膨胀引起的高压力,会导致位移、变形,甚至地层结构破裂;这说明了油藏热-流-固耦合研究的重要性。
     在对胜利油区出砂地层岩石结构特征及粒级模型研究的基础上,采用实尺寸防砂方法评价大型物理模拟实验装置,开展了机械防砂工艺适应性评价,主要包括滤砂管与砾石充填防砂试验、挤压与非挤压充填防砂试验、地层粘土稳定与地层填砂后砾石充填防砂试验、砾石充填防砂影响因素试验等。对挤压砾石充填防砂工艺进行了优化研究,在现场应用中取得了良好的效果。
Sanding issue can be widely found in weakly consolidated sandstone reservoirs around the world, and which is one of the main factors that restricts further development of the oilfields. The sanding mechanism and prediction research is not very deeply and sand control technology is not effectively combined with the features of the reservoirs which leads to aimlessness and randomness to some extent in sand control method selection.
     Based on the study of sanding theory, it is necessary to consider the coupled stress and seepage fields and develop sand management technique, and, enhance the adaptability research of sand control technology and support the optimization and improvement of sand control methods.
     Adopted with the theory and methods of rock mechanics, the deformation and failure laws and strength parameters of the typical unconsolidated sandstone cores were tested, and the results indicate that the relationship of stress and strain is nonlinear, and the Druck-Prager damage criteria is recommended. The changes of rock properties, sand volume and sand index in different water saturation are studied, which can be used to guide sand prediction in different water cut periods.
     Considering the principle of effective stress and continuum mechanics theory, a coupled fluid-solid model corresponding to fluid seepage, deformation or failure of stratum and fluidized sand movement, etc, is developed to dynamically and quantitatively predict sand production. There are two kinds of sanding mechanisms, which are coarse sand model due to structural failure and fine sand model due to erosion, and the sanding process is mainly includes deformation or failure of stratum and movement of fluid or sand. And then, a software system with the sequential iterative Galerkin finite element method is developed to solve and validate the model. The problems such as sanding trend under different reservoir, stratum, production parameters and near-wellbore variation of geomechanics parameters in time and space with different sand control methods, etc. are simulated and investigated. The results show that stress around the wellbore and perforation tunnels will redistribute along with failure of the formation and sand production; the reservoir parameters are influenced by the complex sanding and stress changes; the volume of sand production will fluctuate and this phenomenon is consistent with field and laboratory observation.
     In order to solve the high viscosity problem of crude oil, the steam stimulation technology is generally adopted in heavy oil reservoir exploitation. An improved heat-fluid-solid coupling model considering the influence of heat convection is established to evaluate the formation pressure, deformation and effective stress under steam injection conditions, and it is simulated with the finite element program FEPG. The results show that the high pressure caused by the higher thermal expansion of fluid may lead to displacement, deformation or even failure of structure, which show the important ole of heat-fluid-solid coupling during heavy oil recovery.
     On the basis of size classification research of the main sanding blocks of Shengli oilfield, the evaluation study of mechanical sand control technology is proceeded with the full-size sand control method selection and evaluation apparatus. The experiments mainly include screen liner sand control tests, conventional wire wrapped screen gravel pack tests, high-pressure gravel pack tests, clay stabilization and formation gravel pack tests, the influence tests of fluid viscosity, size of wire wrapped screen and gravel, screen gauge, etc. Then, the high-pressure gravel pack sand control technology is studied and optimized and has good effects in field application.
引文
[1]万仁溥.采油工程手册[M].北京:石油工业出版社,1991:68-98
    [2]万仁溥,罗英俊.防砂技术手册(第七分册)[M].北京:石油工业出版社,1991:158-200
    [3]冯永泉,孙辉等.防砂工艺技术水平调研.课题研究报告, 2002
    [4]范兴沃,李相方,关文龙等.国内外出砂机理研究现状综述[J].钻采工艺,2004,27(3):57-70
    [5]吴建平,孙辉,高斌等.低渗透油藏出砂机理研究—以雁木西油田为例[J].油气地质与采收率, 2003, 10(6): 70-71
    [6]王艳辉,刘希圣,王鸿勋.油井出砂预测技术的发展与应用综述.石油钻采工艺, 1994, 16(5): 79-85
    [7]Papamichos E,Malmanger E M. A sand erosion model for volumetric sand predictions in a North Sea reservoir[A]. The Latin American and Caribbean Petroleum Engineering Conference of Society of Petroleum Engineers[C]. Caracas, Venezuela, 1999, SPE54007.
    [8] Sanfilippo F. Sand production: from prediction to management. SPE 38185, 1997
    [9]何生厚,张琪.油气井防砂理论及其应用,北京:中国石化出版社, 2003
    [10]王奎生,田仲强.油井机械防砂工艺技术与装备的发展水平[J].石油机械, 2000, 28(12): 49-52
    [11]李兆敏,蔡国琰.非牛顿流体力学.东营:石油大学出版社,1998年
    [12] Terzaghi K. Theoretical Soil Mechanics[M]. New York: Tiho Wiley, 1943.
    [13] Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Jour Appl Phys, 1954,26:182~191.
    [14] Zienkiewicz O C, Shiomi T. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution[J]. Int.J .Num. and Analy. Mech. in Geomech.1 984, 8: 71-96
    [15] SavageW Z, BraddockWA. A model for hydorstaitc consolidation of Pierre shale[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Absrt. 1991, 28: 345-354
    [16] Vaziri H H. Coupled fluid flow and stress analysis of oil sands subject to heating[J]. Journal of Canadian Petroleum Technology, 1988, 27(5): 84-91.
    [17] Lewis R W, Sukirman Y. Finite element modelling of three-phase flow in deforming saturated oil reservoirs[J]. Int J Num Anal Methods Geomech,1993, 17:577-598.
    [18] Fung LSK. Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs. JCPT, 1994(4): 22-28
    [19] Jose G Osorio, et al. Numerical simulation of the impact of flow-induced geomechanicalre sponse on the production of stress-sensitive reservoirs[J]. SPE 51929
    [20]冉启全,李士伦,杜志敏,孙雷.流固藕合多相多组分渗流数学模型的建立.油气井测试.1996,5(3 ): 14-18
    [21]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报, 1999, 5(1): 17-25
    [22]薛强,梁冰,刘磊,赵颖.非饱和流固耦合模型在垃圾坝体稳定性中应用[J].辽宁工程技术大学学报, 2006,25(5):689-691
    [23]梁冰,孙可明,薛强.地下工程中的流-固耦合问题的探讨[J].辽宁工程技术大学学报. 2001, 20(2):129-134
    [24]刑京堂,周盛,崔尔杰.流固耦合力学概述[J].力学进展, 1997, 27(1):l9-30.
    [25]薛世峰等.地下流固耦合理论的研究进展及应用.石油大学学报, 2000,24(2):109-114.
    [26]李兆敏.石油工程流体力学研究进展.东营:石油大学出版社,2004年.
    [27]薛世峰,全兴华,岳伯谦等.地下流固耦合理论的研究进展及应用[J].石油大学学报(自然科学版). 2000,24(2):109-114.
    [28]董平川,徐小荷.油水两相流-固耦合渗流的数学模型[J].石油勘探与开发, 1998,25(5):93~96
    [29]邢景棠,周盛,崔尔杰.流-固耦合力学概述[J].力学进展, 1997,27(1):19~38
    [30]董平川.变形介质流固耦合渗流的数值模型及其应用[J].地质力学学报, 2005,11(3):273-277
    [31] Hart R.D.,John C.M.S.T. Formulation of a Fully-coupled Thermal-Mechanical-Fluid Model for Non-linear Geologic Systems[J]. Int.J. Rock. Mech. Min. Sic. & Geomech. Abstr. 1986,23(3): 213-224
    [32] Jing L, Tsang C.-F., Stephansson O., DEXCOVALEX-an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories[J].Int.J. Rock. Mech. Min. Sic.& Geomech. Abstr. 1995, 32(5):389-398
    [33] Stephansson 0, et al. Coupled thermo-hydro-mechanical processes of fracture media [A]. Developments in Geotechnical Engneering[C]. Amsterdam, Elsevier ;1996,79.
    [34] Guvanasen V., Chan Tin. A three-dimensional numerical model for thermo-hydro-mechanical deformation with hysteresis in a fractured rock mass [J]. Int. J. Rock. Mech. Min. Sic. 2000, 37(1/2): 89-106
    [35] Millard A., Durin M., Stietel A. et al. Discrete and Continuum Approaches to Simulate the Thermo-Hydro-Mechanical Couplings in a large, Fractured Rock Mass[J]. Int. J. Rock. Mech. Min. Sic. &. Geomech. Abstr. 1995, 32(5): 409-434
    [36] Abdallah G., Thoraval A., Sfeir A. et al. Thermal Convection of Fluid in Fractured Media [J]. Int.J. Rock. Mech. Min. Sic.&.Geomech. Abstr. 1995, 32(5): 409-434
    [37]杨立中,黄涛.初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J].水文地质工程地质. 2000,27(2):33-35
    [38] Noorishad J., Tsang C.F. and Witherspoon P.A. Coupled Thermal-Hydraulic-Mechanical Phenomena in Saturated Fractured Porous Rocks: Numerical Approach [J]. J.Geophysical res. 1984, 89(b12): 10365-10373
    [39] Thomas H.R., He Y., Sanson M.R., et al. On the Development of a model of the thermo- mechanical-hydraulic behavior of unsaturated soils[J]. Engineering geology. 1996, 41(1):197-218
    [40] Thomas H R, et al. An examination of the validation of a model of the hydro-thermo-mechanical behaviour of engineered clay barriers[J]. Int. J. numer Anul Meth Geomech. 1998,22.
    [41] Li Xikui,Thomas H R,Fan Yiqun. Finite element method and constitutive modeling and computation for unsaturated soils[J] .Computer Methods in Applied Mechanics and Engineering, 1999, 169 (2) :135~159 .
    [42] Gatmiri B., Delage P.A formulation of saturated porous media-numerical approach[J]. Int. J. Num.& Anal. Methods in Geomech. 1997,21(3):199-225
    [43] Brower K.M., Zyvoloski G.. A numerical model for thermo-hydro-mechanical coupling in fractured rock[J]. Int.J. Rock. Mech. Min. Sic. 1997, 34(8):1201-1211
    [44]黄涛,杨立中.工程岩体地下水渗流-应力-温度耦合作用数学模型研究[J].西南交通大学学报. 1999, 34(1):11-15
    [45]赖远明,吴紫汪,朱元林等.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报. 1999, 21(5):529-533
    [46]刘亚晨,刘泉声,吴玉山等.核废料贮存围岩介质不可逆过程热力学和热弹性[J].岩石力学与工程学报.2000, 19(3):361-365
    [47]王瑞凤,赵阳升,胡耀青.高温岩体地热开发的固流热耦合三维数值模拟[J].太原理工大学学报. 2002,33(3):275-278
    [48] Neaupane K.M., Yamabe T., Yoshinaka R. Simulation of a fully coupled thermo-hydro-mechanical system in freezing and thawing rock[J]. Int. J. Rock. Mech. Min. Sic. 1999, 36(5):563-580
    [49] Rutqvist J., Borgesson L., Chijimatsu M., et al. Thermohydromechanics of partially saturated geological media: governing equations and formulation of four finite element models[J]. Int.J. Rock. Mech. Min. Sic. 2001, 38(1):105-127
    [50] Swenson D V,et al. A coupled model of fluid flow in jointed rock applied to simulation of a hot dry rock reservoir [J].Int. J. Rock Mech Min Sci 1997,34.
    [51] Pao WKS, Lewis RW, Masters I. A fully coupled hydrothermo-poro-mechanical model for black oil reservoir simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25 (12): 1229-1256.
    [52]Lewis R W. Finite element modeling of two-phase heat and fluid flow in deforming porous media[J]. Trans Porous Media, 1989,4: 319~334.
    [53] Koutsabeloulis N C, Hope S A. Coupled stress fluid thermal multiphase reservoir simulation studies incorporating rock mechanics [A].Proceedings of SPE/ISRM EUROCK-98 Symposium [C].Norway 1998,449.
    [54] A Pak and D H Chan. A fully implicit single phase T-H-M fracture model for modeling hydraulic fracturing in oil sands[J], Journal of Canadian Petroleum Technology, 2004, 43(6): 35-44.
    [55]刘建军,刘先贵.开发过程中三场藕合的数学模型.特种油气藏.2001, 8 (2): 31-37.
    [56]周德华,葛家理.双重介质系统液固耦合模型及其应用.石油实验地质, 2006, Vol.28(3):292-295
    [57]刘建军,刘先贵,曾流芳.低渗裂缝性储层渗透性能变化的动态模拟[J].辽宁工程技术大学学报, 2001, 20(4):543-545
    [58]石志良,朱维耀,单文文.多孔介质伴有相变多相流的热-流-固耦合数学模型[J].中国科学技术大学学报, 2004,34(Z1): 501-507
    [59] Jeffrey E. Smith, Bruce R. Meyer, R. Henry. Fracture Pressure Slope Analysis for TSO's in High-Permeability Formations, SPE 63174,2000
    [60] Kohl T, Hopkirk R J. The finite element program“FRACTure”for the simulation of a hot dry rock reservoir behavior[J」.Geothermics 1995,24.
    [61]邓金根,王金凤,闫建华等.弱固结砂岩气藏水力压裂裂缝延伸规律研究[J].岩土力学,2002,23(1):72-74
    [62] Booker J R, Savvidou C. Consolidation around a spherical heat source[J]. International Journal of Solids and Structures, 1984, 20(5):1079-1090.
    [63] Vaziri H H. Coupled fluid flow and stress analysis of oil sands subject to heating[J]. Journal of Canadian Petroleum Technology, 1988,27(5):84-91.
    [64] Wang Y, Papamichos E. Conductive heat flow and thermally induced fluid flow around a well bore in a poroelastic medium[J]. Water Resources Research, 1994,30(12):3375-3384.
    [65] Wong R C K, Samiech A. Geomechanical response of Colorado shale near a cased wellbore due to heating[A]. The 48th Annual Technical Meeting of The Petroleum Society[C]. Calgary, Canada. 97-12, 1997
    [66] R. I. Borja. Computational modeling of deformation bands in granular media. II.Numerical simulations[J]. Computer Methods in Applied Mechanics and Engineering,2004, 193(27-29):2699-2718.
    [67]Fung L S K, Wong R C K. Modeling of cavity stability and sand production in heavy oil reservoir[J]. Journal of Canadian Petroleum Technology, 1996,35 (2):47-52.
    [68] J. Tronvoll. Sand production in ultra-weak sandstones: is sand control absolutely necessary? SPE 39042,1997
    [69]张建国,程远方,崔红英.裸眼完井出砂预测模型的建立.石油钻探技术,1999;27(6):39-41.
    [70]周静、谭永生.稳定泡沫流体的机理.石油钻采工艺, 1999, 22(6): 75-75
    [71]王洪纲.热弹性力学概论[M].北京:清华大学出版社,1989.
    [72] C.Presles. A sand failure test can cut both completion costs and the number of development wells. SPE 38186, 1997
    [73] Desroches J. .Stress measurements for sand control. SPE 47247,1998
    [74] Nobuo Morita. Guidelines for solving sand problems in water injection wells. SPE 39436,1998
    [75] M.A.Aggour. Development of a new sand control technique-phaseⅠ: laboratory development SPE 63237, 2000
    [76]汪周华,郭平,孙雷,孙凌云,马力宁.油气藏出砂研究现状及其发展趋势.特种油气藏. 2005No04
    [77] P.j.van den Hoek, M.B.Geilikman. Predication of sand production rate in oil and gas reservoirs[A]. Annual Technical Conference and Exhibition of Society of Petroleum Engineers[C]. Denver, U.S.A., 2003,SPE84496
    [78] Wong R C K, et al. Oil sands strength parameters at low Effective stress: Its effects on sand production. [J]. JCPT, 1994, (5): 44 -49.
    [79] Yarlong Wang, Shifeng Xue. Coupled Reservoir-Geomechanics Model with Erosion for Sand Rate and Enhanced Production Predictions[A]. Conference on Formation Damage of Society of Petroleum Engineers[C]. Lafayette, U.S.A., 2002, SPE73738.
    [80] Shifeng Xue, Yanguang Yuan. Sanding Process and Permeability Change[A], the Petroleum Society’s Canadian International Petroleum Conference[C], 2000, Paper 2004-118
    [81] Manabu Doi, Takahiro Murakami, Yoshiaki Ueda. Field application of Multi-Dimensional diagnosis of reservoir rock stability against sanding problem[A]. Annual Technical Conference and Exhibition of Society of Petroleum Engineers[C], Dallas, Texas, SPE64470, 2000.
    [82] Wan, R. G. Wang, J. Analysis of sand production in unconsolidated oil sand using a coupled Erosional-Stress-Deformation model[J]. Journal of Canadian Petroleum Technology, 2004, 43(2):47-53.
    [83] X.Yi, P.P.Valkó, J.E.Russell. Effect of rock strength criterion on the predicted onset ofsand production[J]. International Journal of Geomechanics, 2005, 5(1): 66-73.
    [84] Zhang, L, Dusseault, M. B. Sand production simulation in heavy oil reservoir[A]. International Oil and Gas Conference and Exhibition of Society of Petroleum Engineers[C]. Beijing, China, 2000, SPE 64747.
    [85] Samsuri A, Minimize sand production by controlling wellbore geometry and flow rate. SPE 64759. 2000
    [86] A. Nouri, H. Vaziri, M. M. Al-Darbi, M. R. Islam. A new theory and methodology for modeling sand during oil production[J]. Energy Sources, 2002, 24 (11): 995-1007
    [87] Papamichos, E., M. Stavropoulou. An erosion-mechanical model for sand production rate prediction [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(5): 531-544
    [88] Papamichos E,Malmanger E M. A sand erosion model for volumetric sand predictions in a North Sea reservoir[A]. The Latin American and Caribbean Petroleum Engineering Conference of Society of Petroleum Engineers[C]. Caracas, Venezuela, 1999, SPE54007
    [89] Maurice B. Dusseault. Heavy-oil production enhancement by encouraging sand production. SPE 59276, 2000
    [90] Richard G Wan, et al. A constitutive model for the efecitve stress-srtain behaviour of oil sands [J ]. JCPT. 1991, 3 0 (4):89-98
    [91]Stavropoulou M, Papamichos E. Coupled wellbore erosion and stability analysi[sJ]. Int J Num Anal Methods Geomech, 1998,22:749~769
    [92]何冠军,杜志敏,文成杨,等.出砂影响因素的数值模拟评价[J].油气地质与采收率,2005,12(5):36-38
    [93]郭云民,李健康,崔洁,等.高含水期油井出砂预测模型的研究与应用[J].油气地质与采收率,2005,12(3):58-61
    [94]尤启东,陆先亮,栾志安.疏松砂岩中微粒迁移问题的研究[J].石油勘探与开发, 2004,31(6):104-107,111.
    [95]卢宝荣,蔡明俊,刘树明,等.羊三木油田馆一油组油层出砂影响因素探讨[J].石油勘探与开发, 2004,31(3):146-147
    [96] Schiffman R L. A thermoelastic theory of consolidation[J]. Environmental and Geophysical Heat Transfer, 1971, 25(4):78-83
    [97] Wong S K. Analysis and implications of in -situ stress changes during steam stimulation of cold lake oil sands[ J]. SPE Reservoir Engineering. 1988, 55-61
    [98] Mamora,D. D. .Sand consolidation using high-temperature alkaline solution. SPE 62943, 2000
    [99] URMMS, Special issue; Thermo-hydro-mechanical coupling in rock mechanics[J].Int. J. of Rock Mech Min Sci. 1995, 32(5)
    [100] Shrefler B A , Simoni L. A unified approach to analysis of saturated-unsaturated elastoplastic porous media [A].In: Swoboda(edi.) Numercial methods of geomechanics[C]. Rotherdam. A. A Balkema. 1998. 1
    [101] Wang,Y,"The effect of a nonlinear Mohr-Coulomb criterion on borehole stresses and damage-zone estimate", Can.Geotech. J., 1994:104-109
    [102]何满潮,王树仁.大变形数值方法在岩土工程中的应用[J].岩土力学, 2004,25(2):185-188
    [103]何满潮,王同良.软岩的概念及其分类[M].北京:煤炭工业出版社, 1999, 37-47
    [105] Cui L, Kaliakin V N. Finite element formulation and application of poroelastic generalized plane strain problems[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(6): 953-962
    [106] Blond E, Schmitt N, Hild F. Response of saturated porous media to cyclic thermal loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(11):883-904
    [107] A. Venkitaraman. Perforating requirements for sand control. SPE 65187,2000
    [108] J.R.Tague. Clay stabilization improves sand control. SPE 62524, 2000
    [109] Toshiya Oshita. Integrated approach for sand management: field application to an offshore oil field. SPE 37767, 1997
    [110] A. Venkitaraman. Perforating requirements for sand prevention. SPE 58788, 2000
    [111] Cobianco S.. Dirty sand consolidation technology for gas wells. SPE 50714,1999
    [112] E.R.Upchurch. A systematic approach to developing engineering data for fracturing poorly consolidated formation. SPE 38588,1997
    [113] A method for controlling fines production in unconsolidated formations , Europe 476820 ,1991.08.05.
    [114] Bear J, Bachmat Y. Introduction to modeling of Transport Phenmena in Porous Media [M].Netherlands, Kluwer Academic Publisher,1991.
    [115] Blauer.R.E and Kohaas .C.A. Formation Fracturing with Foam. SPE 5003
    [116] A. Ghassemi, Q. Zhang. Porothermoelastic analysis of the response of a stationary crack using the displacement discontinuity method[J]. Journal of Engineering Mechanics, 2006,132(1):26-33.
    [117] Wang,Y, Dusseault M B. Boerhole yield and hydraulic facture initiation in poorly consolidated rock strata. Int J Rock Mech Min Sic Geomech Abstr. 1991,28:2 47-260.
    [118] Maurice B. Dusseault. Mechanism of massive sand production in heavy oils. BeiJing.1998
    [119] M.J.Boutéca, J-P.Sarda, O.Vincké. Constitutive law for permeability evolution of sandstones during depletion[A]. International Symposium on Formation Damage Control of Society of Petroleum Engineers[C]. Lafayette, U.S.A., 2000, SPE58717.
    [120] Ruistuen, H., Teufel, L.W., and Rhett, D. Influence of reservoir stress path on deformation and permeability of weakly cemented sandstone reservoirs[A]. Annual Technical Conference and Exhibition of Society of Petroleum Engineers[C]. Denver, U.S.A., 1996, SPE36535.
    [121] Biot M A. Theory of elasticity and consolidation for a porous anisotropic soli[dJ]. Jour Appl Phys, 1954,26:182~191.
    [122] Biot M A. General solution of the equation of elasticity and consolidation for porous material[J]. Jour Appl Mech, 1956,78:91~96.
    [123] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed in rock masses[J]. Water Resource Res, 1986,22(13):1845~1856.
    [124] W.S.White, R.H.Morales, H.GRiodan. Improved Frac-Packing Method for long-Heterogeneous Intervals: SPE 58765,2000
    [125] Mathur, A.K., Ning, Marcinew. Hydraulic fracture stimulation of high-permeability formations paper. SPE 30652,1995
    [126] Fletcher P A, Montgomery C T, Ramos G G. Using fracturing as a technique for controlling formation failure[J]. Porter Journal of Petroleum Technology, 1996, 48(2):117-121
    [127] Hannach R R, Park E I. Combination fracturing/gravel packing completion technique on the amberjack, Mississippi Canyon 109 Fie1d. Kou C H. The Proceeding of SPE Annual Technical Conference and Exhibitions Houston: U. S. A, 1994, 262-266
    [128] Chijimatsu M., Fujita T., Sugita Y., et al. Fields experiment, results and THM behavior in the Kamaishi mine experiment[J]. Int.J. Rock. Mech. Min. Sic. 2001,38(1):67-78
    [129] Lewis R W,Schrefler B A. The finite element method in the static and dynamic deformation and consolidation of porous media[M] .New York: John Wiley and Sons, 1998, .
    [130] Biot M A . Mechanics of deformation and acoustic propagation in porous media[J]. Appl.Ph ys.1962,33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700