利用石墨层间化合物合成含硼金刚石
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过掺杂硼,可以提高金刚石的导电性和热稳定性。本论文提出了利用含硼石墨层间化合物(GICs)高温高压(HTHP)合成含硼金刚石的新工艺。
     本文以H_3BO_3,NH_4BF_4和KBH_4作为插层剂,采用真空熔盐、真空渗析熔盐、加压熔盐以及电解法制备含硼的GICs。利用XRD分析GICs的阶结构,并研究了GICs的稳定性。以含硼GICs作为碳源,在高温高压下合成金刚石。对含硼金刚石在SEM下进行形貌观察,通过红外拉曼光谱、X射线荧光(XRF)分析硼掺杂的存在状态和含量。分析了含硼金刚石的差热曲线,并测量了其电阻值。
     实验结果表明,真空熔盐、真空渗析熔盐、加压熔盐以及电解法可以制备H_3BO_3-GICs,KBH_4-GICs和NH_4BF_4-GICs。获得的GICs是混合阶产物。GICs的阶数随着时间延长而降低。H_3NO_3-GICs水洗后不稳定,发生了水解脱插。利用这些GICs,在1250~1350℃、5~6GPa下合成了含硼金刚石,金刚石颜色随着硼含量增加而加深直至黑色,含硼金刚石生长成多晶颗粒,晶面发育不完整。通过红外吸收光谱分析,发现硼以取代原子或间隙硼的形式存在于金刚石中,并通过对红外光谱吸收率计算和XRF分析检测到硼含量在5ppm到2158ppm之间。含硼金刚石热稳定性和导电性随着硼含量增加而提高。含硼500ppm的金刚石抗氧化温度提高到1070℃。当含硼量为2158ppm时金刚石的电阻率为1.93Ω·cm。
The conductivity and thermo-stability of diamond with boron doping could be improved. In this paper, a new method was presented that B-doped diamond was synthesized at high pressure and high temperature (HTHP) using B-doped graphite intercalation compounds (GICs).
    Using H3BO3, NH4BF4 and KBH4 as intercalant, GICs had been prepared by melt-salt in vacuum, melt-salt in vacuum infiltration, enhancing pressure melt-salt, and electrolyte intercalation. Structure of GICs had been analyzed by XRD, and stability of GICs had been studied. Diamond was synthesized using B-doped GICs as carbon sources by HTHP method. Morphology of B-doped diamond had been observed by SEM. Boron contents and impurity situation of B-doped diamond had been analyzed by FTIR/Raman and XRF. DTA curves of B-doped diamond had been studied, and the resistances had been measured.
    The experimental results showed that H3BO3-GICs, NH4BF4-GICs and KBH4-GICs had been prepared successfully by melt-salt in vacuum, melt-salt in vacuum infiltration, enhancing pressure melt-salt, and electrolyte intercalation. GICs had mixed stage. Stage number of GICs decreased with intercalation duration prolonging. It is unstable when GICs was washed, and H3BO3-GICs was hydrolyzed. B-doped diamonds were obtained under the condition of 1250℃~1350℃ and 5GPa~6GPa. Color of diamond became deep with boron contents increasing, till becoming black. B-doped diamond was polycrystalline, and crystal surface was developed incompletely. It was found by FTIR that boron existed as substitute atom or interstitial atom. Boron contents of diamond changed from 5 ppm to 2158 ppm. Conductivity and thermo-stability of B-doped diamond increased with boron contents increasing. Anti-oxidation temperature of diamond with 500 ppm boron reached 1070 ℃ Specific resistance of diamond with 2158 ppm boron was 1.93 Ω cm.
引文
1 郝润蓉,方锡义,钮少冲.无机化学丛书·第三卷碳硅锗分族.北京:科学出版社,1988:3,7,12
    2 王光祖,院兴国.超硬材料.郑州:河南科学技术出版社,1996:1,26
    3 中国大百科全书·化学.北京:中国大百科全书出版社,1989:906-907
    4 Michio Inagald. Carbon Materials Structure, Texture and Intercalation. Solid State Ionics. 1996,(86-88):833-839
    5 刘广志.人造金刚石工业在我国迅猛崛起.中国工程科学.2000,2(5):31-33
    6 吉林大学固体物理教研室高压合成组.人造金刚石.北京:科学出版社,1975:52
    7 李志宏,刘金昌.我国人造金刚石工业现状及发展.金刚石与磨料磨具工程.2002,127(1):49-53
    8 G.R.Brandes, C.P.Beetz, C.A. Feger, R.L.Wright. Diamond Junction Cold Cathode. Diamond and Related Materials. 1995,(4):586-590
    9 J. Davidson, W. Kang, K. Holmes, etc. CVD Diamond for Components and Emitters. Diamond and Related Materials. 2001,(10): 1736-1742
    10 P.W. May, M. T. Kuo, M. N. R. Ashfold. Field Emission Conduction Mechanisms in Chemical-Vapour-Deposited Diamond and Diamond-like Carbon Films. Diamond and Related Materials. 1999,(8):1490-1495
    11 康飞宇.关于GIC研究的几点见解.碳素技术.2000,109(4):17-20
    12 S. L. Molodtsov. Electronic Structure of Graphite Intercalated with 4f and 5f Elements. Journal of Electron Spectroscopy and Related Phenomena. 1998,96: 157-170
    13 传秀云.石墨层间化合物的合成技术及应用前景.非金属矿.1997,118(4):18-21
    14 关正辉.石墨层间化合物的特性及应用前景.甘肃科技.2002,18(10):48-49
    15 魏环,宋庆功.石墨插层化合物的结构与特性.河北理工学院学报.1999,21(4):67-72
    16 张瑞军,刘建华,沈万慈.石墨层间化合物阶结构的标定方法.碳素.1998,(2):5-9
    17 Eunkyung Kim, Ilwhan Oh, Junhyoun Kwak. Atomic Structure of Highly Ordered Pyrolytic Graphite Doped with Boron. Electrochemistry Communications. 2001,(3):
    
    608-612
    18 刘光辉.石墨嵌入化合物的合成及其性能.吉首大学学报(自然科学版).1998,19(1):77-81
    19 时虎,胡源.石墨层间化合物的合成和应用.碳素技术.2002,119(2):29-32
    20 传秀云.超微粉石墨层间化合物CuCl_2-NiCl_2-GICs合成及电学性能.材料科学与工程.1998,62(2):68-71
    21 李冷,曾宪滨.石墨层间化合物(GIC)的研究及应用.非金属矿.1994,97(1):58-63
    22 J. Walter, H. Shioyama. Boron Trichloride Graphite Intercalation Compound Studied by Selected Area Electron Diffraction and Scanning Tunneling Microscopy. Journal of Physics and Chemistry of Solids. 1999,(60):737-741
    23 Sebastien Pruvost, Claire Herold, Albert Herold, Philippe Lagrange. On the Great Difficulty of Intercalating Lithium with a Second Element into Graphite. Carbon. 2003, (41):1281-1289
    24 朱继平,程继贵.C_X~+·HSO_4~-插层化合物的水热法合成.合肥工业大学学报(自然科学版).2001,23(6):1076-1078
    25 任慧,焦清介,乔小晶,王长福.三元石墨插层化合物的合成与表征.北京理工大学学报.2003,23(2):248-251
    26 Jiayan Xua, Yuan Hua, Lei Song, etc. Thermal Analysis of Poly(vinyl alcohol)/Graphite Oxide Intercalated Composites. Polymer Degradation and Stability 2001,73:29-31
    27 E. Gheeraert, N. Casanova, A. Tajani, etc. n-Type Doping of Diamond by Sulfur and Phosphorus. Diamond and Related Materials. 2002,(11): 289-295
    28 A. W. Otherspoon, J. W. Steeds, P. Coleman, etc. Photoluminescence Studies of Type IIa and Nitrogen Doped CVD Diamond. Diamond and Related Materials. 2002(11): 692-696
    29 邵乐喜,刘小平,屈菊兰,等.原位氮掺杂对CVD金刚石薄膜生长和结构的影响.真空科学与技术.2002,22(3):221-225
    30 S. L. Molodtsov. Electronic Structure of Graphite Intercalated with 4f and 5f Elements. Journal of Electron Spectroscopy and Related Phenomena. 1998,96: 157-170
    31 J. Davidson, W. Kang, K. Holmes, etc. CVD Diamond for Components and Emitters.
    
    Diamond and Related Materials. 2001,(10): 1736-1742
    32 谢二庆,金运范,王志光,贺德衍.C-N化合物合成研究.原子核物理评论.2000,17(3):171-174
    33 封进.含氮金刚石的合成与探讨.金刚石与磨料磨具工程.1999,133(5):14-16
    34 R. Kalish. Doping of diamond. Carbon. 1999,(37):781-785
    35 张伟丽,夏义本,居建华,等.不同掺氮量的类金刚石薄膜的电导性能.半导体光电.2003,24(1):41-45
    36 周斌,黄耀东,李忻,等.自截止腐蚀制备Si平面薄膜中的B杂质分析.2002,36(4/5):364-366
    37 张仿清,谢二庆,杨斌,等.硼掺杂半导体金刚石薄膜的合成与红外吸收特性.半导体学报.1995,16(6):468-472
    38 R. Lecher, J. Wagner, F. Fuchs, etc. Boron Doped Diamond Films: Electrical and Optical Characterization and the Effect Compensating Nitrogen. Materials Science and Engineering, 1995(B29): 211-215.
    39 韩佳宁,赵庆勋,辛红丽,文钦若.金刚石n型掺杂的研究进展.河北大学学报(自然科学版).2002,22(1):87-91
    40 郑昌琼,张铭诚,冉均国.金刚石薄膜品质及其表征.材料研究学报.1997,11(3):231-239
    41 张仿清,张文军,胡搏,等.硼掺杂及未掺杂金刚石薄膜的电学和光电导特性.半导体学报.1995,16(10):783-788
    42 Chia-Fu Chen, Sheng Hsiung Chen. Electrical Properties of Boron-doped Diamond Films after Annealing Treatment. Diamond and Related Materials. 1995,(4): 451-455
    43 威建兵,黄浩,赵玉成.含掺杂的金刚石.金刚石与磨料磨具工程.2001,(1):16-18
    44 Othon R. Monteiro. Plasma Synthesis of Hard Materials with Energetic Ions. Nuclear Instruments and Methods in Physics Research B.1999,148:12-16
    45 R.A.劳迪斯,刘光照译.晶体生长.北京:科学出版社,1979:92-106
    46 Zang. J. B., Wang. Y. H., Zhang. X. M., Huang. H., Zhao. Y. C. Synthesis of B-doped diamond using graphite intercalation compounds (GICs). Journal of Materials Processing Technology. 2002. 3(129): 454-457
    47 顾学民,龚毅生,臧希文,等.无机化学丛书·第二卷铍碱土金属硼铝镓分族.北京:科学出版社,1990:374-380
    
    
    48 徐仲榆,苏玉长.用原位-X射线衍射法研究石墨在98%硫酸中进行插(脱)层.碳素.1996,(4):1-7
    49 何雪梅.天然金刚石的红外光谱特征及其分类.地质与勘探.2000,36(4):45-47
    50 王松顺,程林,王民用.含硼T641石墨炭源合成含硼金刚石晶体的结构、性质与应用效果.炭素.2001,(1):28-33
    51 华南工学院,南京化工学院,清华大学.陶瓷材料物理性能.北京:中国建筑工业出版社,1979:113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700