膨胀石墨负载CuO_x催化剂的制备及其对分子氧氧化环己烯催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烯丙位氧化反应是一类十分重要的有机氧化反应,环己烯在烯丙位发生氧化可以生成2-环己烯-1-酮,2-环己烯-1-醇等重要的化工中间体。其传统生产工艺是采用铬酸氧化环己烯制取,存在产率低、分离困难,且污染严重等问题。分子氧易得廉价,对环境无污染,是氧化反应最理想的氧源,但由于分子氧的相对化学惰性,氧化效率低,因此,寻找高活性、高选择性的催化剂是实现环己烯选择性氧化制备环己烯酮的关键。本文从催化剂制备及环己烯氧化产物的合成方法出发,主要开展了以下几个方面的工作:
     (1)通过还原法制备了鳞片石墨(FG)负载CuOx催化剂(Cu/FG),考察其催化分子氧氧化环己烯性能。结果表明主要发生烯丙位氧化生成2-环己烯-1-酮和2-环己烯-1-醇。考察了反应条件对环己烯选择性氧化反应的影响:在溶剂乙腈中,以分子氧为氧化剂,H202为引发剂,在60℃反应12 h,其催化效果最佳。GC-MS检测显示反应转化率为45.8%,烯丙位氧化产物的总选择性可达90%以上,其中2-环己烯-1-酮的选择性可达49.7%。
     (2)FG经化学氧化处理,高温膨胀后,得到蠕虫状膨胀石墨(EG),制备了膨胀石墨负载纳米CuOx催化剂(Cu/EG),考察其催化分子氧氧化环己烯性能,结果显示Cu/EG的催化效果明显优于Cu/FG:在较温和的条件下可以有效的催化分子氧氧化环己烯反应,环己烯的转化率达到70%以上,2-环己烯-1-酮的选择性可达61.8%。通过SEM及其对应的EDAX、XRD、FT-IR、ICP和N2吸附脱附等方法对催化剂及其载体进行表征,结果表明,FG进行化学氧化高温膨胀处理,一方面增大了载体的比表面积,在EG表面形成了-OH,C=O和C-O-C等官能团;另一方面还引入了Fe和Mn,提供了多元催化活性中心,提高了其催化能力。
     (3)采用间歇式加料法,制备了具有十字针状特殊形貌的膨胀石墨负载纳米CuOx催化剂(Cu/EG),其化学组成与一次加料还原法制备的Cu/EG完全相同。但催化效果却有一定程度的提升:环己烯转化率达到90%以上,烯酮产物选择性并没有明显的上升。考察了催化剂负载量、溶剂、制备方法和反应时间等因素对反应的影响,优化了反应工艺。在最优条件下,环己烯的转化率达到98.2%,烯酮产物的选择性为62.1%。该类催化剂可以重复使用3次,催化效果没有明显下降。进一步探讨了铜催化剂在此体系中可能的反应机理。
     (4)通过改变强氧化剂KMnO4(?)插层剂FeCl3的用量,制备了三种不同类型的膨胀石墨:EG1、EG2和EG3。间歇式加料硼氢化钠还原法制备了铜负载量接近的三类催化剂:Cu/EG1, Cu/EG2和Cu/EG3。在相同的反应条件下催化分子氧氧化环己烯反应。结果表明, Cu/EG3表现出较好的催化效果:环己烯的转化率达到98.9%,烯酮产物的选择性达到71.3%。对Cu/EG3掺杂Bi, Co, Ni,对该类催化剂的催化效果有一定的影响。其中Bi掺杂的效果最好:环己烯的转化率达到100%,烯酮产物的选择性达到78.9%。此催化剂循环使用4次后催化性能仍然良好,反应的转化率和烯酮产物的选择性仍可达88.3%,73.2%。
2-cyclohexene-l-one and its derivatives are very important Chemical intermediates in the manufacture of high-value fine chemicals, agrochemicals and pharmaceuticals. In traditional production process, 2-cyclohexene-1-one is prepared by oxidation of cyclohexene with chromic acid. There are many problems concerning low yield, catalyst lost, harsh condition, and serious pollution. Consequently, the development of oxidation reaction using molecular oxygen as a cheap, environmentally clean and convenient oxidant has attracted significant attention. Unfortunately, it was observed that the oxidation efficiency of molecular oxygen was poorer than other oxidants. Therefore, it is the key challenge to find effective catalysts for activation of molecular oxygen in developing new procedures using O2 as a green oxidant. Herein, with the aim to developing novel and more efficient catalyst, the research works below have been done:
     (1) Flake graphite supported CuOx catalyst (Cu/FG) is prepared and characterized by SEM, TEM and XRD, and applied to the oxidation of cyclohexene with molecular oxygen.2-cyclohexene-1-one and 2-cyclohexene-ol are got as the main products by ally lic oxidation. The influence of a series of different conditions for the reaction is also investigated. To a solution of cyclohexene (0.02 mol) in acetone (20 mL) in a three-necked flask equipped reflux condenser was added Cu/FG(1 wt%based on cyclohexene), the mixture was heated to 60℃and stirred for 12 h under 1 atm O2. The reaction conversion rate is 45.8%, and the total selectivity of allylic oxidation products is more than 90%, in particular, the selectivity of 2-cyclohexene-1-one could reach 49.7%.
     (2) Expanded graphite (EG) is prepared from FG by chemical oxidation. EG supported CuOx nano-catalysts (Cu/EG) is prepared and applied to the oxidation of cyclohexene reaction. Cu/EG shows superior catalytic activity to Cu/FG. The conversion of cyclohexene can be over 70%, the selectivity of 2-cyclohexene-l-one can be reached 61.8%. Furthermore, in order to explore the reasons, the catalysts are characterized by SEM and the corresponding EDAX, XRD, FT-IR, ICP and N2 adsorption and desorption, etc. Experimental results show the surface area of carriers can be increased by the chemical oxidation, and EG formed-OH, C=O, C-O-C and other functional groups on the surface; Meanwhile, Fe and Mn elements are also introduced into EG, which increase the multiple catalytic active center.
     (3) A novel cross-shaped Cu/EG is prepared by intermittent feeding method. This kind of catalyst showed better catalytic activity:conversion of cyclohexene can be more the 90%. In the optimum conditions, the conversion and the selectivity of 2-cyclohexene-l-one are 98.2% and 62.1%respectively. Such catalysts can be reused 3 times with high activity. Based on the experimental results and the literatures, the possible reaction mechanism is proposed.
     (4) EG1, EG2 and EG3 are prepared by changing the amount of FeCl3 and KMnO4 in the chemical oxidation. Then Cu/EG1, Cu/EG2 and Cu/EG3 are prepared by intermittent feeding. Cu/EG3 shows the best catalytic effect:the conversion of cyclohexene is 98.9%, and the selectivity of 2-cyclohexene-l-one is 71.3%. Furthermore, Bi, Co and Ni are doped into Cu/EG3 respectively. Among these catalysts, Bi-doping Cu/EG3 shows the best catalytic activity:the conversion of cyclohexene is 100%, and the selectivity of 2-cyclohexene-l-one is 78.9%. The supported catalyst can be reused for 4 times with high conversion (88.3%) and selectivity (73.2%).
引文
[1]韩飞.环氧环己烷的综合利用[J].精细石油化工,1998,(5):1-4
    [2]江镇海.环氧环己烷在农药中的应用及市场分析[J].农化市场十日讯,2010,(8):15
    [3]孙小玲,陈萍.环己烯催化环氧化反应的研究新进展[J].化学世界,2009,50(10):631-635
    [4]高燕,王复东,蹇锡高,等.2,5,6-三苯基-2-环己烯酮催化脱氢制2,3,6-三苯基苯酚[J].石油化工,1998,27(10):710-713
    [5]李宗成.近年来丌发的农药新品种[J].农药,2001,40(2):44-47
    [6]盐见浩人,田村丰,B·刘,等.感觉障碍治疗剂,中国专利,200680008819,2006-01-18
    [7]刘长令.环己烯酮类除草剂的创制经纬[J].农药,2002,41(6):46
    [8]李臻,景震强,夏春谷.金属卟啉配合物的催化氧化应用研究进展[J].有机化学,2007,27(1):24-44
    [9]Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene[J]. Journal of the American Chemical Society,1979,101(4):1032-1033
    [10]Cammarota L, Campestrini S, Carrieri M, et al.. One-pot synthesis of ketones and lactones by oxidation of the parent hydrocarbons with KHSO, catalyzed by manganese(Ⅲ) porphyrins in a biphasic, solid-liquid, system[J]. Journal of Molecular Catalysis A:Chemical,1999,137(1-3):155-160
    [11]Slaughter L M, Collman J P, Eberspacher T A, et al.. Radical Autoxidation and Autogenous O2 Evolution in Manganese-Porphyrin Catalyzed Alkane Oxidation with Chlorite[J]. Inorganic Chemistry,2004,43(17):5198-5204
    [12]Rebelo S L H, Simoes M M Q, Neves M G P M S, et al.. Oxidation of alkylaromatics with hydrogen peroxide catalyzed by manganese(III) porphyrins in the presence of ammonium acetate[J]. Journal of Molecular Catalysis A:Chemical,2003,201(1-2):9-22
    [13]Meyer D, Leifels T, Sbaragli L, et al.. Reactivity of a new class of P450 enzyme models[J]. Biochemical and Biophysical Research Communications,2005, 338(1):372-377
    [14]Mandal A K, Khanna V, Javed I. Cobalt(II) Porphyrin:A Versatile Catalyst for the oxidation of Organic Substrates with Dioxygen and 2-Methyl Propanal[J]. Tetrahedron Letters,1996,37(21):3769-3772
    [15]Guo C C, Chu M F, Liu Q, et al.. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents[J]. Applied catalysis A:General,2003,246(2):303-309
    [16]刘文,刘强,郭灿城.钴卟啉对空气氧化环己烯合成环己烯酮的催化作用[J].化工学报,2004,55(9):1537-1540
    [17]孙强,张云天,王丽萍,等.多核金属磺化酞菁催化下的环己烯环氧化反应[J].东北师范大学学报(自然科学版),1995,(1):79-82
    [18]孙强,于艳春,姚小华,等.多核磺化酞菁镍(II)的使用寿命及其对环己烯环氧化反应的催化机理[J].河南师范大学学报(自然科学版),1996,24(1):55-57
    [19]李华明,叶兴凯,吴越Pd(OAc)2/FePc催化环己烯氧化合成环己酮的研究[J].分子催化,1997,11(4):258-262
    [20]Zhang W, Loebach J L, Wilson S R, et al.. Enantioselective Epoxidation of Unfunctionalized Olefins Catalyzed by (Salen)manganese Complexes[J]. Journal of the American Chemical Society,1990,112(7):2801-2803
    [21]Irie R, Noda K, Ito Y, et al.. Catalysis asymmetric epoxidation of unfunctionalized olefins[J]. Tetrahedron Letters,1990,31(50):7345-7348
    [22]熊伟,南光明,刘德蓉.催化氧化环己烯制备环己烯酮[J].西昌师范高等专科学报,2001,13(2):22-25
    [23]王荣民,王建人,郝成君,等.氨基酸席夫碱铜配合物的合成及催化烯烃氧化性能[J].西北师范大学学报,1999,35(4):388-393
    [24]范谦,李耀忠,程克梅,等.组氨酸席夫碱锰配合物的合成及环己烯催化氧化[J].四川大学学报(自然科学版),2001,38(2):230-234
    [25]宋国强,王钒,吕晓玲,等.应用分子氧/正戊醛/三氧化二钴体系氧化环己烯的研究[J].江苏石油化工学院学报,1999,11(3):13-15
    [26]陈媛,尹笃林,钟文周,等.五氧化二钒催化环己烯烯丙位氧化[J].催化学报,2006,27(11):983-986
    [27]Fullerton D S, Chen C M. In situ allylic oxidations with Collins reagent[J]. Synthetic Communication,1976,6(3):217-220
    [28]Salvador J A R, Melo M L S, Neves A S C. Copper-Catalysed Allylic Oxidation of △5-Steroids by t-Butyl Hydroperoxide[J]. Tetrahedron Letters,1997, 38(1):119-122.
    [29]Anzenbacher P, Jr., Kral V. Pyridiniumporphyrin covalently bound to polystyrene: an efficient model of cytochrome P-450 reactivity [J]. Journal of Molecular Catalysis A:Chemical,1995,96(3):311-315
    [30]Gotardo M C A F, Guedes A A, Schiavon M A, et al.. Polymeric membranes:the role this support plays in the reactivity of different generations of metalloporphyrins[J]. Journal of Molecular Catalysis A:Chemical,2005, 229(1-2):137-143
    [31]段宗范,王荣民,何玉凤,等.高分子担载水杨醛席夫碱钴配合物催化分子氧氧化环己烯性能的研究[J].分子催化,2005,19(5):383-387
    [32]Chang Y, Lv Y R, Lu F, et al.. Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes[J]. Journal of Molecular Catalysis A:Chemical,2010, 320(1-2):56-61
    [33]Silvestre S M, Salvador J A R, Clark J H. (3-Selective epoxidation of A5-steroids by O2 using surface functionalised silica supported cobalt catalysts[J]. Journal of Molecular Catalysis A:Chemical,2004,219(1):143-147
    [34]Chisem J, Chisem I C, Clark J H, et al.. Liquid phase oxidations using novel surface functionalised silica supported metal catalysts[J]. Chemical Communication,1997, (22):2203-2204
    [35]Andrew J B, James H C, Paul H W, et al.. Environmentally friendly catalysis using supported reagents:catalytic epoxidation using a chemically modified silica gel[J]. Chemical Communication,1996, (16):1859-1860
    [36]Narayanan C R, David L S, John G E, et al.. Selective Oxidation of 1-Butene over Silica-Supported Cr(VI), Mo(VI), and W(VI) Oxides[J]. Journal of Catalysis,1998,176(1):143-154
    [37]Chen L Q, Liang J, Lin H, et al.. MCM41 and silica supported MoVTe mixed oxide catalysts for direct oxidation of propane to acrolein[J]. Applied Catalysis A: General,2005,293:49-55
    [38]冯辉霞,王荣民,王云普.分子筛固载镍席夫碱金属配合物的催化氧化性能研究[J].甘肃工业大学学报,2003,29(1):70-72
    [39]Mao J Y, Hu X B, Li H R, et al.. Iron chloride supported on pyridine-modified mesoporous silica:an efficient and reusable catalyst for the allylic oxidation of olefins with molecular oxygen[J]. Green Chemistry,2008,10(8):827-831
    [40]杜记民,李强,付磊霞,等.二氧化硅负载五氧化二钒合成、表征和催化性能研究[J].河北科技大学学报,2010,31(2):166-171
    [41]Karandikar P, Dhanya K C, Deshpande S, et al.. Cu/Co-salen immobilized MCM-41:characterization and catalytic reactions[J]. Catalysis Communications, 2004,5(2):69-74
    [42]任通,闫亮,张汉鹏,等.MCM-41固载Co席夫碱配合物的制备及其催化烯烃环氧化的研究[J],分子催化,2003,17(4):310-312
    [43]李珊,杨涛,王学猛,等.分子氧氧化环己烯制备环己烯酮[J],精细化工2009,26(2):205-208
    [44]杨国玉,朱林海,蒋登高CoPc/MCM-41催化氧化环己烯合成环己烯酮[J].精细化工,2006,23(7):721-724
    [45]胡晓伟,谈俊,余皓,等.碳材料在多相催化过程中的应用[J].工业催化,2010,18(3):22-30
    [46]韦业,高林.膨胀石墨的多孔结构及其应用[J].长江大学学报(理工版),2008,5(1):173-175
    [47]关正辉.石墨层间化合物的特性及应用前景[J],甘肃科技,2002,18(10):93-94
    [48]卢锦花,李贺军.石墨层间化合物的制备、结构与应用[J],碳素技术,2003,(1):21-26
    [49]时虎,胡源.石墨层间化合物的合成和应用[J].碳素技术,2002,(2):29-32
    [50]刘建东.石墨层间化合物的制造和利用[J].碳素技术,1991,(5):30-37
    [51]樊邦棠.一种新颖工程材料——膨胀石墨[J].化学通报,1987,(10):34-39
    [52]Furdin G. Exfoliation process and elaboration of new carbonaceous materials[J]. Fuel,1998,77(6):479-485
    [53]Suarez-Garcia F, Martinez-Alonso A, Tascon J M D, et al.. Characterization of porous texture in composite adsorbents based on exfoliated graphite and polyfurfuryl alcohol[J]. Fuel Processing Technology,2002, (77-78):401-407
    [54]曹乃珍,沈万慈,温诗铸,等.膨胀石墨制备及微孔结构相关性研究[J].材料科学与工艺,1997,5(2):121-123
    [55]陈志刚,张 勇,杨 娟,等.膨胀石墨的制备、结构和应用[J].江苏大学学报(自然科学版),2005,26(3):248-252
    [56]曹乃珍,沈万慈,刘英杰,等.膨胀石墨的微观结构分析[J].炭素技术,1996,(1):1
    [57]曹乃珍,沈万慈,温诗铸,等.膨胀石墨的吸附作用[J].新型碳材料,1995,(4):51-53
    [58]Zheng W G, Wong S C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites[J]. Composites Science and Technology, 2003,63(2):225-235
    [59]Wang Z D, Inagaki M. Intercalation of FeCl3 into graphite films in molten salts [J]. Synthetic Metals,1991,44(2):165-176
    [60]Dedov A V. Sorption properties of thermally expanded graphite[J]. Chemistry and Technology of Fuels and Oils,2001,37(2):134-135.
    [61]Yaroshenko A P, Savoskin M V, Magazinskii AN, et al.. Synthesis and properties of thermally expandable residual graphite hydrosulfite obtained in the system HNO3/H2SO4[J]. Russian Journal of Applied Chemistry,2002,75(6):861-865.
    [62]刘开平,周敬恩.膨胀石墨化学氧化法制备技术研究进展[J].长安大学学报(地球科学版),2003,25(4):85-91
    [63]Kang F, Leng Y, Zhang T Y. Electrochemical synthesis and characterization of formic acid-graphite intercalation compounds[J]. Carbon,1997, 35(8):1089-1096
    [64]Li J H, liu Q, Da H F. Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature [J]. Materials Letters,2007,61(8-9):1832-1834
    [65]Li J H, Li M, Hu H Y, et al.. A new preparation method of lower-sulfur content expandable graphite, New Carbon Materials,1999,14(1):65-68.
    [66]王慎敏,乔英杰,周群.高锰酸钾与浓硫酸混合氧化法制备低硫可膨胀石墨[J].哈尔滨理工大学学报,1999,4(5):24-27
    [67]甄捷,乔英杰,王慎敏.低硫可膨胀石墨制备工艺研究[J].哈尔滨理工大学学报,2005,10(3):54-55
    [68]连锦明,童庆松,郑曦,等.电解氧化法膨胀石墨形成机理研究[J].化学研究,2000,11(6):45-47
    [69]Kang F, Zhang T Y, Leng Y. Electrochemical synthesis of sulfate graphite intercalation compounds with different electrolyte concentrations [J]. Journal of Physics and Chemistry of Solids,1996,57(6):883-888
    [70]Vieira F, Cisneros I, Sansiviero M T C, et al.. preparation processes and Properties of expanded graphite for alkaline batteries[J]. Journal of Physics and Chemistry of Solids,2006,67(5):1208-1212
    [71]Kang F, Leng Y, Zhang Y T, et al.. Electrochemical synthesis and characterization of ferric chloride-graphite intercalation compounds in aqueous solution[J]. Carbon,1998,36(4):383-390
    [72]赵正平.电解法制备无硫可膨胀石墨研究[J].非金属矿,2003,26(2):18-19
    [73]Inagaki M. Application of graphite intercalation compounds[J]. Journal of Materical Research,1989,4(6):1560-1568
    [74]Matsui L Y, Tsaregradradskaya T L, Vo Vchenko L L, et al.. Detailed examination of the Physical Properties of composite materials based on thermally expanded graphite, modified with nickel[J]. Journal of advanced Materials,2003, 4(9):422-427
    [75]Dedov A V. Kinetics of sorption of petroleum products from the surface of water by thermally expanded graphite[J]. Chemistry and Technology of Fuels and oils, 2006,2(3):496-498
    [76]Savoskin M V, Yaroshenko A P, Shologon V I, et al.. Influence of pretreatment of expanded graphite on its sorption properties with respect to petroleum [J]. Russian Journal of Applied Chemisty,2003,76(7):1179-1181
    [77]Inagaki M, Toyoda M, Iwashita N, et al.. Exfoliated graphite for spilled heavy oil recovery[J]. Carbon Science,2001,2:1-8
    [78]Inagaki M, Konno, Toyoda M, et al.. Sorption and recovery of heavy oils by using exfoliated graphite. Part Ⅱ:Recovery of heavy oil and recycling of exfoliated graphite[J]. Desalination,2000,128(3):213-218
    [79]Tryba B, Przepiorski J, Morawski A W. Influence of chemically Prepared H2SO4-graphite intercalation compound(GIC) precursor on parameters of exfoliated graphite for oil sorption from water[J]. Carbon,2002, 41(10):2009-2025
    [80]Kang F, Zhang Y, Zhao H, et al.. Sorption of heavy oil and biomedical liquids into exfoliated graphite-Research in China[J]. New Carbon Material,2003, 18(3):161-173
    [81]连锦明,陈前火,甘晖,等.膨胀石墨对甲醛废气吸附行为的研究[J].吉林化工学院学报,2005,22(1):1-3
    [82]Krzesinska M, Lachowski A I. Elastic properties of monolithic porous blocks of compressed expanded graphite related to their specific surface area and pore diameter[J]. Materials of Chemistry and Physics,2004,86(1):105-111
    [83]Celzard A, Mareche J F, Furdin G. Describing the properties of compressed expanded graphite through power laws[J]. Journal of Physics,2003, 15(10):7213-7226
    [84]Celzard A, Mareche J P, Furdin G. Surface area of compressed expanded graphite[J]. Carbon,2002,40(6):2713-2718
    [85]Bhattacharya A, Hazra A, Chatterjee S, et al.. Expanded graphite as an electrode material for an alcohol fuel cell[J]. Journal of Power Sources,2004, 136(2):208-210
    [86]Wissler M. Graphite and carbon powders for electrochemical application[J]. Journal of Power Sources,2006,156(2):142-150
    [87]Chuan X Y, Chen D Z, Zhou X R. Electrical properties of expanded graphite Intercalation compounds [J]. Journal of Materials Science and Technology,2001, 17(3):167-171
    [88]杨健松,李玉峰,赖奇.膨胀石墨的研究与开发利用[J].攀枝花学院报,2006,23(6):99-102
    [89]陈力,蔡德福,任显诚.苯乙烯系树脂的无卤阻燃研究进展[J].塑料,2005,34(2):18-25
    [90]沈万慈,曹乃珍,李晓峰,等.多孔石墨吸附材料的生物医学应用研究[J].新型碳材料,1998,13(1):49-53
    [91]乔小晶,张同来,任慧,等.爆炸法制备膨胀石墨及其干扰性能[J].火炸药学报,2003,26(1):70-73
    [92]Li W, Han C, Liu W, et al.. Expanded graphite applied in the catalytic process as a catalyst support[J]. Catal Today,2007,125(3-4):278-281
    [93]刁明慧,张明慧,李伟,等.新型钉催化剂用于葡萄糖加氢反应[J].分子催化,2007,21(4):289-293
    [94]黄绵峰,郑治祥,徐光青,等.膨胀石墨负载纳米二氧化钛光催化剂的制备、表征与其光催化性能[J].硅酸盐学报,2008,36(3):325-329
    [95]Serwicka E M, Poltowicz J, Bahranowski K, et al.. Cyclohexene oxidation by Fe-, Co-, and Mn-metalloporphyrins supported on aluminated mesoporous silica[J]. Applied Catalysis A:General,2004,275(1-2):9-14
    [96]Poltowicz J, Serwicka E M, Bastardo-Gonzalez E, et al.. Oxidation of cyclohexene over Mn(TMPyP) porphyrin-exchanged Al,Si-mesoporous molecular sieves[J]. Applied Catalysis A:General,2001,218(1-2):211-217
    [97]Jacobsen E N, Zhang W, Muci A R, et al.. Highly Enantioselective Epoxidation Catalysts Derived from 1,2-Diaminocyclohexane[J]. Journal of the American Chemical Society,1991,113(18):7063-7064
    [98]Kureshy R I, Khan N H, Abdi S H R, et al.. Catalytic asymmetric epoxidation of non-functionalised alkenes using polymeric Mn(III) Salen as catalysts and NaOCl as oxidant[J]. Journal of Molecular Catalysis A:Chemical,2004, 218(2):141-146
    [99]Nam W, Oh S Y, Sun Y J, et al.. Factors Affecting the Catalytic Epoxidation of Olefins by Iron Porphyrin Complexes and H2O2 in Protic Solvents[J]. The Journal of Organic Chemistry,2003,68(20):7903-7906
    [100]Sui Y, Zeng X R, Fang X N, et al.. Synthses, structure, redox and catalytic epoxidation properties of dioxomolybdenum(Ⅵ) complexes with Schiff base ligands derived from tris(hydroxymethyl)amino methane[J]. Journal of Molecular Catalysis A:Chemical,2007,270(1-2):61-67
    [101]Haughton L, Williams J M J. Catalytic applications of transition metals in organic synthesis[J]. Journal of the Chemical Society, Perkin Transactions 1, 2000,20:3335-3349
    [102]方钊.负载型乙酰丙酮钴(钼)催化剂的制备及催化分子氧氧化环烯烃研究:[硕士学位论文].长沙:中南大学,2009
    [103]云晓.离子化合物支载的催化剂在环己烯氧化反应中的应用: [硕士学位论文].杭州:浙江大学,2006
    [104]周文峰.分子氧氧化环己烯合成环己烯酮的研究:[硕士学位论文].郑州:郑州大学,2007
    [105]Kameyama H, Narumi F, Hattori T, et al.. Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite[J], Journal of Molecular Catalysis A:Chemical,2006, 258(1-2):172-177
    [106]陈丽珍,安树茂,魏田玉.分子筛固载希夫碱锰配合物催化环己烯环氧化[J].山西化工,2009,29(1):9-11
    [107]晋春,郭永,薛万华,等.MCM-41介孔分子筛固载Schiff碱钴配合物催化烯烃环氧化[J].石油化工,2009,38(5):486-492
    [108]Guo P, Wong K Y. Enantioselective electrocatalytic epoxidation of olefins by chiral manganese Schiff-base complexes[J]. Electrochemistry Communications, 1999, 1(11):559-563
    [109]Moutet J C, Ourari A. Electrocatalytic epoxidation and oxidation with dioxygen using manganese(Ⅲ) Schiff-base complexes[J]. Electrochimica Acta,1997, 42(16):2525-2531
    [110]Kholdeeva O A, Grigoriev V A, Maksimov G M, et al.. Polyfunctional action of transition metal substituted heteropolytungstates in alkene epoxidation by molecular oxygen in the presence of aldehyde[J]. Journal of Molecular Catalysis A:Chemical,1996,114(1-3):123-130
    [111]Nam w, Kim H J, Kim S H, et al.. Metal Complex-Catalyzed Epoxidation of Olefins by Dioxygen with Co-Oxidation of Aldehydes. A Mechanistic Study[J]. Inorganic Chemistry.1996,35 (4):1045-1049
    [112]Dapurkar S E, Kawanami H, Komura K, et al.. Solvent-free allylic oxidation of cycloolefins over mesoporous CrMCM-41 molecular sieve catalyst at 1 atm dioxygen[J]. Applied Catalysis A:General,2008,346(1-2):112-116
    [113]范谦,黎耀忠,程溥明,等.环己烯烯丙位氧化研究[J].化学研究与应用,2001,13(5):557-559
    [114]Meng X J, Lin K F, Yang X Y, et al.. Catalytic oxidation of olefins and alcohols by molecular oxygen under air pressure over Cu2(OH)PO4 and Cu4O(PO4)2 catalysts[J]. Journal of Catalysis,2003,218(2):460-464
    [115]Solomon E I, Sundaram U M, Machonkin T E. Multicopper Oxidases and Oxygenases[J]. Chemical Reviews,1996,96(7):2563-2605
    [116]Jiang D M, Mallat T, Meier D M, et al.. Copper metal-organic framework: Structure and activity in the allylic oxidationof cyclohexene with molecular oxygen[J]. Journal of Catalysis,2010,270(1):26-33
    [117]Hughes M D, Xu Y J, Jenkins P, et al.. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J]. Nature,2005,437:1132-1135
    [118]刘国钦,闫珉.细鳞片膨胀石墨的制备研究[J].四川大学学报(自然科学版),2002,39(4):716-720
    [119]王荣民,俞天智,何玉凤,等.用GC-MS和GC-IR研究环己烯分子氧氧化的络合催化反应[J].高等学校化学学报,1999,20(11):1772-1775
    [120]Liu J P, Huang X T, Li Y Y, et al.. Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology[J]. Crystal Growth Design,2006,6(7):1690-1696
    [121]Sing K S W, Everett D H, Haul R A W, et al.. Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity[J]. Pure Appled Chemistry,1985,57(4):603-619
    [122]Titelman G I, Gelman V, Bron S, et al.. Characteristics and micro structure of aqueous colloidal dispersions of graphite oxide[J]. Carbon,2005, 43(3):641-649
    [123]Cerezo F T, Preston C M I, Shanks R A. Structural, mechanical and dielectric properties of poly(ethylene-co-methyl acrylate-co-acrylic acid) graphite oxide nanocomposites[J]. Composites Science and Technology,2007,67(1):79-91
    [124]Weiner H, Trovarelli A, Finke R G. Expanded product, pluskinetic and mechanistic, studies of polyoxoanion-based cyclohexene oxidation catalysis:the detection of-70 products at higher conversion leading to a simple, product-based test for the presence of olefin autoxidation[J]. Journal of Molecular Catalysis A:Chemical,2003,191(2):217-252
    [125]Wang R M, Hao C J, Wang Y P, et al. Amino acid Schiff base complex catalyst for effective oxidation of olefins with molecular oxygen[J]. Journal of Molecular Catalysis A:Chemical,1999,147(1-2):173-178
    [126]Taft R W, Bordwell F G. Structural and solvent effects evaluated from acidities measured in dimethyl sulfoxide and in the gas phase [J]. Accounts of Chemical Research,1988,21(12):463-469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700