基于芳基三氮烯的杂环化合物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环化学是有机化学的一个重要组成部分。杂环化合物的应用范围极广,涉及医药、农药、染料、生物膜材料、超导材料、贮能材料、分子器件等。因此,探索杂环化合物的合成方法在有机化学的各研究领域中占有极其重要的地位。三氮烯官能团(R-N=N-NR'R")的每个键(R-N、N=N和N-N)能在特定的反应条件下选择性断裂,是合成杂环化合物的重要前体。本文总结了三氮烯参与的反应,介绍了基于三氮烯合成咔唑、二苯并呋喃、吲唑、二氢呋喃-喹啉和4-喹诺酮等杂环的方法。主要内容如下:
     1. Lewis酸催化的联苯三氮烯的分子内芳基取代反应合成咔唑、二苯并呋喃化合物
     我们发现了在BF3·OEt2作用下,联苯三氮烯化合物能发生分子内的亲核芳基取代反应生成多取代的咔唑和二苯并呋喃类化合物。用以上合成咔唑的方法,我们成功地合成了天然产物Clausine C、Clausine R和Clauraila A。
     2. Bi(OTf)3或DBSA(十二烷基苯磺酸)催化的芳基三氮烯烯丙醇的分子内环化反应合成3-烯基-吲唑化合物
     我们报道了以Bi(OTf)3为催化剂,以CH2Cl2为溶剂,芳基三氮烯烯丙醇能被高效地转化为3-烯基-2H-吲唑化合物,该反应有着很好的官能团兼容性。随后我们发现以更廉价便宜的表面活性剂DBSA为催化剂,以绿色环保的水为溶剂,也能成功地实现以上转化。并且在Zn和CH3COOH的作用下,3-烯基-2H-吲唑能脱掉吡咯基团生成了3-烯基-1H-吲唑化合物。
     3.从芳基三氮烯环丙基二酮出发合成二氢呋喃-喹啉和4-喹诺酮类化合物
     在NaN3和BF3·OEt2/TFA的作用下,我们先将芳基三氮烯环丙基二酮转化为芳基叠氮环丙基二酮化合物。在Ru(PPh3)3Cl2的催化下,我们成功地实现了芳基叠氮环丙基二酮的还原串联关环反应得到了二氢呋喃-喹啉化合物,反应机理研究表明反应经过还原、关环和重排的过程。此外,在另一还原条件Pd/C-H2作用下,我们用相同的原料高选择性地得到了4-喹诺酮类化合物。
Heterocyclic chemistry is an important composing part of organic chemistry. In view of the particularly interesting properties and wide applications of heterocyclic compounds in medicine, pesticides, dyes, biological membrane materials, superconducting materials, molecular devices and storage materials, new practical synthetic methods for the construction of heterocyclic compounds are highly desired. Aryl triazenes (R-N=N-NR'R"), as useful building blocks for the construction of new organic heterocycles, have been studied extensively. An attractive feature of aryl triazenes is all bonds (R-N, N=N, and N-N) of the triazene functionality can be broken selectively that may lead to the formation of a variety of different heterocycle products. Thus, it is accessible but challenging to control the regio-and stereoselectivity of the triazene chenistry to form functionalized heterocyclic compounds. In this dissertation, we summarized the reactions related to the triazene and described the new reactions and methods for constructing carbazoles, dibenzofurans, indazoles, dihydrofuro-quinolines and4-quinolones. The main contents are as follows.
     1. Lewis Acid-Promoted Intramolecular Aromatic Substitution for the Synthesis of Carbazoles and Dibenzofurans from Biaryl Triazenes
     We discovered a BF3?OEt2-promoted nucleophilic aromatic substitution approach to the synthesis of highly substituted carbazoles and dibenzofurans from biaryl triazenes. The annulation process was applied to the total synthesis of carbazole alkaloids:Clausine C, Clausine R and Clauraila A.
     2. Bi(OTf)3or DBSA Catalyzed Intramolecular Cyclization of Triazenylaryl Allylic Alcohols for he Synthesis of trans-3-Alkenyl Indazoles
     An efficient Bi(OTf)3catalyzed synthesis of3-alkenyl-2-pyrrolidine-2H-indazoles in CH2Cl2from triazenylaryl allylic alcohols is reported. The reaction has a good functional groups tolerance. Then an alternative but more economical and environmentally friendly reaction system was achieved. When using dodecyl benzene sulphonic acid (DBSA) as the catalyst, the reaction can be carried out in water. Furthermore, upon cleavage pyrrolidine from trans-3-alkenyl-2-pyrrolidine-2H-indazoles with Zn in CH3COOH, trans-3-alkenyl-1H-indazoles were obtained in good to excellent yields.
     3. Synthesis of Dihydrofuro-quinolines and4-Quinolones Starting from Triazene-cyclopropyl Ketones
     The reaction of triazene-cyclopropyl ketones with NaN3in the presence of BF3?OEt2/TFA gave azido-cyclopropyl ketones. And then we developed the Ru-catalyzed synthesis of dihydrofuro-quinolines from azido-cyclopropyl ketones via the reduction-cyclization-rearrangement process. When the reaction was carried out under H2(1atm) in the presence of Pd/C, the4-quinolones were obtained in excellent yields.
引文
[1]Saunders, K. H. The Aromatic Diazo Compounds,2nd ed., Longmans, Green and Co., New York,1949, pp.157-179, and references therein.
    [2]Merkuehev, E. B. Advances in the Synthesis of Iodoaromatic Compounds. Synthesis 1988,923
    [3](a) Jones, Ⅱ, L.; Schumm, J. S.; Tour, J. M. Rapid Solution and Solid Phase Syntheses of Oligo(1,4-phenylene ethynylene)s with Thioester Termini:Molecular Scale Wires with Alligator Clips. Derivation of Iterative Reaction Efficiencies on a Polymer Support. J. Org. Chem.1997,62,1388. (b) Zhu, Z.; Moore, J. S. Synthesis and Characterization of Monodendrons Based on 9-Phenylcarbazole. J. Org. Chem. 2000, 65, 116. (c) Moore, J. S. Shape-Persistent Molecular Architectures of Nanoscale Dimension. Acc. Chem. Res. 1997, 30, 402, and references therein, (d) Tour, J. M. Molecular Electronics. Synthesis and Testing of Components. Ace. Chem. Res.2000,33,791. (e) Pugh, C.; Dharia, J.; Arehart, S. V. Correlation of Model Compounds and Laterally Attached Side-Chain Liquid Crystalline Polynorbornenes with a 1-Carbon Spacer. Macromolecules 1997,30, 4520. (f) Kehoe, J. M.; Kiley, J. H.; Johnson, C. A.; English, J. J.; Petersen, R. C; Haley, M. M. Carbon Networks Based on Dehydrobenzoannulenes.3. Synthesis of Graphyne Substructures. Org. Lett.2000,2,969. (g) Pak, J. J.; Weakley, T. J. R.; Haley, M. M. Stepwise Assembly of Site Specifically Functionalized Dehydrobenzo[18]annulenes.J. Am. Chem. Soc.1999,121,8182.
    [4]Modern Acetylene Chemistry (Eds.:Stang, P. J.; Diederich, F.), VCH, Weinheim, 1995.
    [5]Moore, J. S.; Weinstein, E. J.; Wu, Z. A Convenient Masking Group for Aryl Iodides. Tetrahedron Lett.1991,32,2465.
    [6]Satyamurthy, N.; Barrio, J. R. Cation Exchange Resin (hydrogen form) Assisted Decomposition of 1-Aryl-3,3-dialkyltriazenes. A Mild and Efficient Method for the Synthesis of Aryl Iodides. J. Org. Chem.1983,48,4394.
    [7]Barrio, J. R.; Satyamurthy, N.; Ku, H.; Phelps, M. E. the Acid Decomposition of 1-Aryl-3,3-dialkyltriazenes. Mechanistic Changes as a Function of Aromatic Substitution, Nucleophile Strength, and Solvent. J. Chem. Soc., Chem. Commun. 1983,443.
    [8]Foster, N. J.; Heindel, N. D.; Burns, H. D.; Muhr, W. Aryl Iodides from Anilines via Triazene Intermediates. Synthesis 1980,72.
    [9]Ku, H.; Barrio, J. R. Convenient Synthesis of Aryl Halides from Arylamines via Treatment of 1-Aryl-3,3-dialkyltriazenes with Trimethylsilyl Halides. J. Org. Chem.1981,46,5239.
    [10]Barbero, M.; Degani, I.; Diulgheroff, N.; Dughera, S.; Fochi, R. 1-Aryl-3,3-dialkyltriazenes:A Convenient Synthesis from Dry Arenediazonium o-Benzenedisulfonimides-A High Yield Break Down to the Starting Dry Salts and Efficient Conversions to Aryl Iodides, Bromides and Chlorides. Synthesis 2001, 2180.
    [11]Wu, Z.; Moore, J. S. Iodine-promoted Decomposition of 1-Aryl-3,3-dialkyltriazenes: A Mild Method for the Synthesis of Aryl Iodides. Tetrahedron Lett.1994,35,5539.
    [12]Satyamurthy, N.; Barrio, J. R.; Schmidt, D. G.; Kammerer, C.; Bida, G. T.; Phelps, M. E. Acid-Catalyzed Thermal Decomposition of 1-Aryl-3,3-dialkyltriazenes in the Presence of Nucleophiles. J. Org. Chem. 1990,55,4580.
    [13]Rosenfeld, M. N.; Widdowson, D. A. A Mild and Efficient Method of Aromatic Fluorination. J. Chem. Soc., Chem. Commun.1979,914.
    [14]Tewson, T. J.; Welch, M. J. Preparation of Fluorine-18 Aryl Fluorides:Piperidyl Triazenes as a Source of Diazonium Salts. J. Chem. Soc., Chem. Commun.1979, 1149.
    [15]Kavac, M.; Anderluh, M.; Vercouillie, J.; Guilloteau, D.; Emond, P.; Mavel, S. Aromatic Fluoro-de-triazenation with Boron Trifluoride Diethyl Etherate under Non-protic Conditions. J. Fluorine Chem.2013,147,5.
    [16]Dobele, M.; Vanderheiden, S.; Jung, N.; Brase, S. Synthesis of Aryl Fluorides on a Solid Support and in Solution by Utilizing a Fluorinated Solvent. Angew. Chem. Int. Ed.2010,49,5986.
    [17]Patrick, T. B.; Juehne, T.; Reeb, E.; Hennessy, D. Zinc(II) Promoted Conversion of Aryltriazenes to Aryl Iodides and Aryl Nitriles. Tetrahedron Lett.2001,42, 3553.
    [18]Liu, C.-Y.; Knochel, P. Preparation of Polyfunctional Aryl Azides from Aryl Triazenes. A New Synthesis of Ellipticine, 9-Methoxyellipticine, Isoellipticine, and 7-Carbethoxyisoellipticin. J. Org. Chem.2007,72,7106.
    [19]Avemaria, F.; Zimmermann, V.; Brase, S. Synthesis of Aryl Azides via Post-Cleavage Modification of Polymer-Bound Triazenes. Synlett 2004,1163.
    [20]Saunders, K. H. The Aromatic Diazo Compounds,2nd ed., Longmans, Green and Co., New York,1949, pp.157-179, and references therein.
    [21]Satyamurthy, N.; Barrio, J. R.; Bida, G. T.; Phelps, M. E. Efficient Conversion of 1-Aryl-3,3-dialkyltriazenes to Phenols and Oxygen-18 Labeled Phenols. Tetrahedron Lett.1990, 31,4409.
    [22]Khazaei, A.; Kazem-Rostami, M.; Moosavi-Zare, A. R.; Bayat, M.; Saednia, S. Novel One-Pot Synthesis of Thiophenols from Related Triazenes under Mild Conditions. Synlett 2012,1893.
    [23]Lormann, M.; Dahmen, S.; Brase, S. Hydro-dediazoniation of Diazonium Salts Using Trichlorosilane:New Cleavage Conditions for the Ti Traceless Linker. Tetrahedron Lett.2000,41,3813.
    [24]Vanderheiden, S.; Bulat, B.; Zevaco, T.; Jung, N.; Brase, S. Solid Phase Synthesis of Selectively Deuterated Arenesw. Chem. Commun.2011,47,9063.
    [25]Schunk, S.; Enders, D. Solid-Phase Synthesis of β-Lactams via the Ester Enolate-Imine Condensation Route. Org. Lett.2000,2,907.
    [26]Bhattacharya, S.; Majee, S.; Mukherjee, R.; Sengupta, S. Heck Reaction of 1-Aryltriazenes. Synth. Commun.1995,25,651.
    [27]Saeki, T.; Matsunaga, T.; Son, E.-C.; Tamao, K. Palladium-Catalyzed Cross-Coupling Reaction of 1-Aryltriazenes with Aryl- and Alkenyltrifluorosilanes. Adv. Synth. Catal.2004,346,1689.
    [28]Patrick, T. B.; Willaredt, R. P.; DeGonia, D. J. Synthesis of Biaryls from Aryltriazenes. J. Org. Chem.1985,50,2232.
    [29]Saeki, T.; Son, E.-C; Tamao, K. Boron Trifluoride Induced Palladium-Catalyzed Cross-Coupling Reaction of 1-Aryltriazenes with Areneboronic Acids. Org. Lett. 2004,6,617.
    [30]Nan, G.; Zhu, F.; Wei, Z. Ligand-free Suzuki-Miyaura Cross-Coupling Reactions of Aryltriazenes with Arylboronic Acids. Chin. J. Chem.2011,29,72.
    [31]Zhu, C.; Yamane, M. Transition-Metal-Free Borylation of Aryltriazene Mediated by BF3?OEt2. Org. Lett.2012,14,4560.
    [32]Gross, M. L.; Blank, D. H.; Welch, W. M. The Triazene Moiety as a Protecting Group for Aromatic Amines. J. Org. Chem.1993,58,2104.
    [33]Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Rhodium(III)-Catalyzed C-H Activation of Arenes Using a Versatile and Removable Triazene Directing Group. Angew. Chem. Int. Ed.2012,51,7242.
    [34]Lazny, R.; Poplawski, J.; Kobberling, J.; Enders, D.; Brase, S. Triazenes:A Useful Protecting Strategy for Sensitive Secondary Amines. Synlett 1999,1304.
    [35]Lazny, R.; Sienkiewicz, M.; Brase, S. Application of Triazenes for Protection of Secondary Amines. Tetrahedron 2001,57,5825.
    [36]Bursavich, M. G.; Rich, D. H. Solid-Phase Synthesis of Aspartic Peptidase Inhibitors:3-Alkoxy-4-Aryl Piperidines. Org. Lett.2001,3,2625.
    [37]Brase, S.; Kobberling, J.; Enders, D.; Lazny, R.; Wang, M.; Bandtner, S. Triazenes as Robust and Simple Linkers for Amines in Solid-phase Organic Synthesis. Tetrahedron Lett.1999,40,2105.
    [38]Dahmen, S.; Brase, S. The First Stable Diazonium Ion on Solid Support-Investigations on Stability and Usage as Linker and Scavenger in Solid-Phase Organic Synthesis. Angew. Chem. Int. Ed.2000,39,3681.
    [39]Dahmen, S.; Brase, S. A Novel Solid-Phase Synthesis of Highly Diverse Guanidines: Reactions of Primary Amines Attached to the T2* Linker. Org. Lett. 2000,2,3563.
    [40]Trost, B. M.; Pearson, W. H. Sulfur Activation of Azides toward Addition of Organometallics. Amination of Aliphatic Carbanions. J. Am. Chem. Soc.1983, 105,1054.
    [41]Trost, B. M.; Pearson, W. H. Azidomethyl Phenyl Sulfide. A Synthon for NH2. J. Am. Chem. Soc.1981,103,2483.
    [42]Sanchez, G; Ruiz, F.; Garcia, J.; Ramirez de Arellano, M. C; Lopez, G. Organonickel(Ⅱ) Complexes with Anionic N-Donor Ligands. Hydration of Coordinated Nitriles at a Nickel(II) Site. Helv. Chim. Acta 1997,80,2477.
    [43]Hanot, V. P.; Robert, T. D.; Kolnaar, J.; Gaasnoot, J. G.; Reedijk, J.; Kooijman, H.; Spek, A. L. Crystal Structure, Magnetic Properties and Spectroscopic Studies of Bis[1,3-bis(pyrazol-3-yl)triazenido]dicopper(Ⅱ) Trihydrate:a Dinuclear Complex with an Asymmetric Double Pyrazolate Bridge. J. Chem. Soc. Dalton Trans.1996, 4275.
    [44]Rapta, P.; Omelka, L.; Stasko, A.:Dauth, J.; Deubzer, B.; Weis, J. Redox-initiated Radical Decomposition of Triazenes and Their Platinum Complexes Studied by Cyclic Voltammetry and EPR Spectroscopy. J. Chem. Soc. Perkin Trans.2 1996, 255.
    [45](a) Wolny, J. A.; Rudolf, M. R.; Ciunik, Z.; Gatner, K.; Wolowiec, S. Cobalt(II) Triazene 1-Oxide Bis(chelates). A Case of Planar (Low Spin)-Tetrahedral (High Spin) Isomerism. J. Chem. Soc. Dalton Trans. 1993,1611. (b) Rudolf, M. F.; Wolny, J. A.; Lis, T.; Starynowicz, P. Synthesis of High-spin Five-co-ordinate Lewis-base Adducts of Bis(triazen-l-olato)cobalt(Ⅱ). Studies of Reversible Dioxygen Binding. J. Chem. Soc. Dalton Trans. 1992,2079.
    [46]Ang, H. G.; Koh, L. L.; Yang, G. Y. Synthesis of 1,3-Diaryltriazenido Triruthenium and Triosmium Clusters:Crystal Structures of [Ru3(μ-H)(CO)io(μ-C6F5NNNC6F5)] and [Os3(CO)11Cl(η2-C6F5NNNC6F5)]. J. Chem. Soc. Dalton Trans.1996,1573.
    [47]Albertin, G.; Antoniutti, S.; Bedin, M.; Castro, J.; Garcia-Fontan, S. Synthesis and Characterization of Triazenide and Triazene Complexes of Ruthenium and Osmium. Inorg. Chem. 2006,45,3816.
    [48]Nuricumbo-Escobar, J. J.; Campos-Alvarado, C.; Rios-Moreno, G.; Morales-Morales, D.; Walsh, P. J.; Parra-Hake, M. Binuclear Palladium(Ⅰ) and Palladium(Ⅱ) Complexes of ortho-Functionalized 1,3-Bis(aryl)triazenido Ligands. Inorg. Chem.2007,46,6182.
    [49]Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.; Kociok-Kohn, G.; Procopiou, P. A. Triazenide Complexes of the Heavier Alkaline Earths:Synthesis, Characterization, And Suitability for Hydroamination Catalysis. Inorg. Chem. 2008,47,7366.
    [50]Tejel, C.; Ciriano, M. A.; Rios-Moreno, G.; Dobrinovitch, I. T.; Lahoz, F. J.; Oro, L. A.; Parra-Hake, M. Crescent-Shaped Rhodium(I) Complexes with Bis(ο-carboxymethylphenyl)triazenide. Inorg. Chem.2004,43,4719.
    [51]Westhusin, S.; Gantzel, P.; Walsh, P. J. Synthesis and Crystal Structures of Magnesium and Calcium Triazenide Complexes. Inorg. Chem.1998,37,5956.
    [52]Johnson, A. L.; Willcocks, A. M.; Richards, S. P. Synthesis and Structures of Group 11 Metal Triazenide Complexes:Ligand Supported Metallophilic Interactions. Inorg. Chem.2009,48,8613.
    [53]Gorji, D. K.; Chauhan, R. S.; Goswami, A. K.; Purohit, D. N. Hydroxytriazenes-A Review. Rev. Anal. Chem.1998,17,223.
    [54](a) Nicolaou, K. C.; Boddy, C. N. C.; Natarajan, S.; Yue, T. Y.; Li, H.; Brase, S.; Ramanjulu, J. M. New Synthetic Technology for the Synthesis of Aryl Ethers: Construction of C-O-D and D-O-E Ring Model Systems of Vancomycin. J. Am. Chem. Soc.1997,119,3421. (b) Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.; Solomon, M. E.; Ramanjulu, J. M.; Boddy, C. N. C.; Takayanagi, M. Total Synthesis of Vancomycin Aglycon-Part 1:Synthesis of Amino Acids 4-7 and Construction of the AB-COD Ring Skeleton. Angew. Chem. Int. Ed.1998,37, 2708. (c) Nicolaou, K. C.; Jain, N. F.; Natarajan, S.; Hughes, R.; Solomon, M. E.; Li, H.; Ramanjulu, J. M.; Takayanagi, M.; Koumbis, A. E.; Bando, T. Total Synthesis of Vancomycin Aglycon-Part 2:Synthesis of Amino Acids 1-3 and Construction of the AB-COD-DOE Ring Skeleton. Angew. Chem. Int. Ed.1998, 37,2714. (d) Nicolaou, K. C.; Takayanagi, M.; Jain, N. F.; Natarajan, S.; Koumbis, A. E.; Bando, T.; Ramanjulu, J. M. Total Synthesis of Vancomycin Aglycon-Part 3: Final Stages. Angew. Chem. Int. Ed.1998,37,2717. (e) Nicolaou, K. C.; Boddy, C. N. C. Atropselective Macrocyclization of Diaryl Ether Ring Systems: Application to the Synthesis of Vancomycin Model Systems. J. Am. Chem. Soc. 2002, 124, 10451. (f) Nicolaou, K. C.; Boddy, C. N. C.; Li, H.; Koumbis, A. E.; Hughes, R.; Natarajan, S.; Jain, N. F.; Ramanjulu, J. M.; Brase, S.; Solomon, M. E. Atropselective Macrocyclization of Diaryl Ether Ring Systems:Application to the Synthesis of Vancomycin Model Systems. Chem. Eur. J.1999,5,2602.
    [55]Wirschun, W.; Jochims, J. C. 1,3-Diaza-2-azoniaallene Salts, Novel N3-Building Blocks: Preparation and Cycloadditions to Olefins. Synthesis 1997,233.
    [56]Wirschun, W.; Maier, G-M.; Jochims, J. C. On the Reaction of 1,3-Diaza-2-azoniaallene Salts with 1,3-Butadienes and Cumulenes. Tetrahedron 1997,53,5755.
    [57]Wirschun, W.; Winkler, M.; Lutz, K.; Jochims, J. C. 1,3-Diaza-2-azoniaallene Salts:Cycloadditions to Alkynes, Carbodiimides and Cyanamides. J. Chem. Soc. Perkin Trans.11998,1755.
    [58]von Richter, V. Ueber Cinnolinderivate. Ber. Dtsch. Chem. Ges.1883,16,677.
    [59]Brase, S.; Dahmen, S.; Heuts, J. Solid-phase Synthesis of Substituted Cinnolines by a Richter Type Cleavage Protocol. Tetrahedron Lett.1999,40,6201.
    [60]Kimball, D. B.; Hayes, A. G.; Haley, M. M. Thermal Cyclization of (2-Ethynylphenyl)triazenes: Facile Synthesis of Substituted Cinnolines and Isoindazoles. Org. Lett.2000,2,3825.
    [61]Kimball, D. B.; Herges, R.; Haley, M. M. Two Unusual, Competitive Mechanisms for (2-Ethynylphenyl)triazene Cyclization: Pseudocoarctate versus Pericyclic Reactivity. J. Am. Chem. Soc.2002,124,1572.
    [62]Shirtcliff, L. D.; Hayes, A. G.; Haley, M. M.; Kohler, F.; Hess, K.; Herges, R. Biscyclization Reactions in Butadiyne-and Ethyne-Linked Triazenes and Diazenes: Concerted versus Stepwise Coarctate Cyclizations. J. Am. Chem. Soc. 2006,128,9711.
    [63]Kimball, D. B.; Herges, R.; Haley, M. M. Two Unusual, Competitive Mechanisms for (2-Ethynylphenyl)triazene Cyclization: Pseudocoarctate versus Pericyclic Reactivity. J. Am. Chem. Soc.2002,124,1572.
    [64]Baines, K. M.; Rourke, T. W.; Vaughan, K.; Hooper, D. L. 5-(Arylamino)-1,2,3-triazoles and 5-Amino-l-aryl-1,2,3-triazoles from 3-(Cyanomethyl)triazenes. J. Org. Chem.1981,46,856.
    [65]Jollimore, J. V.; Vaughan, K.; Hooper, D. L. 1-Aryl-3-(carbamoylmethyl)triazenes: Synthesis, Spectroscopic Analysis and Cyclization to New 1,2,3-Benzotriazines. J. Org. Chem.1996,61,210.
    [66]Liu, C.-Y. Knochel, P. Preparation of Polyfunctional Arylmagnesium Reagents Bearing a Triazene Moiety. A New Carbazole Synthesis. Org. Lett.2005,7,2543.
    [67]Brase, S. The Virtue of the Multifunctional Triazene Linkers in the Efficient Solid-Phase Synthesis of Heterocycle Libraries. Acc. Chem. Res.2004,37,805.
    [68](a) Lormann, M. E. P.; Walker, C. H.; Es-Sayed, M.; Brase, S. Solid Supported Fluoronitroaryl Triazenes as Immobilized and Convertible Sanger Reagents-Synthesis and SNAr Reactions towards a Novel Preparation of 1-Alkyl Benzotriazoles. Chem. Commun.2002,1296. (b) Bartra, M.; Romea, P.; Urpi, F.; Vilarrasa, F. A Fast Procedure for the Reduction of Azides and Nitro Compounds Based on the Reducing Ability of Sn(SR)3-species. Tetrahedron 1990,46,587. (c) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.; Buchwald, S. L. Simple, Efficient Catalyst System for the Palladium-catalyzed Amination of Aryl Chlorides, Bromides, and Triflates. J. Org. Chem. 2000, 65, 1158. (d) Hartwig, J. F. Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angew. Chem. Int. Ed. 1998, 37, 2046.
    [69]Gil, C.; Schwogler, A.; Brase, S. The Synthesis of 3-Substituted 6-Aryl-3H-benzo[a][1,2,3]triazinones using Polymer-Bound Triazenes. J. Comb. Chem.2004,6,38.
    [70]Knepper, K.; Lormann, M. E. P.; Brase, S. Synthesis of Diaryl ethers on Solid Supports using the Ullmann Reaction. J. Comb. Chem.2004,6,460.
    [71]Kale, R. R.; Prasad, V.; Hussain, H. A.; Tiwari, V. K. Facile Route for N1-Aryl Benzotriazoles from Diazoamino Arynes via CuI-mediated Intramolecular N-Arylation. Tetrahedron Lett.2010,51,5740.
    [72]Liu, Q.; Wen, D.; Hang, C.; Li, Q.; Zhu, Y. A Novel and Regiospecific Synthesis of 1-Aryl-lH-benzotriazoles via Copper(I)-Catalyzed Intramolecular Cyclization Reaction. Helv. Chim. Acta 2010,93,1350.
    [73]Shang, X.; Chen, W.; Yao, Y. A Simple and Efficient Synthesis of Dibenzothiophene via BF3?OEt2-Promoted Intramolecular Annulation. Synlett 2013,851.
    [74]Shang, X.; Zhao, S.; Chen, W.; Chen, C.; Qiu, H. Copper-Catalyzed Cascade Cyclization Reaction of 2-Haloaryltriazenes and Sodium Azide:Selective Synthesis of 2H-Benzotriazoles in Water. Chem. Eur. J.2014,20,1825.
    [75]Wang, C.; Sun, H.; Fang, Y.; Huang, Y. General and Efficient Synthesis of Indoles through Triazene-Directed C-H Annulation. Angew. Chem. Int. Ed.2013,52, 5795.
    [76]Fang, Y.; Wang, C.; Su, S.; Yu, H.; Huang, Y Selective Synthesis of Indazoles and Indoles via Triazene-alkyne Cyclization Switched by Different Metals. Org. Biomol. Chem.2014,12,1061.
    [77]Shang, X.; Xu, L.; Yang, W.; Zhou, J.; Miao, M.; Ren, H. BF3?OEt2-Promoted Intramolecular Nucleophilic Substitution; Synthesis of Dibenzopyranones and Coumarins from Biaryltriazenes. Eur. J. Org. Chem.2013,5475.
    [78]Zhao, G.; Wang, B.; Yang, W.; Ren, H. Lewis-Acid-Promoted Arylation Reaction: Synthesis of Dihydrobenzofuran Derivatives from Aryltriazenes. Eur. J. Org. Chem.2012,6236.
    [79]Zhou, J.; He, J.; Wang, B.; Yang, W.; Ren, H.1,7-Palladium Migration via C-H Activation, Followed by Intramolecular Amination: Regioselective Synthesis of Benzotriazoles. J. Am. Chem. Soc.2011,133,6868.
    [80]Chen, Z.; Yang, W.; Xu, L.; Zhang, L.; Miao, M.; Ren, H. BF3-OEt2-Promoted Tandem O-Arylation/Hydroxylation: Efficient Synthesis of 2-Hydroxyflavanones from Triazenylaryl-Substituted Diketones. Eur. J. Org. Chem.2013,7411.
    [81]Zhou, J.; Yang, W.; Wang, B.; Ren, H. Friedel-Crafts Arylation for the Formation of Csp2-Csp2 Bonds:A Route to Unsymmetrical and Functionalized Polycyclic Aromatic Hydrocarbons from Aryl Triazenes. Angew. Chem. Int. Ed.2012,51, 12293.
    [82]Hafner, A.; Brase, S. Ortho-Trifluoromethylation of Functionalized Aromatic Triazenes. Angew. Chem. Int. Ed.2012,51,3713.
    [83]Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y Rhodium(III)-Catalyzed C-H Activation of Arenes Using a Versatile and Removable Triazene Directing Group. Angew. Chem. Int. Ed.2012,51,7242.
    [84]Voica, A.-F.; Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. Guided Desaturation of Unactivated Aliphatics. Nat. Chem.2012,4,629.
    [1]Knolker, H.-J.; Reddy, K. R. Isolation and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev.2002,102,4303.
    [2]Schmidt, A. W.; Reddy, K. R.; Knolker, H.-J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev.2012,112, 3193.
    [3]Graebe, C.; Glaser, C. Ber. Dtsch. Chem. Ges.1872,5,12.
    [4](a) Furstner, A.; Domostoj, M. M.; Scheiper, B. Total Syntheses of the Telomerase Inhibitors Dictyodendrin B, C, and E. J Am. Chem. Soc.2006,128,8087. (b) Buchgraber, P.; Domostoj, M. M.; Scheiper, B.; Wirtz, C.; Mynott, R.; Rust, J.; Furstner, A. Synthesis-driven Mapping of the Dictyodendrin Alkaloids. Tetrahedron 2009,65,6519. (c) Okano, K.; Fujiwara, H.; Noji, T.; Fukuyama, T.; Tokuyama, H. Total Synthesis of Dictyodendrin A and B. Angew. Chem. Int. Ed. 2010,49,5925. (d) Warabi, K.; Matsunaga, S.; van Soest, R. W. M.; Fusetani, N. Dictyodendrins A-E, the First Telomerase-Inhibitory Marine Natural Products from the Sponge Dictyodendrilla verongiformis. J. Org. Chem.2003,68,2765.
    [5](a) Kureel, S. P.; Kapil, R. S.; Popli, S. P. Terpenoid Alkaloids from Murraya Koenigii Spreng.-II.: The Constitution of Cyclomahanimbine, Bicyclomahanimbine, and Mahanimbidine. Tetrahedron Lett.1969,10,3857. (b) Wu, T.-S.; Wang, M.-L.; Wu, P.-L. Seasonal Variations of Carbazole Alkaloids in Murraya Euchrestifolia. Phytochemistry 1996,43,785.
    [6]Liu, H.; Li, C.-J.; Yang, J.-Z.; Ning, N.; Si, Y.-K.; Li, L.; Chen, N.-H.; Zhao, Q.; Zhang, D.-M. Carbazole Alkaloids from the Stems of Clausena Lansium. J. Nat. Prod.2012,75,677.
    [7](a) Graebe, C.; Ullmann, F. Ueber eine neue Carbazolsynthese. Liebigs Ann. Chem. 1896,291,16. (b) Ullmann, F. Studien in der Carbazolreihe. Liebigs Ann. Chem. 1904,332,82.
    [8](a) Bucherer, H. T. J. Prakt. Chem.1904,69,49. (b) Borsche, W.; Feise, M. Ber. Dtsch. Chem. Ges. 1904,20,378.
    [9](a) Fischer, E.; Jourdan, F. Ueber die Hydrazine der Brenztraubensaure. Ber. Dtsch. Chem. Ges.1883,16,2241. (b) Borsche, W.; Witte, A.; Bothe, W. Liebigs Ann. Chem.1908,359,49.
    [10]Sanz, R.; Escribano, J.; Pedrosa, M. R.; Aguado, R.; Arnaiz, F. J. Dioxomolybdenum(VI)-Catalyzed Reductive Cyclization of Nitroaromatics. Synthesis of Carbazoles and Indoles. Adv. Synth. Catal.2007,349,713.
    [11]Smitrovich, J. H.; Davies, I. W. Catalytic C-H Functionalization Driven by CO as a Stoichiometric Reductant: Application to Carbazole Synthesis. Org. Lett.2004, 6,533.
    [12]Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. Microwave-assisted Cadogan Reaction for the Synthesis of 2-Aryl-2H-indazoles,2-Aryl-1H-benzimidazoles,2-Carbonylindoles, Carbazole, and Phenazine. J. Heterocycl. Chem.2009,46,1309.
    [13]Stokes, B. J.; Jovanovic, B.; Dong, H. J.; Richert, K. J.; Riell, R. D.; Driver, T. G. Rh2(Ⅱ)-Catalyzed Synthesis of Carbazoles from Biaryl Azides. J. Org. Chem. 2009,74,3225.
    [14]Shou, W. G.; Li, J. A.; Guo, T. X.; Lin, Z. Y.; Jia, G C. Ruthenium-Catalyzed Intramolecular Amination Reactions of Aryl- and Vinylazides. Organometallics 2009,28,6847.
    [15]Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. Combined C-H Functionalization/C-N Bond Formation Route to Carbazoles. J. Am. Chem. Soc. 2005,127,14560.
    [16]Yamamoto, M.; Matsubara, S. Carbazole Synthesis by Platinum-catalyzed C-H Functionalizing Reaction Using Water as Reoxidizing Reagent. Chem. Lett.2007, 36,172.
    [17]Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. Oxidative Pd(II)-Catalyzed C-H Bond Amination to Carbazole at Ambient Temperature. J. Am. Chem. Soc.2008,130,16184.
    [18]Youn, S. W.; Bihn, J. H.; Kim, B. S. Pd-Catalyzed Intramolecular Oxidative C-H Amination: Synthesis of Carbazoles. Org. Lett.2011,13,3738.
    [19]Cho, S. H.; Yoon, J.; Chang, S. Intramolecular Oxidative C-N Bond Formation for the Synthesis of Carbazoles:Comparison of Reactivity between the Copper-Catalyzed and Metal-Free Conditions. J. Am. Chem. Soc.2011,133,5996.
    [20](a) Watanabe, T.; Ueda, S.; Inuki, S.; Oishi, S.; Fujii, N.; Ohno, H. One-pot Synthesis of Carbazoles by Palladium-Catalyzed N-Arylation and Oxidative Coupling. Chem. Commun. 2007,4516. (b) Krahl, M. P.; Jager, A.; Krause, T.; Knolker, H.-J. First Total Synthesis of the 7-Oxygenated Carbazole Alkaloids Clauszoline-K, 3-Formyl-7-hydroxycarbazole, Clausine M, Clausine N and the Anti-HIV Active Siamenol Using a Highly Efficient Palladium-Catalyzed Approach. Org. Biomol. Chem.2006,4,3215.
    [21]Wu, T.-S.; Huang, S.-C.; Wu, P.-L.; Kuoh, C.-S. Alkaloidal and Other Constituents from the Root Bark of Clausena Excavate. Phytochemistry 1999,52, 523.
    [22]Songsiang, U.; Thongthoom, T.; Boonyarat, C.; Yenjai, C. Claurailas A-D, Cytotoxic Carbazole Alkaloids from the Roots of Clausena Harmandiana. J. Nat. Prod.2011,74,208.
    [1](a) Cerecetto, H.; Gerpe, A.; Gonzalez, M.; Aran, V. J.; Ochoa de Ocariz, C. Pharmacological Properties of Indazole Derivatives:Recent Developments. Mini-Rev. Med. Chem.2005,5,869. (b) Schmidt, A.; Beutler, A.; Snovydovych, B. Recent Advances in the Chemistry of Indazoles. Eur. J. Org. Chem. 2008, 4073.
    [2]Minkin, V. I.; Garnovskii, D. G.; Elguero, J.; Katritzky,A. R.; Denisko, O. V. The Tautomerism of Heterocycles:Five-membered Rings with Two or More Heteroatoms. Adv. Heterocycl. Chem.2000,76,157.
    [3]Catalan, J.; del Valle, J. C.; Claramunt, R. M.; Boyer, G.; Laynez, J.; Gomez, J.; Jimenez, P.; Tomas, F.; Elguero, J. Acidity and Basicity of Indazole and its N-Methyl Derivatives in the Ground and in the Excited State. J. Phys. Chem.1994, 98,10606.
    [4]Atta-ur-Rahman, Malik, S.; Cun-heng, H.; Clardy, J. Isolation and Structure Determination of Nigellicine, a Novel Alkaloid from the Seeds of Nigella Sativa. Tetrahedron Lett.1985,26,2759.
    [5]Liu, Y.-M.; Yang, J.-S.; Liu, Q.-H. A New Alkaloid and Its Artificial Derivative with an Indazole Ring from Nigella glandulifera. Chem. Pharm. Bull.2004,52, 454.
    [6]Atta-ur-Rahman, Malik, S.; Hasan, S. S.; Choudhary, M. I.; Ni, C.-Z.; Clardy, J. Nigellidine—A New Indazole Alkaloid from the Seeds of Nigella Sativa. Tetrahedron Lett.1995,36,1993.
    [7](a) Liu, X.; Shi,Y.; Maag, D. X.; Palma, J. P.; Patterson, M. J.; Ellis, P. A.; Surber, B. W.; Ready, D. B.; Soni, N. B.; Ladror, U. S.; Xu, A. J.; Iyer, R.; Harlan, J. E.; Solomon, L. R.; Donawho, C. K.; Penning, T. D.; Johnson, E. F.; Shoemaker, A. R. Iniparib Nonselectively Modifies Cysteine-Containing Proteins in Tumor Cells and Is Not a Bona Fide PARP Inhibitor. Clin.Cancer Res.2012,18,510. (b) Fogelman, D. R.; R. Wolff, A.:Kopeetz, S.; Javle, M.; Bradley, C.; Mok, I.; Cabanillas, F.; Abbruzzese, J. L. Evidence for the Efficacy of Iniparib, a PARP-1 Inhibitor, in BRCA2-associated Pancreatic Cancer. Anticancer Res. 2011,31, 1417.
    [8](a)Upward, J. W.; Arnold, B. D.; Link, C, Pierce, D. M.; Allen, A.; Tasker, T. C. The Clinical Pharmacology of Granisetron (BRL 43694), a Novel Specific 5-HT3 Antagonist. Eur. J. Cancer 1990,26,12. (b) Prior, A.; Read, N. W. Reduction of Rectal Sensitivity and Post-prandial Motility by Granisetron, a 5 HT3-receptor Antagonist, in Patients with Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 1993,7,175.
    [9](a) Sleijfer, S.; Ray-Coquard, I.; Papai, Z.; Cesne, A. L.; Scurr, M.; Schoffski, P.; Collin, F.; Pandite, L.; Marreaud, S.; Brauwer, A. D.; Glabbeke, M. V.; Verweij, J.; Blay, J.-Y. Pazopanib, a Multikinase Angiogenesis Inhibitor, in Patients with Relapsed or Refractory Advanced Soft Tissue Sarcoma: a Phase II Study from the European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC Study 62043). J. Clin. Oncol.2009,27,3126. (b) Steinberg, C. N.; Davis, I. D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C. H.; Salman, P.; Gladkov, O. A.; Kavina, A.; Zarba, J. J.; Chen, M.; Cann, L. M.; Pandite, L.; Roychowdhury, D. F.; Hawkins, R. E. Pazopanib in Locally Advanced or Metastatic Renal Cell Carcinoma: Results of a Randomized Phase III Trial. J. Clin. Oncol.2010,28,1061.
    [10](a) Toh, H. C.; Chen, P.-J.; Carr, B. I.; Knox, J. J.; Gill, S.; Ansell, P.; McKeegan, E. M.; Dowell, B.; Pedersen, M.; Qin, Q.; Qian, J.; Scappaticci, F. A.; Ricker, J. L.; Carlson, D. M.; Yong, W. P. Phase 2 Trial of Linifanib (ABT-869) in Patients with Unresectable or Metastatic Hepatocellular Carcinoma. Cancer 2013,119,380. (b) Toh, H.; Chen, P.; Carr, B. I.; Knox, J. J.; Gill, S.; Qian, J.; Qin, Q.; Ricker, J. L.; Carlson, D. M.; Yong, W. Linifanib Phase Ⅱ Trial in Patients with Advanced Hepatocellular Carcinoma (HCC). J. Clin. Oncol.2010,28,4308.
    [11](a) Sarker, D.; Kristeleit, R.; Mazina, K. E.; Ware, J. A.; Yan, Y.; Dresser, M.; Derynck, M. K.; De-Bono, J. A Phase I Study Evaluating the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the Oral Pan-phosphoinositide-3 kinase (PI3K) Inhibitor GDC-0941. J. Clin. Oncol.2009,27,3538. (b) Von Hoff, D. D.; LoRusso, P.; Tibes, R.; Shapiro, G.; Weiss, G. J.; Ware, J. A.; Fredrickson, J.; Mazina, K. E.; Levy, G. G.; Wagner, A. J. A First-in-human Phase I Study to Evaluate the Pan-PI3K Inhibitor GDC-0941 Administered QD or BID in Patients with Advanced Solid Tumors. J. Clin. Oncol 2010,28,2541.
    [12](a) Lukin, K.; Hsu, M. C.; Fernando, D.; Leanna, M. R. New Practical Synthesis of Indazoles via Condensation of o-Fluorobenzaldehydes and Their O-Methyloximes with Hydrazine. J. Org. Chem.2006,71,8166. (b) Caron, S.; Vazquez, E. A Versatile and Efficient Synthesis of Substituted 1//-Indazoles. Synthesis 1999,588.
    [13](a) Stadlbauer, W. Product class 2:1H-and 2H-indazoles. Sci. Synth.2002,12, 227. (b) Fedenok, L. G.; Zolnikova, N. A. on the Cyclization of Ortho-alkynylbenzene Diazonium Salts. Tetrahedron Lett.2003,44,5453. (c) Yoshida, T.; Matsuura, N.; Yamamoto, K.; Doi, M.; Shimada, K.; Morie, T.; Kato, S. Practical Synthesis of lH-Indazole-3-carboxylic Acid and Its Derivatives. Heterocycles 1996,43,2701. (d) Crestey, F.; Collot, V.; Stiebing, S.; Rault, S. A New and Efficient Synthesis of 2-azatryptophans. Tetrahedron 2006,62,7772.
    [14](a) Jin, T.; Yamamoto, Y. An Efficient, Facile, and General Synthesis of 1H-Indazoles by 1,3-Dipolar Cycloaddition of Arynes with Diazomethane Derivatives. Angew. Chem. Int. Ed.2007,46,3323. (b) Li, P.; Wu, C.; Zhao, J.; Rogness, D. C.; Shi, F. Synthesis of Substituted 1H-Indazoles from Arynes and Hydrazones. J. Org. Chem.2012,77,3149. (c) Fang, Y.; Wu, C.; Larock, R. C.; Shi, F. Synthesis of 2H-Indazoles by the [3+2] Dipolar Cycloaddition of Sydnones with Arynes. J. Org. Chem.2011,76,8840. (d) Spiteri, C.; Keeling, S.; Moses, J. E. New Synthesis of 1-Substituted-lH-indazoles via 1,3-Dipolar Cycloaddition of in situ Generated Nitrile Imines and Benzyne. Org. Lett.2010, 12,3368. (e) Li, P.; Zhao, J.; Wu, C.; Larock, R. C.; Shi, F. Synthesis of 3-Substituted Indazoles from Arynes and N-Tosylhydrazones. Org. Lett.2011,13, 3340. (f) Wu, C.; Fang, Y.; Larock, R. C.; Shi, F. Synthesis of 2H-Indazoles by the [3+2] Cycloaddition of Arynes and Sydnones. Org. Lett.2010,12,2234.
    [15](a) Kimball, D. B.; Herges, R.; Haley, M. M. Two Unusual, Competitive Mechanisms for (2-Ethynylphenyl)triazene Cyclization: Pseudocoarctate versus Pericyclic Reactivity. J. Am. Chem. Soc. 2002,124,1572. (b) Kimball, D. B.; Weakley, T. J. R.; Herges, R.; Haley, M. M. Deciphering the Mechanistic Dichotomy in the Cyclization of 1-(2-Ethynylphenyl)-3,3-dialkyltriazenes: Competition between Pericyclic and Pseudocoarctate Pathways. J. Am. Chem. Soc. 2002,124,13463. (c) Shirtcliff, L. D.; Hayes, A. G.; Haley, M. M.; Kohler, F.; Hess, K.; Herges, R. Biscyclization Reactions in Butadiyne- and Ethyne-Linked Triazenes and Diazenes: Concerted versus Stepwise Coarctate Cyclizations. J. Am. Chem. Soc.2006,128,9711. (d) Kimball, D. B.; Weakley, T. J. R.; Haley, M. M. Cyclization of 1-(2-Alkynylphenyl)-3,3-dialkyltriazenes: A Convenient, High-Yield Synthesis of Substituted Cinnolines and Isoindazoles. J. Org. Chem. 2002,67,6395. (e) Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M. Experimental and Theoretical Investigation of the Coarctate Cyclization of (2-Ethynylphenyl)phenyldiazenes. J. Org. Chem.2004,69,6979. (f) Shirtcliff, L. D.; Rivers, J.; Haley, M. M. Synthesis of 2H-Indazoles via Lewis Acid Promoted Cyclization of 2-(Phenylazo)benzonitriles. J. Org. Chem.2006,71,6619. (g) Kimball, D. B.; Hayes, A. G.; Haley, M. M. Thermal Cyclization of (2-Ethynylphenyl)triazenes:Facile Synthesis of Substituted Cinnolines and Isoindazoles. Org. Lett.2000,2,3825. (h) McClintock, S. P.; Zakharov, L. N.; Herges, R.; Haley, M. M. Coarctate versus Pericyclic Reactivity in Naphthalene-Fused Azo-Ene-Ynes: Synthesis of Benzocinnolines and Benzoisoindazoles. Chem. Eur. J.2011,17,6798.
    [16](a) Halland, N.; Nazare, M.; R'kyek, O.; Alonso, J.; Urmann, M.; Lindenschmidt, A. A General and Mild Palladium-Catalyzed Domino Reaction for the Synthesis of 2H-Indazoles. Angew. Chem. Int. Ed.2009,48,6879. (b) Song, J. J.; Yee, N. K. A Novel Synthesis of 2-Aryl-2H-indazoles via a Palladium-Catalyzed Intramolecular Amination Reaction. Org. Lett.2000,2,519. (c) Li, H.; Li, P.; Wang, L. Direct Access to Acylated Azobenzenes via Pd-Catalyzed C-H Functionalization and Further Transformation into an Indazole Backbone. Org. Lett.2013,15,620. (d) Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. A General and Efficient Approach to 2H-indazoles and 1H-pyrazoles through Copper-catalyzed Intramolecular N-N Bond Formation under Mild Conditions. Chem. Commun. 2011,47,10133. (e) Kumar, M. R.; Park, A.; Park, N.; Lee, S. Consecutive Condensation, C-N and N-N Bond Formations:A Copper- Catalyzed One-Pot Three-Component Synthesis of 2H-Indazole. Org. Lett.2011,13,3542. (f) Xiong, X.; Jiang, Y.; Ma, D. Assembly of N,N-Disubstituted Hydrazines and 1-Aryl-1H-indazoles via Copper-Catalyzed Coupling Reactions. Org. Lett.2012, 14,2552. (g) Zhang, T.; Bao, W. Synthesis of 1H-Indazoles and 1H-Pyrazoles via FeBr3/O2 Mediated Intramolecular C-H Amination. J. Org. Chem.2013,78,1317. (h) Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Intramolecular Fe(II)-Catalyzed N-O or N-N Bond Formation from Aryl Azides. Org. Lett.2010,12,2884. (i) Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. Rhodium(III)-Catalyzed Indazole Synthesis by C-H Bond Functionalization and Cyclative Capture. J. Am. Chem. Soc.2013,135,7122. (j) Yu, D.-G.; Suri, M.; Glorius, F. RhIII/CuII-Cocatalyzed Synthesis of 1H-Indazoles through C-H Amidation and N-N Bond Formation. J. Am. Chem. Soc.2013,135,8802.
    [17](a) Shiotsu, Y.; Kiyoi, H.; Ishikawa, Y.; Tanizaki, R.; Shimizu, M.; Umehara, H.; Ishii, K.; Mori, Y.; Ozeki, K.; Minami, Y.; Abe, A.; Maeda, H.; Akiyama, T.; Kanda, Y.; Sato, Y.; Akinaga, S.; Naoe, T. KW-2449, A Novel Multikinase Inhibitor, Suppresses the Growth of Leukemia Cells with FLT3 Mutations or T315I-mutated BCR/ABL Translocation. Blood 2009,114,1607. (b) Sato, T.; Yang, X.; Knapper, S.; White, P.; Smith, B. D.; Galkin, S.; Small, D.; Burnett, A.; Levis, M. FLT3 Ligand Impedes the Efficacy of FLT3 Inhibitors in Vitro and in Vivo. Blood 2011,117,3286. (c) Nguyen, T.; Dai, Y.; Attkisson, E.; Kramer, L.; Jordan, N.; Nguyen, N.; Kolluri, N.; Muschen, M.; Grant, S. HDAC Inhibitors Potentiate the Activity of the BCR/ABL Kinase Inhibitor KW-2449 in Imatinib-Sensitive or-Resistant BCR/ABL+Leukemia Cells In Vitro and In Vivo. Clin. Cancer Res.2011,17,3219. (d) Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L. M.; Pallares, G.; Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Comprehensive Analysis of Kinase Inhibitor Selectivity. Nature Biotechnology, 2011,29,1046.
    [18]Sampson, P. B.; Liu, Y.; Li, S.-W.; Forrest, B. T.; Pauls, H. W.; Edwards, L. G.; Feher, M.; Patel, N. K. B.; Laufer, R.; Pan, G. Kinase Inhibitors and Method of Treating Cancer with Same.W.O. Patent No.2011/123946,2011.
    [19](a) Hu-Lowe, D. D.; Zou, H. Y.; Grazzini, M. L.; Hallin, M. E.; Wickman, G. R.; Amundson, K.; Chen, J. H.; Rewolinski, D. A.; Yamazaki, S.; Wu, E. Y.; McTigue, M. A.; Murray, B. W.; Kania, R. S.; O'Connor, P.; Shalinsky, D. R.; Bender, S. L. Nonclinical Antiangiogenesis and Antitumor Activities of Axitinib (AG-013736), an Oral, Potent, and Selective Inhibitor of Vascular Endothelial Growth Factor Receptor Tyrosine Kinases 1,2,3. Clin. Cancer Res.2008,14, 7272. (b) Magano, J.; Dunetz, J. R. Large-Scale Applications of Transition Metal-Catalyzed Couplings for the Synthesis of Pharmaceuticals. Chem. Rev. 2011,111,2177.
    [20](a) Drewry, D. H.; Linn, J. A.; Veal, J. M. Chemical Compounds. W.O. Patent No.2005/011681,2005. (b) Yamaguchi, T.; Ushirogochi, H.; Takahashi, T.; Takebe, T. Indazole Acrylic Acid Amide Compound. W.O. Patent No. 2009/041559,2009; (c) Pauls, H. W.; Forrest, B. T.; Laufer, R.; Feher, M.; Sampson, P. B.; Pan, G. Indazolyl, Benzimidazolyl, Benzotriazolyl, Substituted Indolmone Derivatives as Kinase Inhibitors Useful in the Treatment of Cancer. W.O. Patent No.2009/079767,2009; (d) Chekal, B. P.; Guinness, S. M.; Lillie, B. M.; McLaughlin, R. W.; Palmer, C. W.; Post, R. J.; Sieser, J. E.; Singer, R. A.; Sluggett, G. W.; Vaidyanathan, R.; Withbroe, G. J. Development of an Efficient Pd-Catalyzed Coupling Process for Axitinib. Org. Process Res. Dev.2014,18, 266.
    [21]Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Bismuth-Catalyzed Direct Substitution of the Hydroxy Group in Alcohols with Sulfonamides, Carbamates, and Carboxamides.Angew. Chem. Int. Ed.2007,46,409.
    [22]Lafrance, M.; Roggen, M.; Carreira, E. M. Direct, Enantioselective Iridium-Catalyzed Allylic Amination of Racemic Allylic Alcohols. Angew. Chem. Int. Ed.2012,51,3470.
    [23]Das, K.; Shibuya, R.; Nakahara, Y.; Germain, N.; Ohshima, T.; Mashima, K. Platinum-Catalyzed Direct Amination of Allylic Alcohols with Aqueous Ammonia: Selective Synthesis of Primary Allylamines. Angew. Chem. Int. Ed. 2012,51,150.
    [24]Mukherjee, P.; Widenhoefer, R. A. Gold(Ⅰ)-Catalyzed Enantioselective Intramolecular Dehydrative Amination of Allylic Alcohols with Carbamates. Angew. Chem. Int. Ed.2012,51,1405.
    [25](a) Simon, M.-O.; Li, C.-J. Green Chemistry Oriented Organic Synthesis in Water. Chem. Soc. Rev.2012,41,1415. (b) Li, C.-J.; Chen, L. Organic Chemistry in Water. Chem. Soc. Rev.2006,35,68. (c) Chanda, A.; Fokin, V. V. Organic Synthesis "On Water". Chem. Rev.2009,109,725. (d) Butler, R. N.; Coyne, A. G. Water: Nature's Reaction Enforcer—omparative Effects for Organic Synthesis "In-Water" and "On-Water". Chem. Rev.2010,110,6302. (e) Kobayashi, S.; Manabe, K. Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media. Acc. Chem. Res.2002,35,209. (f) Kostjuk, S. V.; Ganachaud, F. Cationic Polymerization of Vinyl Monomers in Aqueous Media: From Monofunctional Oligomers to Long-Lived Polymer Chains. Acc. Chem. Res. 2010,43,357. (g) Lindstrom, U. M. Stereoselective Organic Reactions in Water. Chem. Rev.2002,102,2751. (h) Li, C.-J. Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond Formations: A Decade Update. Chem. Rev. 2005,105,3095.
    [26](a) Manabe, K.; Sun, X.-M.; Kobayashi, S. Dehydration Reactions in Water. Surfactant-Type Brensted Acid-Catalyzed Direct Esterification of Carboxylic Acids with Alcohols in an Emulsion System. J. Am. Chem. Soc.2001,123,10101. (b) Manabe, K.; Iimura, S.; Sun, X.-M.; Kobayashi, S. Dehydration Reactions in Water. Br?nsted Acid—Surfactant-Combined Catalyst for Ester, Ether, Thioether, and Dithioacetal Formation in Water. J. Am. Chem. Soc.2002,124,11971. (c) Shirakawa, S.; Kobayashi, S. Surfactant-Type Br?nsted Acid Catalyzed Dehydrative Nucleophilic Substitutions of Alcohols in Water. Org. Lett.2007,9, 311. (d) Kobayashi, S.; Iimura, S.; Manabe, K. Dehydration Reactions in Water. Surfactant-type Br?nsted Acid-catalyzed Dehydrative Etherification, Thioetherification, and Dithioacetalization in Water. Chem. Lett.2002,10,10.
    [27]Manabe, K.; Mori, Y.; Kobayashi, S. A Br?nsted Acid-Surfactant-Combined Catalyst for Mannich-Type Reactions of Aldehydes, Amines, and Silyl Enolates in Water. Synlett 1999,1401.
    [28](a) Prasad, D.; Preetam, A.; Nath, M. DBS A Catalyzed, One-pot Three-component "on Water" Green Protocol for the Synthesis of 2,3-Disubstituted 4-Thiazolidinones. RSC Adv.2012,2,3133. (b) Manabe, K.; Mori, Y.; Kobayashi, S. Three-component Carbon-Carbon Bond-forming Reactions Catalyzed by a Br?nsted Acid—urfactant-Combined Catalyst in Water. Tetrahedron 2001,57,2537.
    [29]Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. Rhodium(III)-Catalyzed Indazole Synthesis by C-H Bond Functionalization and Cyclative Capture. J. Am. Chem. Soc.2013,735,7122.
    [1](a) Chen, I.-S.; Chen, H.-F.; Cheng, M.-J.; Chang, Y.-L.; Teng, C.-M.; Tsutomu, I.; Chen, J.-J.; Tsai, I.-L. Quinoline Alkaloids and Other Constituents of Melicope semecarpifolia with Antiplatelet Aggregation Activity. J. Nat. Prod.2001,64, 1143. (b) Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep.2003,20,476. (c) Wansi, J. D.; Mesaik, M. A.; Chiozem, D. D.; Devkota, K. P.; Gaboriaud-Kolar, N.; Lallemand, M.-C.; Wandji, J.; Choudhary, M. I.; Sewald, N. Oxidative Burst Inhibitory and Cytotoxic Indoloquinazoline and Furoquinoline Alkaloids from Oricia suaveolens. J. Nat. Prod.2008,71,1942. (d) Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep. 2004,21,650. (e) Chen, J.-J.; Chen, P.-H.; Liao, C.-H.; Huang, S.-Y.; Chen, I.-S. New Phenylpropenoids, Bis(1-phenylethyl)phenols, Bisquinolinone Alkaloid, and Anti-inflammatory Constituents from Zanthoxylum integrifoliolum. J. Nat. Prod. 2007,70,1444. (f) Michael, J. P. Quinoline, Quinazoline and Acridone Alkaloids. Nat. Prod. Rep.2005,22,627.
    [2]Bessonova, J. A. Acetylhaplophyllidine, a new alkaloid from Haplophyllum perforatum. Chem. Nat. Compd.1999,35,589.
    [3]Papageorgiou, M.; Fokialakis, N.; Mitaku, S.; Skaltsounis, A.-L.; Tillcquin, F.; Sevenet, T. Two New Alkaloids from the Bark of Sarcomelicope megistophylla. J. Nat. Prod.2000,63,385.
    [4]Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Two New Quinazoline-quinoline Alkaloids from Peganum Nigellastrum. Heterocycles,1999,51,1883.
    [5](a) Skraup, Z. H. Eine Synthese des Chinolins. Ber.1880,13,2086. (b) Manske, R. H. F. The Chemistry of Quinolines. Chem. Rev.1942,30,113.
    [6](a) Camps, R. Synthese von α- und γ-Oxychinolinen. Arch. Pharm.1899,237, 659. (b) Camps, R. Synthese von α- und γ-Oxychinolinen. Arch. Pharm.1901, 239,591. (c) Camps, R. Synthese von α- und γ-Oxychinolinen. Ber.1899,22, 3228.
    [7](a) Doebner, O.; Miller, W. V. Ueber eine dem Chinolin homologe Base. Ber. 1881,14,2812. (b) Doebner, O.; Miller, W. V. Ueber die Homologen des Chinaldins. Ber.1884,17,1712.
    [8](a) Friedlander, P. Ueber o-Amidobenzaldehyd. Ber.1882,15,2572. (b) Friedlander, P.; Gohring, C. F. Ueber eine Darstellungsmethode im Pyridinkern substituirter Chinolinderivate. Ber.1883,16,1833.
    [9]Bergstrom, F. W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds:Pyridine, Quinoline, and Isoquinoline. Chem. Rev.1944,35,77.
    [10](a) Conrad, M.; Limpach, L. Synthesen von Chinolinderivaten mittelst Acetessigester. Ber.1887,20,944. (b) Conrad, M.; Limpach, L. Synthese von Chinolinderivaten mittelst Acetessigester. Ber.1891,24,2990.
    [11]Knorr, L. Synthetische Versuche mit dem Acetessigester. Liebigs Ann.1886,236, 69.
    [12]Stone, M. T. An Improved Larock Synthesis of Quinolines via a Heck Reaction of 2-Bromoanilines and Allylic Alcohols. Org. Lett.2011,13,2326.
    [13]Zhang, Z.; Tan, J.; Wang, Z. A Facile Synthesis of 2-Methylquinolines via Pd-Catalyzed Aza-Wacker Oxidative Cyclization. Org. Lett.2008,10,173.
    [14]Ji, X.; Huang, H.; Li, Y.; Chen, H.; Jiang, H. Palladium-Catalyzed Sequential Formation of CC Bonds: Efficient Assembly of 2-Substituted and 2,3-Disubstituted Quinolines. Angew. Chem. Int. Ed 2012,51,7292.
    [15]Waibel, M.; Cramer, N. Palladium-Catalyzed Arylative Ring-Opening Reactions of Norbornenols:Entry to Highly Substituted Cyclohexenes, Quinolines, and Tetrahydroquinolines. Angew. Chem. Int. Ed.2010,49,4455.
    [16]Richter, H.; Mancheno, O. G. TEMPO Oxoammonium Salt-Mediated Dehydrogenative Povarov/Oxidation Tandem Reaction of N-Alkyl Anilines. Org. Lett.2011,13,6066.
    [17]Patil, S. S.; Patil, S. V.; Bobade, V. D. Synthesis of Aminoindolizine and Quinoline Derivatives via Fe(acac)3/TBAOH-Catalyzed Sequential Cross-Coupling-Cycloisomerization Reactions. Synlett 2011,2379.
    [18]Horn, J.; Marsden, S. P.; Nelson, A.; House, D.; Weingarten, G. G. Convergent, Regiospecific Synthesis of Quinolines from o-Aminophenylboronates. Org. Lett. 2008,10,4117
    [19]Huang, H.; Jiang, H.; Chen, K.; Liu, H. A Simple and Convenient Copper-Catalyzed Tandem Synthesis of Quinoline-2-carboxylates at Room Temperature. J. Org. Chem.2009,74,5476.
    [20]Korivi, R. P.; Cheng, C.-H. Nickel-Catalyzed Cyclization of 2-Iodoanilines with Aroylalkynes:An Efficient Route for Quinoline Derivatives. J. Org. Chem.2006, 71,7079.
    [21]Movassaghi, M.; Hill, M. D. Synthesis of Substituted Pyridine Derivatives via the Ruthenium-Catalyzed Cycloisomerization of 3-Azadienynes. J. Am. Chem. Soc. 2006,128,4592.
    [22](a) Jung, N.; Brase, S. New Catalysts for the Transition-Metal-Catalyzed Synthesis of Aziridines. Angew. Chem. Int. Ed.2012,51,5538. (b) Driver, T. G. Recent Advances in Transition Metal-catalyzed N-Atom Transfer Reactions of Azides. Org. Biomol. Chem.2010,8,3831. (c) Chiba, S. Application of Organic Azides for the Synthesis of Nitrogen-Containing Molecules. Synlett 2012,21. (d) Chen, F.; Shen, T.; Cui, Y.; Jiao, N.2,4-vs 3,4-Disubsituted Pyrrole Synthesis Switched by Copper and Nickel Catalysts. Org. Lett.2012,14,4926. (e) Zhou, W.; Zhang, L.; Jiao, N. Direct Transformation of Methyl Arenes to Aryl Nitriles at Room Temperature. Angew. Chem., Int. Ed.2009,48,7094. (f) Chen, F.; Qin, C.; Cui, Y.; Jiao, N. Implanting Nitrogen into Hydrocarbon Molecules through C-H and C-C Bond Cleavages: A Direct Approach to Tetrazoles. Angew. Chem., Int. Ed. 2011,50,11487. (g) Shen, M.; Leslie, B. E.; Driver, T. G. Dirhodium(Ⅱ)-Catalyzed Intramolecular C-H Amination of Aryl Azides. Angew. Chem. Int. Ed. 2008,47,5056. (h) Stokes, B. J.; Liu, S.; Driver, T. G. Rh2(Ⅱ)-Catalyzed Nitro-Group Migration Reactions: Selective Synthesis of 3-Nitroindoles from β-Nitro Styryl Azides. J. Am. Chem. Soc.2011,133,4702. (i) Sun, K.; Liu, S.; Bee, P. M.; Driver, T. G. Rhodium-Catalyzed Synthesis of 2,3-Disubstituted Indoles from β,β-Disubstituted Styryl Azides. Angew. Chem. Int. Ed. 2011,50,1702. (j) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Umpolung Reactivity of Indole through Gold Catalysis. Angew. Chem. Int. Ed. 2011,50,8358. (k) Huo, Z.; Gridnev, I. D.; Yamamoto, Y. A Method for the Synthesis of Substituted Quinolines via Electrophilic Cyclization of 1-Azido-2-(2-propynyl)benzene. J. Org. Chem. 2010,75,1266. (1) Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Synthesis of Isoquinolines from α-Aryl Vinyl Azides and Internal Alkynes by Rh-Cu Bimetallic Cooperation. Angew. Chem. Int. Ed.2011,50,5927.
    [23](a) Zhang, Z.; Zhang, Q.; Sun, S.; Xiong, T.; Liu, Q. Domino Ring-opening/Recyclization Reactions of Doubly Activated Cyclopropanes as a Strategy for the Synthesis of Furoquinoline Derivatives. Angew. Chem. Int. Ed. 2007, 46, 1726. (b) Zhang, R.; Liang, Y.; Zhou, G.; Wang, K.; Dong, D. Ring-Enlargement of Dimethylaminopropenoyl Cyclopropanes:An Efficient Route to Substituted 2,3-Dihydrofurans. J. Org. Chem.2008,73,8089. (c) Ma, S.; Lu, L.; Zhang, J. Catalytic Regioselectivity Control in Ring-Opening Cycloisomerization of Methylene- or Alkylidenecyclopropyl Ketones. J. Am. Chem. Soc.2004,126,9645. (d) Bowman, R. K.; Johnson, J. S. Nickel-Catalyzed Rearrangement of 1-Acyl-2-vinylcyclopropanes. A Mild Synthesis of Substituted Dihydrofurans. Org. Lett. 2006, 8, 573. (e) Liang, F.; Lin, S.; Wei, Y. Aza-Oxy-Carbanion Relay via Non-Brook Rearrangement:Efficient Synthesis of Furo[3,2-c]pyridinones. J. Am. Chem. Soc. 2011,133,1781. (f) Hudlicky, T.; Reed, J. W. From Discovery to Application: 50 Years of the Vinylcyclopropane-Cyclopentene Rearrangement and Its Impact on the Synthesis of Natural Products. Angew. Chem. Int. Ed.2010,49,4864. (g) Wei, Y.; Lin, S.; Zhang, J.; Niu, Z.; Fu, Q.; Liang, F. Halonium-initiated Electrophilic Cascades of 1-Alkenoylcyclopropane Carboxamides: Efficient Access to Dihydrofuropyridinones and 3(2H)-Furanones. Chem. Commun.2011,47,12394. (h) Hu, B.; Xing, S.; Wang, Z. Lewis Acid Catalyzed Ring-Opening Intramolecular Friedel-Crafts Alkylation of Methylenecyclopropane 1,1-Diesters. Org. Lett.2008,10,5481. (i) Wang, H.; Denton, J. R.; Davies, H. M. L. Sequential Rhodium-, Silver-, and Gold-catalyzed Synthesis of Fused Dihydrofurans. Org. Lett.2011,13,4316. (j) Shi, M.; Tang, X.-Y.; Yang, Y.-H. Lewis Acid-Mediated Reactions of 1-Cyclopropyl-2-arylethanone Derivatives with Allenic Ester, Ethyl Acetoacetate, and Methyl Acrylate. J. Org. Chem.2008, 73,5311. (k) Yadav, V. K.; Balamurugan, R. Silicon-Assisted Ring Opening of Donor-Acceptor Substituted Cyclopropanes. An Expedient Entry to Substituted Dihydrofurans. Org. Lett.2001,3,2717. (1) Bernard, A. M.; Frongia, A.; Piras, P. P.; Secci, F.; Spiga, M. Regioselective Synthesis of Trisubstituted 2,3-Dihydrofurans from Donor-Acceptor Cyclopropanes or from Reaction of the Corey Ylide with a-Sulfenyl-,a-Sulfinyl-, or a-Sulfonylenones. Org. Lett. 2005,7, 4565. (m) Fisher, E. L.; Wilkerson-Hill, S. M.; Sarpong, R. Tungsten-Catalyzed Heterocycloisomerization Approach to 4,5-Dihydro-benzo[b]furans and Indoles. J. Am. Chem. Soc.2012,134,9946. (n) Huang, P.; Zhang, N.; Zhang, R.; Dong, D. Vilsmeier-Type Reaction of Dimethylaminoalkenoyl Cyclopropanes:One-Pot Access to 2,3-Dihydrofuro [3,2-c]pyridin-4(5H)-ones. Org. Lett.2012,14,370. (o) Shi, M.; Tang, X.-Y.; Yang, Y.-H. Lewis Acid Mediated Reactions of 1-Cyclopropyl-2-arylethanones with Allenic Esters: A Facile Synthetic Protocol for the Preparation of Dihydrofuro[2,3-h]chromen-2-one Derivatives. Org. Lett. 2007,9,4017. (p) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Efficient Construction of Oxa- and Aza-[n.2.1] Skeletons: Lewis Acid Catalyzed Intramolecular [3+2] Cycloaddition of Cyclopropane 1,1-Diesters with Carbonyls and Imines. Angew. Chem. Int. Ed.2010,49,3215. (q) Xiong, T.; Zhang, Q.; Zhang, Z.; Liu, Q. A Divergent Synthesis of y-Iminolactones, Dihydroquinolin-2-ones, and γ-Lactams from (3-Hydroxymethylcyclopropanylamides. J. Org. Chem.2007,72,8005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700