三重价态钙钛矿型锰氧化物薄膜制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究具有三重混合价态钙钛矿型锰氧化物薄膜材料的制备,结构及性能表征。
     应用偏轴射频磁控溅射方法在ITO/Au导电衬底上成功制备了La1-x-yCaxKyMnO3薄膜。薄膜透射电镜呈现出与单晶样品相同的调制结构条纹相。薄膜的I-V曲线与单晶I-V曲线一样具有单分子整流特征。成功将几十微米尺寸单晶样品特性扩展到具有宏观应用前景的薄膜材料上。
     研究钙钛矿型锰氧化物外延薄膜的制备及性质。通过射频磁控溅射方法以SrTiO3(001)晶面和LaAlO3(001)晶面为衬底制备薄膜。X射线测试表明LCKMO薄膜为按照[001]晶轴方向择优生长的多晶薄膜。薄膜电性和磁性测试证明薄膜衬底与块状材料晶格失配对于薄膜性质具有重要影响,并且可以作为调控薄膜材料性能的一种重要手段。水热原位制备钙钛矿型锰氧化物薄膜为我们提供了一种简单有效的方法,对我们研究水热单晶样品和取向薄膜之间关联及薄膜形成机理提供了方便。
     水热歧化反应制备了具有三重价态钙钛矿结构锰氧化物,Mn3+( t 32 g e1 g)和Mn5+( t 22g e 0g)共存为1973年Bardeen提出的高温超导激子理论提供了结构模型。室温下施加一定电场,LCKMO单晶样品可以通过电流密度达104A/cm2,而经由磁控溅射技术在Nb掺杂SrTiO3衬底上制备的LCKMO薄膜可通过电流密度达到105A/cm2。
During the last few years, transition metal perovskite oxides have attracted considerable scientific and technological attention for the high temperature superconductive and colossal magnetoresistance. Among these oxides, perovskite manganites of the type R1?xAxMnO3 (R: La, Pr, Nd etc and A: Ca, Sr, Ba, Pb etc) hold special interest. By the partial substitution of alkaline-earth metals for rare earth elements, the manganese ion presents the mixed valence of Mn3+ and Mn4+. The electronic phase diagram of this strongly correlated class of materials is very rich. Manganites, depending on the value of x and temperature, exhibit a variety of ordering and transitions, such as paramagnetic (PM) to ferromagnetic (FM) transition, insulator to metal (IM) transition, charge-orbital ordering (COO), and antiferromagnetic (AFM) ordering, which often result in phase coexistence, i.e., phase separation. The FM double exchange (FM-DE) is invoked to explain the magnetic and transport properties of the manganites in the CMR regime. However, it has now been accepted in general that FM-DE, due to the restricted validity in the vicinity of TC/TIM, is not sufficient to explain the various physical properties of manganites. Consequently, other interactions, which compete with the FM-DE mechanism, such as electron-lattice interaction, spin-spin interaction and spin-lattice interaction, are also known to play a key role.
     It is well known that ceramic oxides are usually prepared by traditional high temperature solid-state methods. The oxide carbonate nitrate precursors were calcined at the temperature in excess of 1000℃with grinding repeatedly, but for the high temperature the cost was increased and the chemical impurities could be introduced into the ceramic product by milling. Hydrothermal technique has been proved to be a good method to the synthesis of metastable phases and microporous solids. In the past several years, a series of perovskite manganites have been synthesized with hydrothermal method by our group, such as ErMnO3, YMnO3, HoMnO3, DyMnO3 and SmMnO3. By the partial substitution of alkaline-earth metals for rare earth elements, we get the Pr1-xCaxMnO3 and Nd1-xCaxMnO3. In our further studies we obtained a family of perovskite manganese oxides, La1-x-yCaxKyMnO3 (x = 0.74-0.18, y = 0.01-0.14) through the partial substitution of Ca2+ and K+ for La3+ under the condition of strong alkali media. Just for the Ca2+ and K+ co-doped, the Mn ion in LaMnO3 presents the marvelous triolet mixed valence states of Mn3+, Mn4+ and Mn5+.
     We measured the I-V curves of the single crystal sample by conductive atom force microscopy (C-AFM) (Seiko, SPA 400). The I-V curve of the triplet valence manganites perovskite oxide is the same as that of the molecular rectifier theoretically calculated by Aviram and Ratner at 1973. Thus we asserted that there are atomic scale p-n junctions with Mn3+-Mn4+-Mn5+ type in La1-x-yCaxKyMnO3. The current density of the single crystal could be 105 A/cm2. The grinding sample has shown transient state photovoltaic response. And then all of these properties of La1-x-yCaxKyMnO3 may lead to the potential applications as new atomic-scale devices, such as photoelectric conversion and quantum information memory. But for the limit of hydrothermal synthesis, the size of the single crystal could be 10-50μm, and this went against for the further development and using.
     The aim of this study is to prepare the La1-x-yCaxKyMnO3 thin films, whose properties should be same to the single crystal sample. Using the advance deposition method, we probe into the synthesis condition and set up the foundation for the further development and effective utilization.
     Firstly, we prepared the film upwards directly by the familiar hydrothermal method in the Teflon-lined stainless-steel autoclave. The SrTiO3 single crystal substrates were hanged in the reaction solution by the Teflon mould, and then the thin epitaxial films were deposited on the substrate along with the synthesis of the single crystal. The prepared films were attested to be the La1-x-yCaxKyMnO3 epitaxial films by X-ray and SEM. So the hydrothermal on-site method for the La1-x-yCaxKyMnO3 film preparing is easy and exercisable.
     Secondarily, to avoid re-sputtering (due to oxygen ions generated in the plasma), we adopted the off-axis radio frequency magnetron sputtering to deposit large scale films. To measure the electrical properties of the film individually, gold (99.99%) was thermally evaporated onto the cleanly Indium Tin Oxide Conductive Glass (ITO) as the bottom electrode. We tested that the work function of our sample was 4.9 eV that is much closer to that of the reference gold (5.1 eV), which could ensure the ohmic electrical contact and avoid the Schottky effect. The composition of films was determined by Atom Absorption Spectrometers (PE), Inductively Coupled Plasma (ICP), X-ray Photoelectron Spectrometer (XPS) and Energy Dispersive X-ray Analysis (EDAX). The XRD analysis of the thin films manifested that the deposition results in polycrystalline films for the no oriented gold films grow on the ITO and there are no trace of the parasitic phases except for the peaks of the ITO glass and gold film. In our compound, the modulated phase exhibits the stripe structure with the doubled a-axis and b-axis lattice period, paralleling to c-axis direction, which was observed in both the bulk and the film at room temperature. The fast Fourier transform (FFT) images, represents not only a rectangular pattern of the basic Bragg spots, which are typical for a regular pseudo-cubic crystal lattice, but also the additional superlattice reflections with a wave vector q=a*/2. The current-voltage (I-V) measurements on the thin films by C-AFM display the ideal p-n junctions rectifying characteristics as that of single crystal. So we can say the two-dimensional thin films whose properties are similar to the single crystal sample have been prepared successfully.
     Thirdly, the La1-x-yCaxKyMnO3 epitaxial films were deposited on SrTiO3, LaAlO3 and 0.7 wt % Nb–SrTiO3 by the off-axis radio frequency magnetron sputtering. It is attested that the films have the same epitaxy with the single crystal substrates by x-ray diffraction (Rigaku 18 kW X-ray Diffractometer). The surface morphology was tested by AFM and the undulation is not beyond 10nm. The current densities in xy plane of the La1-x-yCaxKyMnO3 on 0.7 wt % Nb–SrTiO3 are similar to that of the single crystal.
引文
1.焦正宽,曹光旱.磁电子学[M].杭州:浙江大学出版社,2005.
    2.田民波.薄膜技术与薄膜材料[M].北京:清华大学出版社,2006.
    3. Jonker G H, Van Santen J H. [J].Physica, 1950,16: 337.
    4. Van Santen J H, Jonker G H. [J].Physica, 1950,16: 559.
    5. Jonker G H, Van Santen J H. [J].Physica, 1953,19: 120.
    6. Jonker G H. [J].Physica, 1954,20: 1118.
    7. Jonker G H. [J].Physica, 1956,22: 707.
    8. Baibich M N, et al. [J].Phys.Rev.lett, 1988,61: 2472.
    9. Searlea C W, Wang S T. Can. [J].J. Phys, 1970,48: 2023.
    10. Kusters R M, Singleton J, Keen D A, McGreevy R, et al. [J].Phys. B. 1989,155:
    362.
    11. von Helmolt R, Haupt L [J].Solid State Commun, 1992,82: 641.
    12. von Helmolt R, Wecker J, Holzapfel B, et al. [J].Phys. Rev. Lett, 1993,71: 2331.
    13. Ken-ichi Chahara, Toshyuki Ohne et al. [J].Appl. Phys. Lett, 1993,63: 1990.
    14. Ju H L, Kwon C, et al. [J].Appl. Phys. Lett, 1994,65: 2108.
    15. Jin S, Tiefer T H, McCormack M, et al. [J].Science, 1994,264: 413.
    16. Jin S, McCormack M, Tiefel T H, Ramesh R. [J].J. Appl. Phys,1994,76: 6929.
    17. Zener C. [J].Phys. Rev, 1951,82: 403.
    18. Andsoner P W, Hasegawa H. [J].Phys. Rev, 1955,100: 675.
    19. Millis A J, Littlewood P B, Shraiman B I. [J].Phys. Rev. Lett, 1995,74: 5144.
    20. Millis A J, Mueller R, Shraiman B I. [J].Phys. Rev. B, 1996,54: 5407.
    21. Millis A J, Shraiman B I, Mueller R. [J].Phys. Rev. Lett, 1996,77: 175.
    22. Millis A J. [J].Nature, 1998,392: 147.
    23. Huang Q, Santoro A, Lynn J W,et al. [J].Phys. Rev. B, 1998,58: 2684.
    24. Babushkina N A, Belova L M, Gorbenko O Yu, et al. [J].Nature, 1998,391: 159.
    25. Lyubov. M. Belova. [J].Journal of Superconductivity: Incorporating Novel Magnetism, 2000,13: 305.
    26. Pickett W E, Singh D, [J].J. Phys. Rev. B, 1996,53: 1146.
    27. Anderson P W. [J].Phys. Rev, 1950,79: 350.
    28. Zener C. [J].Phys. [J].Rev, 1951,81: 440.
    29. Zener C. [J].Phys. Rev, 1951,81: 403.
    30. Anderson P W, Hasegawa H, [J].Phys. Rev. 1955,100: 675.
    31. Ruberman M A, Kittle C. [J].Phys. Rev, 1954,96: 99.
    32. Kasuya T, [J].Prog. Theoret. Phys, 1956,16: 45.
    33. Yosida K, [J].Phys. Rev, 1969,106: 893.
    34. Nagamiya T, [J].Solid State Physics, 1967,20: 306.
    35. Kittle C. Quantum Theory of Solids [M]. New York: John Wiley and Sons Inc, 18, 1963.
    36. Merzbacher E. Quantum Mechanics (2nd ed) [M]. New York: John Wiley and Sons Inc, 12, 1970.
    37. Van Vleck J H.Rev. [J].Mod. Phys, 1962,34: 681.
    38. Hathaway K B. Ultrathin Magnetic Structures In; [M]. Heinrich B. et al. Berlin: Spinger-Verley, 1994,2.
    39.十仓好纪. [J].固体物理, 2001,36: 743.
    40. Volger [J].J. Physica, 1954,20: 49.
    41. Searle C W, Wang S T. [J].Can. J. Phys, 1969,47: 2703.
    42. Searle C W, Wang S T. [J].Can. J. Phys, 1970,48: 2023.
    43. Jirak Z, S. Vratislav, Zajicek J, [J].Phys. Status Solidi, 1979,a52: K39.
    44. Pollert E, Krupicka S, Kuzmicova E, [J].J. Phys. Chem. Solids, 1982,43: 1137.
    45. Dho J, Kim W S, Hur N H, [J].Phys. Rev. Lett, 2001,87: 187201.
    46. Kawano H, Kajimoto R, Kubota M, et al. [J].Phys. Rev. B, 1996,53: R14709.
    47. Kawano H, Kajimoto R, Kubota M, et al. [J].Phys. Rev. B, 1996,53: 2202.
    48. Schiffer P, Ramirez A P, Bao W, et al. [J].Phys. Rev. Lett, 1995,75: 3336.
    49. Cheong S W, and Hwang H Y, Colossal Magnetoresitance Oxides ed Y [M].Tokura , 2000.
    50. Kajimoto R, Yoshizawa H, Tomioka Y, et al. [J].Phys. Rev. B. 2002, 66: 180402(R).
    51. Yoo Y K, Duewer F, Yang H, D. Yi, et al. [J].Nature, 2000, 406: 704.
    52. Cahn R W, [J].Nature, 2001, 410: 643.
    53. Chen S H, Cheong S W and Hwang H Y [J].J. Appl. Phys, 1997,81: 4326.
    54. Coey J M D, Viret M, Ranno L et al. [J].Phys.Rev. Lett, 1995,75: 3910.
    55. Urshibara A, Moritomo Y, Arima T, et al. [J].Phys. Rev. B, 1995,51: 14103.
    56. Dagotto E, Hotta T and Moreo A. [J].Phys. Rep, 2001,344: 1.
    57. Tomioka Y and Tokura Y, Colossal Magnetoresitance Oxides ed Y [M].Tokura, 2000.
    58. Kajimoto R, H Yoshizawa, Kawano H, et al. [J].Phys. Rev.B, 1999,60:9506.
    59. Anderson P W and Hasegawa H. [J].Phys. Rev, 1955,100: 675.
    60. de Gennes P. [J].Phys. Rev, 1960,118: 141.
    61. Alexandro A S and Bratkovsky A M. [J].Phys. Rev. Lett, 1998,82: 141.
    62. Millis A J. [J].Phys. Rev.B, 1996,53: 8434.
    63. Snyder G J, Hiskes R, Di Carolis S, et al. [J].Phys. Rev. B, 1996,53:14434. Ziese M and Srinitiwarawong C. [J].Phys. Rev. B, 1998,58: 11519.
    64. Palstra T T M, Ramirez A P, Cheong S W, et al. [J].Phys. Rev. B, 1997,56: 5104.
    65. Millis A J, Mueller R and Shraiman B I. [J].Phys. Rev. B, 1996,54; 5389.
    66. Millis A J, Mueller R and Shraiman B I. [J].Phys. Rev. B,1996,54: 5405.
    67. Neumeier J J, Hundley M, Thompson J D et al. [J].Phys. Rev. B, 1995,52: R 7006.
    68. Tyson T Y, Mustre de Leon J, Conradson S D, et al. [J].Phys. Rev. B, 1996,53:13985.
    69. Mahesh R, Itoh M. [J].Aust. J. Phys, 1999,52:235.
    70. Zhou J S, Goodenough J B, Asamitsu A, et al. [J].Phys. Rev. Let, 1997,79: 3234.
    71. Jaime M, Hardner H T, Salamon M B, et al. [J].Phys. Rev. Lett, 1997,78: 951.
    72. Kim K H, Jung J H, Noh T W. [J].Phys. Rev. Lett, 1998,81:1517. Ishikawa T, Kimura T, Katsufuji T, et al. [J].Phys. Rev. B, 1998,57: R8079.
    73. Nucara A, Perucchi A, Calvani P, et al. [J].Phys. Rev. B, 2003,68:R174432.
    74. Wang L, Yin J, Huang S, et al. [J].Phys. Rev. B, 1999,60:6976.
    75. Adams C P, Lynn J W, Mukovskii Y M, et al. [J].Phys. Rev. Lett, 2000,85: 3954. Zhang J, Dai P, Fernandez-Baca J A, et al. [J].Phys. Rev. Lett, 200186: 3823.
    76. de Teresa J M, Ibarra M R, Algarabel A P, et al. [J].Nature, 1997,387: 256.
    77. Kapusta Cz, Riedi P C, Koceraba W, et al. [J].J. Phys.: Condens. Matter, 1999,11:4079.
    78. Babushkina N A, Belova L M, Yu Gorbenko O, et al. [J].Nature, 1998,391:159. Zhou J S, Goodenough J B. [J].Phys. Rev. Lett, 1998,80: 2665.
    79. Ju H L, Sohn H C, Krishnan K M. [J].Phys. Rev. Lett, 1997,79: 3230.
    80. Chuang Y D, Gromko A D, Dessau D S, et al. [J].Science, 2002,292: 1509.
    81. Lanzara A, Siani N L, Brunelli M, et al. [J].Phys. Rev. Lett, 1998,81:878.
    82. Yoon S, Liu H L, Schollerer G, et al. [J].Phys. Rev. B, 1998,58: 2795. Bjornsson P, Rubhausen M, Backstrom J, et al. [J].Phys. Rev. B, 2000,61:1193.
    83. Roder H, Zang J, Bishop A R. [J].Phys. Rev. Lett, 1996,76:1536.
    84. Zang J, Bishop A R , Roder H. [J].Phys. Rev. B,1996,53: R8840.
    85. Radaelli P G, Marezio M, Hwang H Y, et al. [J].Phys. Rev. B, 1996,54; 8992.
    86. Achutharaman V S, Kraus P A, Vasko V A, et al. Goldman.Appl. [J].Phys. Lett, 1995,67:1019.
    87. Mitchell J F, Argyriou D N , Jorgensen J D. Colossal Magnetoresistance Oxide. ed Y Tokura. [M].London: Gordon and Breach (and reference therein) ,2000.
    88. Goodenough J B. [J].J. Appl. Phys, 1997,81:5330. Goodenough J B. [J].Aust. J. Phys, 1999,52: 155. Goodenough J B. [J].Ferroelectrics, 1992,130:77.
    89. Alexandrov A S, Bratkowsky A M. [J].J. Phys.: Condens. Matter, 1999,11: 1989. Alexandrov A S, Bratkowsky A M. [J].Phys. Rev. B, 1999,60:6215. Alexandrov A S, Zhao G M, Keller H, et al. [J].Phys. Rev. B, 2001,58: R140404.
    90. Nagaev E L. [J].Usp. Fiz. Nauk, 1996,166: 833.
    91. Ramakrishnan T V, Krishnamurthy H R, Hassan S R, et al. [J].Phys. Rev. Lett, 2004,92: 157203. Ramakrishnan T V. [J].J. Phys.: Condens. Matter, 2007,19: 125211.
    92. Mannella N, Yang W L, Zhou X J, et al. [J].Nature, 2005,238: 474.
    93. Verwey E J. [J].Nature, 1939,144: 327.
    94. Garcia J, Subias G. [J].J. Phys.: Condens. Matter, 2004,16: R145.
    95. Wollan E O, Koehler W C. [J].Phys. Rev, 1955,100:545.
    96. Jirak Z, Krupicka S, Simsa Z, et al. [J].J. Magn. Magn. Mater, 1985,53: 153.
    97. Goodenough J B. [J].Phys. Rev, 1955,100: 564.
    98. Tomioka Y, Asamitsu A, Moritomo Y, et al. [J].Phys. Rev. Lett, 1995,74: 5108.
    99. Ramirez A P, Schiffer P, Cheong S W, et al. [J].Phys. Rev. Lett, 1996,76:3188.
    100.Chen C H, Cheong S W. [J].Phys. Rev. Lett, 1996,76: 4042. Chen C H, Cheong S W, Hwang H Y. [J].J. Appl. Phys, 1997,81: 4326.
    101.Cheong S W, Hwang H Y, Chen C H, et al. [J].Phys. Rev. B, 1994,49: 7088.
    102.Radaelli P G, Cox D E, Marezio M, et al. [J].Phys. Rev. B, 1997,55:3015.
    103.Mori S, Chen C H , Cheong S W. [J].Nature, 1998,392:473.
    104.Kuwahara H, Tomioka Y, Asamitsu A M, et al. [J].Science, 1995,270:961.
    105.Moritomo Y, Kiwahara H, Tomioka Y, et al. [J].Phys. Rev. B, 1997,55: 7549.
    106.Kiryukhin V, Casa D, Hill J P,et al. [J].Nature, 1997,386:813.
    107.Asamitsu A, Tomioka Y, Kuwahara H,et al. [J].Nature, 1997,388:50.
    108.Parashar S, Ebenso E E, Raju A R, et al. [J].Solid State Commun, 2000,114: 295.
    109.Miyano K, Tanaka T, Tomioka Y. [J].Phys. Rev. Lett, 1997,78: 4257.
    110.Kawano H, Kajimoto R, Yoshizawa H, et al. [J].Phys. Rev. Lett, 1997,78: 4253.
    111.Battle P D, Gibb T C, Lightfoot P. [J].J. Solid State Chem, 1990,84: 271.
    112.Knizek K, Jirak Z, Pollert E. [J].J. Solid State Chem, 1992,100:292.
    113.Rao C N R, Arulraj A, Cheetham A K,et al. [J].J. Phys.: Condens. Matter, 2000,12: R83.
    114.Loudon J C, Mathur N D, Midgley P A. [J].Nature. 2002,420:797.
    115.Mori S, Asaka T, Matsui Y. [J].J. Electron Microsc, 2002,51: 225.
    116.Sagdeo P R, Shahid A , Lalla N P. [J].Solid State Commun, 2006,137:158.
    117.Cepas O, Krishnamurthy H R, Ramakrishnan T V. [J].Phys. Rev. B, 2006,73: 035218.
    118.van Tendeloo G, Lebedev O I, Hervieu M, et al. [J].Rep. Prog. Phys, 2004,67: 1315.
    119.Sigmund E , Muller K A (ed). Phase Separation in Cuprate Superconductors[M]. Heidelberg: Springer,1994.
    120.Rao C N R, Vanitha P V, Curr. Opin. [J].Solid State Mater. Sci, 2002,6: 97. Rao C N R, Kundu K, Asish, et al. [J].Dalton Trans, 2004,19: 3003.
    121.Dagotto E, Burgy J and Moreo A. [J].Solid State Commun, 2006, 126 :9. Mathur N D and Littlewood P . [J].Phys. Today, 2003, 56 :25.
    122.Tanquada J M, Sternlied B J, Axe J D, et al. [J].Nature, 1995, 375 :561.
    123.Chernyshev A L. Castro Neto A H and Bishop A R. [J].Phys. Rev. Lett, 2000, 84 :4922.
    124.Belevtsev B I . [J].Low Temp. Phys, 2004,30 :421.
    125.Nagaev E L. [J].JETP Lett, 1967, 6 :18. Nagaev E L. [J].Sov. Phys. Lett, 1968,27 :122. Nagaev E L. [J].JETP Lett, 1972,16 :3948.
    126.Nagaev E L. Physics of Magnetic Semiconductors [M].Moscow: Mir Publisher, 1986. Nagaev E L. [J].Phys. Rep, 2001, 346 :387.
    127.Wakai H. [J].J. Phys. Condens. Matter, 2001, 13 :1627.
    128.Guha A, Khare N, Raychaudhuri A K et al. [J].Phys. Rev. B, 2000, 62 :R11941.
    129.Kim R H, Uehara M, Hess C, et al. [J].Phys. Rev. Lett, 2000, 84 :2961.
    130.Hardy V, Wahl A and Martin C . [J].Phys. Rev. B, 2001 , 64 :064402.
    131.Moreo A, Yunoki S and Dagotto E. [J].Science , 1999 ,283 :2034.
    132.Dagotto E (ed) .Nanoscale Phase separation and Colossal Magnetoresistance [M]. Berlin: Springer, 2002.
    133.Moreo A, Mayr M, Feiguin A, et al. [J].Phys. Rev. Lett, 2000, 84: 5568.
    134.Uehara M, Mori S, Chen C Het al. [J].Nature, 1999, 399 :560.
    135.Fath F, Freisem S, Menovsky A A, et al. [J].Science , 1999,285 :1540.
    136.Biswas A, Elizabeth S, Raychaudhuri A K et al. [J].Phys. Rev. B , 1999 ,59 :5368.
    137.Smolyaninova V N, Xie X C, Zhang F C, et al. [J].Phys. Rev. B , 2000 ,62: R6093.
    138.Bibes M, Balcells L, Valencia S, et al. [J].Phys. Rev. Lett, 2001,87 :067210.
    139.Renner C, Aeppli G, Kim B G, et al. [J].Nature, 2002 , 416 :518.
    140.Zhang L, Israel C, Biswas A, et al. [J].Science, 2002, 298: 805.
    141.Booth C H, Bridges F, Kwei G H, et al. [J].Phys. Rev. Lett, 1998,80 :853. Booth C H, Bridges F, Kwei G H, et al. [J].Phys. Rev. B, 1998, 57 :10440.
    142.Billinge S J L, Profen Th, Petkov V, et al. [J].Phys. Rev. B , 2000,62 :1203.
    143.Dai P, Fernandez-Baca J A, Wakabayashi N, et al. [J].Phys. Rev. Lett, 2000, 85 .2553.
    144.Yoon S, Liu H, Schollerer G, et al. [J].Phys. Rev. B, 1998 ,58: 2795.
    145.Chechersky V, Nath A, Michel C, et al. [J].Phys. Rev. B, 2000,62 :5316.
    146.Heffner R H, Sonier J E, Maclaughlin D E, et al. [J].Phys. Rev. B, 2001, 63: 094408.
    147.Massa N E, Tolentino H, Salva H, et al. [J].J. Magn. Magn. Mater, 2001, 233: 91.
    148.Hirai Y et al .Univ of Wisconsin Madison, Preprint, 2000.
    149.Babushkina N A, Belova L M, Gorbenko O Yu, et al. [J].Nature , 1998 ,391: 159.
    150.Woodfiled B F, Wilson M L and Byers J M. [J].Phys. Rev. Lett, 1997, 78 :3201.
    151.Moskvin A S, Zenkov E V, Sukhoroukov Yu P, et al. [J].J. Phys.: Condens. Matter , 2003,15 2:635.
    152.SavostaM M, Novak P, Marysko M, et al. [J].Phys. Rev. B, 2000, 62 :9532.
    153.Ma Y Q et al. [J].J. Phys.: Condens. Matter, 2004 , 16 :7447. Ma Y Q et al. [J].Phys. Rev. B, 2004, 69 :134404.
    154.Podzorov V, Uehara M, GershensonM E, et al. [J].Phys. Rev. B , 2000 ,61 :R3784.
    155.Hardner H T, Weissman M B, Jamie M, et al. [J].J. Appl. Phys, 1997, 81: 272.
    156.Alers G P, Ramirez A P and Jin S. [J].Appl. Phys. Lett, 1996 , 68; 3649.
    157.Raquet B, Anane A, Wirth S, et al. [J].Phys. Rev. Lett, 2000 ,84 :4485.
    158.Merithew R D, Weissman M B, Hess F H,et al. [J].Phys. Rev. Lett, 2000 , 84 :3442.
    159.Anane A, Raquet B, von Molnar S, et al. [J].J. Appl. Phys, 2000, 87 :5025.
    160.Podzorov V, GershensonM E, Uehara M ,et al. [J].Phys. Rev. B, 2001, 64 :115113.
    161.Sarma D D et al. [J].Phys. Rev. Lett, 2004 , 93: 097202.
    162.Viret M, Ott F, Renard J P,et al. [J].Phys. Rev. Lett, 2004, 93 :217402.
    163.Saurel D, Brulet A, Heinemann A, et al. [J].Phys. Rev. B ,73 :094438.
    164.Ma J X, Gillaspie D T, Plummer E W, et al. [J].Phys. Rev. Lett, 2005,95: 237210.
    165.Dagotto E. [J].Rev. Mod. Phys, 1994, 66: 763.
    166.Bastiannsen P J M and Knops H J F. [J].J. Phys. Chem. Solids, 1998,59: 297.
    167.Mayr M, Moreo A, Verges J A, et al. [J].Phys. Rev. Lett, 2001 ,86 :135.
    168.Weibe A, Loos J and Fehske H. [J].Phys. Rev. B, 2001 , 64:104413.
    169.Lynn J W, Erwin R W, Borchers J A, et al. [J].Phys. Rev. Lett, 1996 , 76: 4046.
    170.Mira J, Rivas J, Rivadulla F, et al. [J].Phys. Rev. B, 1999,60 :2998.
    171.Zeise M. [J].J. Phys.: Condens. Matter, 2001, 13: 2919.
    172.Varma C. [J].Phys. Rev. B , 1996 ,54 :7328.
    173.Lyuksyutov I F and Pokrovsky V L. [J].Mod. Phys. Lett B, 1999, 13: 379.
    174.Yunoki S J, Hu J, Malvezzi A l et al . [J].Phys. Rev. Lett, 1998, 80 :845.
    175.Gorkov L P. [J].Sov. Phys.-Usp, 1998, 41 :589.Gorkov L P and Kresin V Z. [J].JETP Lett, 1998 ,67 :985.
    176.Dzero M O, Gorkov L P and Kresin V Z. [J].Eur. Phys. J, 2000 , 14:B 459.
    177.Jaime M, Lin P, Chun S H, et al. [J].Phys. Rev. B , 1999 ,60: 1028.
    178.Ahn K H, Lookman T and Bishop A R. [J].Nature, 2004,428 :401.
    179.Sagdeo P R, Shahid A and Lalla N P. [J].Phys. Rev. B, 2006 ,74 :214118.
    180.Shenoy V B, Gupta T, Krishnamurthy H R and Ramakrishnan T V. [J].Phys. Rev. Lett, 2007 ,98 :097201.
    181.Feng S H and Xu R R. [J].Acc. Chem. Res, 2001,34: 239.
    182.Wang Y W, Lu X Y, Chen Y,et al. [J].J. Solid State Chem, 2005 (178): 1317-1320.
    183.Chen Y, Yuan H M, Tian G, et al. [J].Journal of Solid State Chemistry , 2007, 180:167-172.
    184.Feng S H, Yuan H M, Shi Z et al. [J].J Mater Sci, 2008 ,43:2131–2137.
    1. Wagner P H, Metlushko V, Trappeniers L, et al. Magnetotransport in epitaxial thin films of the magnetic perovskite Pr0.5Sr0.5MnO3. [J].Physical Review B, 1997. 55(6): p. 3699-3707.
    2. Eom C B, J. Sun Z, Yamamoto K, et al. In situ grown YBa2Cu3O7 thin films from single-target magnetron sputtering. [J].Appl. Phys. Lett, 1989. 55(6): 595-597.
    3.黄科科.三重价态锰钙钛矿氧化物与原子尺寸p-n结性能研究[D].长春:吉林大学化学学院,2007.
    4.冯守华、袁宏明、施展.三重价态过渡金属氧化物及制备方法;中国,200510017225,9[P]. 2006-04-19.
    5.冯守华、袁宏明、施展.原子级p-n结单晶整流器及其应用;中国,200510017226,3[P]. 2006-06-28.
    6. Jonker G H and Van Santen J H. Ferromagnetic compounds of manganese with perovskite structure [J].Physica 1950, 16: 337-349.
    7. Van Santen J H and Jonker G H. Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure [J].Physica 1950, 16: 599-600.
    8. Jonker G H. Semiconducting properties of mixed crystals with perovskite structure [J].Physica 1954, 20: 1118-1122.
    9. Wollan E O and Koehler W C. Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3 [J].Phys. Rev. 1955, 100: 545-563.
    10. Zener C. Interaction Between the d Shells in the Transition Metals [J].Phys. Rev. 1951, 81: 440-444.
    11. Anderson P W and Hasegawa H. Considerations on Double Exchange [J].Phys. Rev. 1955, 100: 675-681.
    12. de Gennes P G. Effects of Double Exchange in Magnetic Crystals [J].Phys. Rev.1960, 118: 141-154.
    13. Goodenough J B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3 [J].Phys. Rev. 1955, 100: 564-573
    14. Kusters R M, Singleton J, Keen D A, et al. Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3 [J].Physica B, 1989, 155: 362-365
    15. von Helmolt R, Wecker J, Holzapfel B, et al. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films [J].Phys. Rev. Lett. 1993, 71: 2331-2333.
    16. Chahara K, Ohno T, Kasai M, et al. Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure [J].Appl. Phys. Lett. 1993, 63: 1990-1992.
    17. Jin S, Tiefel T H, Mc Cormack M, et al. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films [J].Science, 1994, 264 413
    18.唐伟忠.薄膜材料制备原理、技术及应用[M].北京:冶金工业出版社,2003.
    19. Yu X Z, Mathieu R, Arima T, et al. Variation of charge/orbital ordering in layered manganite Pr1-xCa1+xMnO4 investigated by transmission electron microscopy. [J]. Physical Review B, 2007, 75: 174441.
    20.葛炳辉,李方华,刘清青,等人. Sr2CuO3+x无公度调制结构的高分辨电子显微学研究. [J].电子显微学报J . Chin. Electr. Microsc. Soc, 2005, 24(4): 373.
    21. Chen C H, Cheong S W, Hwang HY. Charge-ordered stripes in La1-xCaxMnO3 with x>0.5 (invited). [J].Journal of Applied Physics 1997, 81(8): 4326-4330.
    22. Aviram A, Ratner M A. Molecular rectifiers. [J].Chemical Physics Letters, 1974, 29(2): 277-283.
    23. Yu C L, Zhai J, Gao X F, et al. Water-Assisted Fabrication of Polyaniline Honeycomb Structure Film [J].J. Phys. Chem. B, 2004, 108: 4586-4589.
    24. Wu C G, Chang S S. Nanoscale Measurements of Conducting Domains and Current-Voltage Characteristics of Chemically Deposited Polyaniline Films [J].J.Phys. Chem. B, 2004, 046259b.
    25. Tanaka I, Kamiya I, and Sakaki H, Imaging and probing electronic properties of self-assembled InAs quantum dots by atomic force microscopy with conductive tip [J].Appl. Phys. Lett., 1999, 74(6): 844-846.
    1. Razavi F S, Gross G, Habermeier H U, et al. Epitaxial strain induced metal insulator transition in La0.9Sr0.1MnO3 and La0.88Sr0.1MnO3 thin films [J].Appl. Phys. Lett. 2000,76: 115-157
    2. Izumi M, Konishi Y, Nishihara T, et al. Atomically defined epitaxy and physical properties of strained La0.6Sr0.4MnO3 films [J].Appl. Phys. Lett. 1998, 73: 2497-2499
    3. Vengalis B, Maneikis A, Anisimovas F, et al. Effect of strains on electrical and optical properties of thin La0.67Ca0.33MnO3 films [J].J. Magn. Magn. Mater. 2000, 211: 35-40.
    4. Kanki T, Tanaka H and Kawai T. Anomalous strain effect in La0.8Ba0.2MnO3 epitaxial thin film: Role of the orbital degree of freedom in stabilizing ferromagnetism [J].Phys. Rev. B. 2001, 64: 224418
    5. Feng SH, Yuan HM, Shi Z, et al. Three oxidation states and atomic-scale p–n junctions in manganese perovskite oxide from hydrothermal systems. [J].Journal of Materials Science. 2008, 43(7):2131-2137.
    6. Haghiri-Gosnet A M, Renard J P. CMR manganites: physics, thin films and devices. [J]. J. Phys. D: Appl. Phys. 2003, 36: R127-R150.
    7. HOU Chang-Min(侯长民) , HUANG Ke-Ke(黄科科) , GAO Zhong-Min(高忠民) , et al. [J].Chem. J. Chinese Universities(高等学校化学学报), 2006, 27(5): 805-807
    8. DONG Xin(董鑫) , ZHU Hui-Chao(朱慧超) , ZHANG Bao-Lin(张宝林) , et al. [J].Chem. J. Chinese Universities(高等学校化学学报), 2007, 28(9) : 1613-1616
    9. Tao R H, Fang X D, Dong W W, et al. Processing effects on the chemical solution deposition-derived La2/3Ca1/3MnO3 films on SrTiO3 (001) substrates. [J].Journal of Crystal Growth, 2007, 306: 356-360
    10. Dong W W, Zhu X B, Tao R H, et al. Properties of (h 0 0)-oriented La1-xNaxMnO3films (x=0.1, 0.15 and 0.3) prepared by chemical solution deposition method [J].Journal of Crystal Growth, 2006,290:180-184.
    11. Legrand C, Yi J H, Thomas P, et al. Structural Characterisation of Sol-Gel SrBi2Nb2O9 Thin Film Deposited on (001) SrTiO3 Single Crystal [J].Journal of the European Ceramic Society, 1999,19:1379-1381.
    12. Ciftci E, Rahaman M N, Blum F D. Hydrothermal deposition and characterization of heteroepitaxial BaTiO3 films on SrTiO3 and LaAlO3 single crystals [J]. Journal of Materials Science. 2002,37:3361-3367.
    1. Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39K in magnesium diboride [J].Nature, 2001, 410(6824): 63-64.
    2. Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J].Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189-193.
    3. Kamihara Y, Watanabe T, Hirano M, et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K [J].J. AM. CHEM. SOC, 2008, 130: 3296-3297.
    4. Chen X H, Wu T, Wu G, et al. Superconductivity at 43K in SmFeAsO1-xFx [J].Nature, 2008, 453(7196): 761-762.
    5. Matano K, Ren Z A, Dong X L, et al. Spin-singlet superconductivity with multiple gaps in PrFeAsO0.89F0.11 [J].EPL (Europhysics Letters), 2008, 83(5): 57001.
    6. REN Z A , LU W, YANY J, et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx]FeAs [J].Chinese Physics Letters, 2008, 25(6): 2215-2216.
    7. Wen H H, Mu G, Fang L, et al. Superconductivity at 25K in hole-doped (La1-xSrx)OFeAs [J].EPL (Europhysics Letters), 2008, 82(1): 17009.
    8. Anderson P W. The Resonating Valence Bond State in La2CuO4 and Superconductivity [J].Science, 1987, 235(4793): 1196-1198.
    9. Khomskii D I, Zvezdin A K. "Neutral oxygen" and superconductivity of metalloxide systems [J].Solid State Communications, 1988, 66(6): 651-655.
    10. Sebastian S E, Harrison N, Palm E, et al. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor [J].Nature, 2008, 454(7201): 200-203.
    11. Allender D, Bray J, Bardeen J. Model for an Exciton Mechanism of Superconductivity [J].Physical Review B, 1973, 7(3): 1020-1029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700