膝关节骨性关节炎发病机制与临床治疗的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:膝关节原发性骨性关节炎(KOA)是中老年人群的常见、多发病,发病机理尚不十分清楚,越来越多的学者认为其可能是一种多基因交互作用的复杂性疾病,也是一种慢性进行性炎症病变;白介素-16(IL-16)是炎性病变的主要细胞因子之一,目前对IL-16基因多态性与相关疾病的关联分析正成为许多学科的研究热点,但其与KOA的关联性研究尚未见报道。
     目的:通过对IL-16等位基因多态性与中国广西汉族人群KOA的关联研究,探讨IL-16基因与KOA易感的关联性,依据实验结果提出可能的病因学假说。
     方法:采用病例-对照研究设计,酚-氯仿抽提法提取全血白细胞,运用聚合酶链反应和限制性片段长度多态性等方法对年龄、性别匹配的100例KOA患者和100名健康对照受试者的IL-16等位基因的多态性进行单核苷酸多态性(SNP)位点筛查分析。
     在NCBI-SNPs数据库查找IL-16基因的已知SNP位点-rs11556218T/G、rs4778889T/C、rs4072111C/T的单核苷酸多态性。计算基因型和等位基因频率,对检测数据分别行拟和优度X2检验基因型频率的分布,分析是否符合H-W平衡,对单个位点行基于基因型/等位基因频率的关联分析和基因型频率的Logistic回归分析,统计单个位点对KOA发病风险率的影响。用Haploview和在线软件SNPstats对3个位点连锁不平衡分析、单倍型关联分析,评估单倍型与KOA发生风险的相关性。
     结果:共检测了IL-16基因的3个位点,有效样本两组各95例。病例组的性别构成(女/男)为71/24和对照组为62/33,两组间差异无统计学意义(x2=2.3, P=0.15);病例组的平均年龄60.52±9.92岁,对照组的平均年龄为58.28±10.36岁,两组间的年龄差异无统计学意义(t=1.52, P=0.07)。经拟合优度X2检验结果发现IL-16的三个SNP位点的P值均大于0.05,均符合Hardy-weinberg平衡。
     利用在线的SNPstats对KOA组和正常对照组IL-16基因型各位点进行非条件Logistic回归模型分析,结果表明:
     ⑴rs11556218 T/G位点在Codominant模式中,相对于T/T,T/G为保护因素,OR值为0.40,95%CI为0.21-0.73,P值为0.0083;在Dominant模式中T/G-G/G相对于T/T为保护因素,OR值为0.46,95%CI为0.26~0.83,P值为0.0088;在Overdominat模式中,T/G相对于T/T-T/G为保护因素,OR值为0.40,95%CI为0.22~0.72,P值为0.002。
     ⑵rs4072111C/T位点在Codominant模式中,C/T相对于C/C是危险因素,OR值为1.98,95%CI为1.08~3.65,P值为0.036;在Overdominat模式中C/T相对于C/C-T/T是危险因素,OR值为2.08,95%CI为1.14~3.80,P值为0.016。
     ⑶rs4778889T/C位点在三种模式下均没有出现阳性结果。
     ⑷根据男女性别的不同基因型结果,在女性患者中,rs11556218T/G位点中,与TT型比较,T/G型是保护因素,OR为0.33,95% CI为0.16-0.70。在rs4072111C/T位点中,与CC型比较,C/T型是危险因素,OR为2.88,95% CI为1.37-6.04。而rs4778889T/C位点未能发现各基因型与男女性别之间存在统计学差异。
     利用Haploview 4.0软件对IL-16基因内的三个不同位点之间进行连锁不平衡(LD)分析,结果发现2个位点之间有连锁不平衡关系,rs11556218T/G位点与rs4778889T/C位点之间存在一定的关联性。利用在线软件SNPStats分析单倍体的结果表明TTT型相对于TCT型是危险因素,OR值为2.42,95%CI为1.15~5.10,P值为0.021,GCC型相对于TCT型是保护因素,OR值为0.43, 95% CI为0.19~0.98,P值为0.045。
     结论:基于95例KOA和95例健康对照的等位基因和基因型的单个位点关联分析的病例对照研究结果,我们认为,对中国汉族人群来说,IL-16等位基因的rs4072111C/T位点的基因多态性可能是KOA发生发展的危险因素,三位点构建的TTT单倍体型的遗传多态性也可能增加KOA易感风险。故IL-16基因的遗传变异可能是引起KOA发病的危险因素。
     全膝关节置换术(TKA)是KOA等膝关节晚期病变的有效治疗措施,能有效矫正畸形、减轻疼痛、提高患肢功能,围手术期的并发症较少,是关节外科非常成熟的外科手术。
     人工全膝关节假体分类按照假体设计所提供的限制程度可分为非限制性假体、部分限制性假体、高限制性假体和全限制性假体。部分限制性假体是临床上应用最广泛的全膝关节假体,包括多数的保留与不保留后交叉韧带假体、活动与固定平台膝关节假体系统以及高屈曲型假体。
     随着社会发展,进行TKA人群的有年轻化的趋势,与手术疗效密切相关膝关节假体技术越来越多被人们所关注。而目前人工膝关节假体种类繁多,人们面对繁杂的膝关节假体常感困扰,如何合理选择膝关节假体是困扰临床工作者的难题之一,目前针对TKA中采用保留或不保留后交叉韧带假体、活动或固定平台膝关节假体以及高屈曲型假体或标准型假体等问题仍存在着较大的争议。
     系统评价(SR)是一种非常严格的文献评价方法,它是针对某一个具体的临床课题,采用临床流行病学和医学统计学的理论和方法,全面系统收集全球所有的相关临床研究文献,筛选符合要求的研究文献,对数据进行定量合成分析或定性描述,可获得目前最佳的临床证据,进而指导临床实践或为今后的研究指明研究方向,这种方法能更少的减少各种误差和研究偏倚。
     本研究的目的是通过系统评价的方法分别对TKA术中的假体的选择采用保留与不保留后交叉韧带假体、活动与固定平台膝关节假体、高屈曲性假体与标准型假体、全膝关节置换中选择保留和不保留髌骨的四个重要的争议进行循证研究。
     (一)全膝置换中保留后交叉韧带与否的系统评价
     目的:后交叉韧带对膝关节的稳定有非常重要的作用,学术界对TKA术中保留和不保留后交叉韧带仍有争议。本文的研究目的是通过系统评价TKA术中保留和不保留后交叉韧带随机对照试验,比较临床指标差异,以明确两种不同治疗措施的优劣。
     方法:两研究者按照检索策略独立计算机检索Medline(1966年至2009年11月)、Embase(1980年至2009年11月)、Cochrane library(2009年第3期)、中国生物医学文献数据库(1990年至2009年11月)、中国医院期刊网全文数据库(1990年至2009年11月)、中国科技期刊全文数据库(1990年至2009年11月)、万方数据库(1990年至2009年11月)和相关的会议记录和相关文献的参考文献,手工检索5种中文骨科核心杂志收集比较保留和不保留后交叉韧带TKA术的随机对照试验,采用cochrance系统评价手册的随机对照试验方法学质量评价标准和随机对照试验流程评价研究的质量,提取数据分析并采用统计软件RevMan5.0.18进行Meta分析。
     结果:经阅读标题、摘要和全文后,排除118篇文献,最后纳入12个随机对照试验,共1441膝,其中保留后交叉韧带组697膝,不保留后交叉韧带组744膝。依Cochrane的随机方法学评价标准,纳入研究的方法学质量均有不同的偏倚,依照CONSORT的22条评分标准结果:4个研究质量为优,4个为良,4个为中,指标分析结果是膝关节评分、功能评分、疼痛评分、本体觉和运动觉、关节并发症的发生率等指标的比较,组间差别均无统计学意义。关节活动度比较纳入7个研究,敏感性分析前组间差别有统计学意义(WMD=-3.25, 95%CI [-6.22, -0.28], P=0.03),剔除4个低质量的研究后组间差别没有显示统计学意义(WMD=-2.33, 95%CI[-5.06, -0.40], P=0.09)。
     结论:早中期的随访结果显示保留和不保留后交叉韧带TKA的膝关节评分、功能评分、疼痛评分、本体觉和运动觉、关节并发症的发生率等指标的组间比较均无统计学意义,但敏感性分析后的3个质量较高研究的ROM的统计权重仍明显偏向非保留后交叉组,考虑非保留组的ROM有大于保留组的倾向。本研究部分文献的质量不高,样本数量偏小,建议开展更多高质量、大样本的临床随机对照试验以增加证据的强度。
     (二)旋转和固定平台假体全膝置换疗效的系统评价
     背景:旋转平台型假体和固定平台型假体各有优点,但学术界对两种平台假体在TKA术中的应用的疗效优劣仍有争议。过去十年全球开展了许多临床试验针对两类平台在TKA术中应用的疗效进行比较,仍未有明确的结论。
     目的:通过系统评价的方法,比较TKA术中应用旋转平台型或固定平台型两种假体的临床结果,评价两组间的疗效差异。
     方法:两研究者按照检索策略独立计算机检索Medline(1966年至2009年11月)、Embase(1980年至2009年11月)、Cochrane library(2009年第3期)、中国生物医学文献数据库(1990年至2009年11月)、中国期刊网全文数据库(1990年至2009年11月)、中国科技期刊全文数据库(1990年至2009年11月)、万方数据库(1990年至2009年11月)和相关的会议记录及相关文献的参考文献,手工检索5种中文骨科核心杂志收集比较旋转和固定型假体TKA疗效比较的随机对照试验,采用cochrance的方法学评价研究文献的质量,采用RevMan5.0.18进行Meta分析。
     结果:经过阅读标题、摘要和全文后纳入11个随机对照试验,共1427膝,其中旋转型假体组694膝,固定型假体组723膝。依Cochrane的文献质量偏倚评价标准,纳入研究的方法学质量偏倚均较少,具有较好临床的同质性。两组术后均较术前有明显的疗效提高,但两组间比较,Meta分析的结果显示:术后膝关节评分、功能评分、疼痛评分、关节活动度以及假体脱位率、假体翻修率、膝关节假体周围的放射透光率、髌股关节Click症、髌斜率和前膝痛等不良事件的发生率均未能发现有明显的统计学差异。4例假体脱位的病例均发生在旋转组,脱位率约为1.8%(4/217)。
     结论:目前证据表明以骨性关节炎为主的老年患者采用旋转平台型假体或固定平台型假体TKA在术后早中期的临床疗效和并发症发生率差异未发现明显的统计学和临床意义,无论选择何种假体均有可能获得满意的临床效果。但旋转平台假体有易脱位的趋势,需要开展更多高质量的研究加以证实。建议未来的研究比较两种假体的社会经济学方面差异,进行长期随访比较两者的磨损和翻修率,同时临床实践中重视康复锻炼。
     目的:比较TKA中高屈曲型假体和标准型假体的不同术后关节活动度的测量结果,评价两类假体的疗效差异。
     方法:检索Medline(1966~2010.01)、Embase(1980~2010.01)、Cochrane library(2010.01)、CBM(1990~2010.01)等数据库,收集比较高屈曲型假体和标准型假体TKA的随机对照试验,系统评价各研究并采用RevMan5.0.18进行Meta分析。
     结果:纳入7个随机对照试验,8非随机的临床对照试验,但只有10个试验纳入Meta分析,包括1124膝,其中高屈曲型假体组551膝,标准型假体组573膝。对5个随机对照试验(RCT)与5个非随机的临床对照试验(CCT)进行亚组分析。统计结果显示CCT组:SD=2.82, 95%CI[0.28, 5.36], P=0.03;RCT组SD=1.77, 95%CI[0.01, 3.53], P=0.05。考虑非随机对照试验的研究偏倚较随机对照试验高,所以后者结果更可靠,故认为两者的术后关节活动度比较无明显差别。
     结论:高屈曲型假体与标准型假体TKA的术后关节活动度比较无明显差别。高屈曲假体不能对所有的病例产生高屈曲关节活动度,假体不是术后关节活动度的唯一影响因素,TKA术中的假体选择应该综合考虑。
     目的:探讨进行初次TKA中选择髌骨置换与否的疗效,评价两种不同治疗选择的差异。
     方法:检索Medline、Embase、Cochrane library、CBM,收集行初次TKA中髌骨置换与否的临床对照试验,提取数据分析,采用RevMan5.0.18进行Meta分析。
     结果:纳入8个前瞻性随机对照试验,共822例手术,其中髌骨置换组373例,髌骨非置换组444例。髌骨置换与非置换组比较,前膝痛与KSS评分均无明显的统计学意义(P>0.5),置换组的因髌股关节问题而再次手术率低于非置换组(RR=0.53, 95%CI [0.29, 0.96], P=0.04),但置换组再次手术的原因除了常见的前膝痛,还包括髌骨假体相关的并发症。
     结论:的患者行初次TKA中选择髌骨置换与否的前膝痛与KSS评分无明显的统计学意义,置换组的因髌股关节问题再次手术率低于非置换组,但置换组再次手术的复杂性大于非置换组。
Background Knee osteoarthritis (KOA) is a common and frequently musculoskeletal disease among the elderly. However, the pathogenesis of this disorder is not fully understood, and more and more epidemiological studies have shown that KOA has a strong genetic component. IL-16 is one of the common cytokine of the chronic inflammatory diseases, and presently, its gene polymorphism has been discussed extensively. So the KOA, being regarded as one of the chronic inflammatory diseases, may be related with abnormal expression of IL-16 gene polymorphisms. However, the association between IL-16 gene ploymorphisms and KOA has not been reported.
     Objective The aim of this study was to perform an association analysis of single-nucleotide polymorphisms (SNPs) in patients with radiographically defined osteoarthritis of the knee among the male Han people of the coastal area of Guangxi, China and identify the relationship between the gene polymorphisms and KOA. And to further explore possible etiologic hypothesis contributed to the onset of KOA based on the experimental results.
     Methods A case-control study association study was conducted. A systematic screening for genetic variants in the complete IL-16 gene was performed, and the polymerase chain reaction and restriction fragment length polymorphism analysis were used to check 3 single nucleotide polymorphisms within IL-16 from 100 patients with KOA and 100 asymptomatic and radiographically negative control subjects matched exactly for age and sex of Chinese Han ancestry.
     Genomic DNA from peripheral blood samples of each subjet was extracted by phenol-chloroform extraction. Based on NCBI gene-bank, the corresponding single nucleotide polymorphisms of IL-16 (rs11556218T/G, rs4778889T/C, and rs4072111C/T) were identified. Genotype and allele frequencies were calculated by SPSS and the Hardy-Weinberg equilibrium in the both groups were analyzed through Goodness-of-fit Chi-square test. The non-condition logistic regression analysis of single locus, based on analysis of the Genotype and allele frequencies, was performed to evaluate the association between onset risk of KOA and the single locus. Link disequilibrium analysis and haplotype association analysis were calculated using the SNPstats and software of Haploview 4.2 to evaluate the association between the haplotype and onset risk of KOA.
     Results A total of 3 gene loci of IL-16 were tested. Only 95 out of 100 of DNA locis in each group were tested successfully, so the valid sample size within each group was 95. The female/male ratio among patients subject was 71/24, and the control subject was 62/33, and no significant differences were found between the two groups(x2=2.3, P=0.15); the mean age for the case group was 60.52±9.92 years and that for the control group was 58.28±10.36 years, with a t=1.52, P=0.07. Three gene loci of IL-16 both in case group and control groups were in Hardy-Weinberg equilibrium with a p-value>0.05 analyzed by Goodness-of-fit Chi-squ.
     The results of non-conditional logistic regression model analysis, by SNPstats, on each gene loci of IL-16 both in case group and control groups showed that:⑴The rs11556218 in genotype association analysis in Codominant model, T/T was found to be a protective factor compared to T/G (OR=0.40, 95%CI=0.21-0.73, P=0.0083); T/G-G/G was found to be a protective factor compared to T/T in Dominant model (OR=0.46, 95%CI=0.26~0.83, P=0.0088); T/G was found to be a protective factor compared to T/T-T/G in Overdominat model (OR=0.40, 95%CI=0.22~0.72, P=0.002);⑵The 4072111 in genotype association analysis in Codominant model, C/T was found to be a risk factor compared to C/C (OR=1.98, 95%CI=1.08~3.65, P=0.036); C/T was found to be a a risk factor factor compared to C/C-T/T in Overdominat model (OR=2.08, 95%CI=1.14~3.80, P=0.016);⑶No positive result was found in association analysis in 3 statistical models for rs4778889.
     According to different genotypes of male and female patients, in female patients, the rs11556218 in genotype association analysis, T/G was found to be a protective factor compared to TT (OR=0.33, 95%CI=0.16-0.70); the 4072111 in genotype association analysis, C/T was found to be a protective factor compared to CC (OR=2.88, 95%CI=1.37-6.04); No positive results were found in association analysis for rs4778889.
     Linkage disequilibrium analysis was performed using the Haploview 4.2 software package for the 3 loci of IL-16, and the analysis found disequilibrium between loci rs11556218T/G and rs4778889T/C. The further stratification analysis by SNPstats based on phenotype showed that TTT was found to be a risk factor compared to TCT (OR=2.42, 95%CI=1.15~5.10, P=0.021), GCC was found to be a protective factor compared to TCT(OR=0.43, 95%CI=0.19~0.98, P=0.045).
     Conclusions Based on this present case-control study included 95 KOA patients and 95 healthy controls, the results suggests that the IL-16 polymorphism rs4072111C/T is a risk factor for KOA susceptibility, and the TTT haplotype, derived from the allelic variant in the 3 genetic polymorphisms, may also be closely associated with the risk of knee osteoarthritis. So IL-16 allele is one of risk factors for the development of knee osteoarthritis in the Chinese Han population. The aims of primary total knee arthroplasty (TKA) are correction of deformity, relief of pain and improvement in function for knee osteoarthritis, great progress has been made on the study of TKA with both surgical techniques and prosthesis design in the past 40 years, and TKA has been widely used as effective treatments at present with few complications.
     In accordance with the extent of mechanical restrictions, total knee prosthesis can be divided into non-prosthesis, semi-restraining knee prosthesis, high-constrained prosthesis and total-constrained prosthesis. Semi-restraining knee prosthesis is the most widely used in TKA and it included most of posterior cruciate retained or excised in TKA, mobile-bearing or fixed-bearing prosthesis and high-Flexion versus standard prostheses in TKA.
     With the development of the society, there is a trend that the population of TKA is younger than before. The choice of proper knee prosthesis is closely related with the surgical treatment results and has been more and more attention. Knee prosthesis is abundant in variety, and people are often to be perplexed. How to choice the proper knee prosthesis is a hard nut for the clinical workers. Whether to choice the posterior cruciate retained or excised, mobile-bearing or fixed-bearing prosthesis and high-flexion or standard prostheses in total knee replacement are considerable controversies.
     Systematic review is a rigorous evaluation method. It targets at a specific clinical topics by using the theoretical methods of clinical epidemiology and medical statistical methods, and by a careful screening of the research literatures that uses appropriate statistical techniques to combine these valid studies. It can reduce the likelihood of errors or bias, and is useful to show the direction for clinical practice or research.
     The present study to investigate and evaluate according to the principle of evidence based medicine (EBM) and the purpose of it is to find whether prosthesis which cited above has superior outcomes in TKA.
     Objective posterior cruciate ligament (PCL) is very important for the stability of knee joint, but whether PCL should be retained or excised in total knee arthroplasty is still in controversy. The aim of this study was to include all the randomized controlled trials (RCTs) with posterior cruciate retained versus excised in total knee arthroplasty and systematic review the research quality of each study, clinical efficacy was compared between two different therapeutic measures.
     Methods Two researchers searched online independently according to the retrieval strategy. The RCTs with reference to Posterior cruciate retained versus excised in total knee arthroplasty were identified from Medline (1966-2009.11), Embase (1980-2009.11), Cochrane library (2009 issue 3), Chinese Biomedical Databases (1990 -2009.11), CNKI (1990-2009.11), VIP (1990-2009.11), and hand-searched several related journals, the study characteristics and the data on the participants, intervention, follow-up and outcome measures were extracted. The Methodology quality of each research was evaluated On the principles of Cochrance handbook 5.0.1, RevMan 5.0.18 software was used for meta-analysis.
     Results After reading the title, abstract and fulltext, 118 articles were excluded. 12 RCTs were included which involving 1441 knees (697 knees in retained, 744 knees in excised). The results showed that the differeces between two groups had no statistical significance about knee score, function score, pain score, proprioception and kinesthesia, and the rate of joint complications. 7 studies were included when compared the ROM, the results of meta-analysis indicated that there was significant statistical difference between the 2 groups on the ROM before the sensitivity analysis (WMD=-3.25, 95%CI [-6.22, -0.28], P=0.03), but there was no statistical difference after 4 low quality studies were rejected (WMD=-2.33, 95%CI[-5.06, -0.40], P=0.09), but the forest plot of meta-analysis indicated the weight of ROM within 3 higher methodological studies bias to posterior cruciate excised in TKA.
     Conclusion Short and median follow-up showed that no major differences on knee score, function score, pain score, proprioception, kinesthesia, and the rate of joint complications between posterior cruciate retained and excised in total knee arthroplasty, The ROM of the posterior cruciate excised may be higher than which of posterior cruciate retained within 5 years follow-up. In term of including some fair grade studies, we advised that more and stronger evidences should be needed for supporting the outcomes.
     Background The differences between mobile-bearing and fixed-bearing in TKAs was still not clear. A few trials have compared the clinical performance of the two prostheses in the past ten years. The results of these studies are controversial.
     Objective The purpose of this study was to compare the clinical results and possible complications of mobile bearing with fixed-bearing in total knee arthroplasty and assess the differences between the 2 groups.
     Methods We conducted computer-aided searches of MEDLINE (January 1966 to November 2009), EMBASE (January 1980 to November 2009), Cochrane library (2009, Issue 3), Chinese Biomedical Databases (January 1990 to November 2009), CNKI (January 1990 to November 2009 ), VIP (January 1990 to November 2009) with reference to mobile bearing versus fixed-bearing in total knee arthroplasty, We also tracked references in bibliographies and hand-searched several related Chinese major journals, The methodological quality of included studies was assessed by the use of assessments of risk of bias in Cochrane handbook 5.0.1. Meta-analyses were performed using RevMan software, version 5.0.18.
     Results 11 RCTs were included with a total of 1427 knees, 694 knees in the mobile bearing and 723 knees in fixed-bearing. Two review authors performed study selection, assessment of methodological quality and data extraction independently of each other. The bias in the studies were low and with well clinical homogeneity. The outcomes of Meta-analysis showed that there were no statistical significance on the Knee score, function score, pain score, range of motion (ROM), bearing dislocation, need for repeated surgery, Radiolucent line, knee clicking, patellar tilt and anterior knee pain. But 4 dislocation knees all occurred in four studies of mobile bearing TKA, the rate of dislocation is 1.8% (4/217).
     Conclusion The results of short and median follow-up showed that there were no significant differences on clinical results and complications compared mobile bearing prosthesis with fixed-bearing prosthesis in total knee arthroplasty in the older population who mainly from osteoarthritis, and both bearing could have well clinical effects. But the mobile bearing prosthesis had a high risk of bearing dislocation, in term of including few studies, we advised that more evidences will be needed for supporting the outcomes.
     Objective The aim of this study was to compare the range of motion (ROM) between high-flexion and standard prostheses in total knee arthroplasty.
     Methods The databases of Cochrane library (2010, Issue 3), Medline (1966~2010.01), Embase (1980~2010.01) and Chinese Biomedical Databases (1990~2010.01) were searched online. All the trials comparing high-flexion with standard total knee prostheses for total knee replacement were included. Methodology quality of the trials was assessed and the data of the clinical outcomes within both groups was extracted. The Revman 5.0.18 was used for data-analysis.
     Results In this study, we included eight controlled clinical trials (CCT), seven Randomized controlled trials (RCT), but only five RCTs and five CCTs with 1124 knees were included (551 High-Flexion/573 Standard) were included for meta-analysis, the result of Meta-analysis showed significant difference in ROM within two types in five CCTs (SD=4.39, 95%CI [2.56, 6.23], P=0.03), but no significant difference in five RCTs (SD=1.61, 95%CI [-0.26, 3.84], P=0.05). Considering the risk of bias in CCTs was higher than in RCTs, we regarded that the outcome of five RCTs was more reasonable.
     Conclusion The ROM of the high-flexion prostheses in TKA did not higher than which of standard prostheses at least 1 year follow-up, Prosthesis selection in TKA should be overall considerate.
     Objective The aim of this study was to compare the clinical effects between patellar resurfacing and non-resurfacing in total knee arthroplasty for osteoarthritis.
     Methods The databases of Cochrane library, Medline, Embase and Chinese Biomedical Databases were searched online. All the trials comparing patellar resurfacing with non-resurfacing in total knee arthroplasty for osteoarthritis were included. Methodology quality was assessed and the data of the complications within both groups was extracted. The Revman 5.0.18 software package was used for data-analysis. The major causes of the reoperations in the patellar resurfacing group include anterior knee pain and the complications related to patellar component failure.
     Results Eight trials with 822 knees were included (373 patellar resurfacing/ 444 patellar non-resurfacing). The meta-analysis showed that there were no differences in Knee Society Clinical Scores and anterior knee pain between the two groups with at least two year follow-up (P>0.5), but significant difference on reoperation for patellofemoral problems in favor of the nonresurfacing group (RR=0.53, P=0.04).
     Conclusion Our results indicate that patellar resurfacing would reduce the risk of reoperation after total knee arthroplasty for osteoarthritis, but it seems that the benefits are limited on Knee Society Clinical Scores and anterior knee pain, and the reoperations in the patellar resurfacing group are usually more difficult than the nonresurfacing group.
引文
[1] Srikanth VK, Fryer JL, Zhai G, et al. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis[J]. Osteoarthritis Cartilage, 2005,13(9): 769-781.
    [2] Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II[J]. Arthritis Rheum, 2008,58(1): 26-35.
    [3] Denegar CR, Dougherty DR, Friedman JE, et al. Preferences for heat, cold, or contrast in patients with knee osteoarthritis affect treatment response[J]. Clin Interv Aging, 2010,5: 199-206.
    [4] McKenzie S, Torkington A. Osteoarthritis - management options in general practice[J]. Aust Fam Physician, 2010,39(9): 622-625.
    [5] Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States[J]. Arthritis Rheum, 1998,41(5): 778-799.
    [6] Goldring MB. The role of the chondrocyte in osteoarthritis[J]. Arthritis Rheum, 2000,43(9): 1916-1926.
    [7] Schmalz T, Knopf E, Drewitz H, et al. Analysis of biomechanical effectiveness of valgus-inducing knee brace for osteoarthritis of knee[J]. J Rehabil Res Dev, 2010,47(5): 419-429.
    [8] Corti MC, C. R. Epidemiology of osteoarthritis: prevalence, risk factors and functional impact[J]. Aging Clin ExpRes, 2003,15: 359-363.
    [9] Vijayan S, Bentley G, Briggs T, et al. Cartilage repair: A review of Stanmore experience in the treatment of osteochondral defects in the knee with various surgical techniques[J]. Indian J Orthop, 2010,44(3): 238-245.
    [10] Bar-Ziv Y, Beer Y, Ran Y, et al. A treatment applying a biomechanical device to the feet of patients with knee osteoarthritis results in reduced pain and improved function: a prospective controlled study[J]. BMC Musculoskelet Disord, 2010,11: 179.
    [11]吕厚山.髋、膝关节骨性关节炎的研究现状和进展[J].实用老年医学, 2001,15(5): 229-233.
    [12]俞浩萍,张林.骨性关节炎与雌激素受体的基因多态性[J].中国临床康复, 2006,10(44): 96-98.
    [13] Alcaraz MJ, Megias J, Garcia-Arnandis I, et al. New molecular targets for the treatment of osteoarthritis[J]. Biochem Pharmacol, 2010,80(1): 13-21.
    [14] Oliveria SA, Felson DT, Reed JI, et al. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization[J]. Arthritis Rheum, 1995,38(8): 1134-1141.
    [15] Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention[J]. Arthritis Rheum, 1998,41(8): 1343-1355.
    [16] Meulenbelt I, Chapman K, Dieguez-Gonzalez R, et al. Large replication study and meta-analyses of DVWA as an osteoarthritis susceptibility locus in European and Asian populations[J]. Hum Mol Genet, 2009,18(8): 1518-1523.
    [17] Muehleman C, Margulis A, Bae WC, et al. Relationship between knee and ankle degeneration in a population of organ donors[J]. BMC Med, 2010,8: 48.
    [18] Arden N, Nevitt MC. Osteoarthritis: epidemiology[J]. Best Pract Res Clin Rheumatol, 2006,20(1): 3-25.
    [19] Loughlin J. The genetic epidemiology of human primary osteoarthritis: current status[J]. Expert Rev Mol Med, 2005,7(9): 1-12.
    [20] Englund M, Paradowski PT, Lohmander LS. Association of radiographic hand osteoarthritis with radiographic knee osteoarthritis after meniscectomy[J]. Arthritis Rheum, 2004,50(2): 469-475.
    [21] Hirsch R, Lethbridge-Cejku M, Hanson R, et al. Familial aggregation of osteoarthritis: data from the Baltimore Longitudinal Study on Aging[J]. Arthritis Rheum, 1998,41(7): 1227-1232.
    [22] Felson DT, Couropmitree NN, Chaisson CE, et al. Evidence for a Mendelian gene in a segregation analysis of generalized radiographic osteoarthritis: the Framingham Study[J]. Arthritis Rheum, 1998,41: 1064-1071.
    [23] Fan J, Shi D, Dai J, et al. Genetic polymorphism of PITX1 in susceptibility to knee osteoarthritis in a Chinese Han population: a case-control study[J]. Rheumatol Int, 2010, PMID: 20054692.
    [24] Valdes AM, Hart DJ, Jones KA, et al. Association study of candidate genes for the prevalence and progression of knee osteoarthritis[J]. ArthritisRheum, 2004,50(8): 2497-2507.
    [25] Qin J, Shi D, Dai J, et al. Association of the leptin gene with knee osteoarthritis susceptibility in a Han Chinese population: a case-control study[J]. J Hum Genet, 2010, 55(10):704-706.
    [26] Chapman K, Takahashi A, Meulenbelt I, et al. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5' UTR of GDF5 with osteoarthritis susceptibility[J]. Hum Mol Genet, 2008,17(10): 1497-1504.
    [27] Valdes AM, Spector TD. The genetic epidemiology of osteoarthritis[J]. Curr Opin Rheumatol, 2010,22(2): 139-143.
    [28] Swellam M, Mahmoud MS, Samy N, et al. Potential influence of interleukin-1 receptor antagonist gene polymorphism on knee osteoarthritis risk[J]. Dis Markers, 2010,28(5): 299-305.
    [29] Wagener R, Gara SK, Kobbe B, et al. The knee osteoarthritis susceptibility locus DVWA on chromosome 3p24.3 is the 5' part of the split COL6A4 gene[J]. Matrix Biol, 2009,28(6): 307-310.
    [30] Moxley G, Meulenbelt I, Chapman K, et al. Interleukin-1 region meta-analysis with osteoarthritis phenotypes[J]. Osteoarthritis Cartilage, 2010,18(2): 200-207.
    [31] Shi D, Ni H, Dai J, et al. Lack of association between the CALM1 core promoter polymorphism (-16C/T) and susceptibility to knee osteoarthritis in a Chinese Han population[J]. BMC Med Genet, 2008,9: 91.
    [32] Shi D, Nakamura T, Nakajima M, et al. Association of single-nucleotide polymorphisms in RHOB and TXNDC3 with knee osteoarthritis susceptibility: two case-control studies in East Asian populations and a meta-analysis[J]. Arthritis Res Ther, 2008,10(3): R54.
    [33] Nakamura T, Shi D, Tzetis M, et al. Meta-analysis of association between the ASPN D-repeat and osteoarthritis[J]. Hum Mol Genet, 2007,16(14): 1676-1681.
    [34] Mototani H, Iida A, Nakajima M, et al. A functional SNP in EDG2 increases susceptibility to knee osteoarthritis in Japanese[J]. Hum Mol Genet, 2008,17(12): 1790-1797.
    [35] Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets[J]. Arthritis Rheum, 2001,44(6): 1237-1247.
    [36]邵振兴,秦江辉,戴进,等.膝骨性关节炎与asporin基因多态性关系[J].中国公共卫生, 2008,24(5): 558-559.
    [37] Spector TD, Reneland RH, Mah S, et al. Association between a variation in LRCH1 and knee osteoarthritis: a genome-wide single-nucleotide polymorphism association study using DNA pooling[J]. Arthritis Rheum, 2006,54(2): 524-532.
    [38] Snelling S, Sinsheimer JS, Carr A, et al. Genetic association analysis of LRCH1 as an osteoarthritis susceptibility locus[J]. Rheumatology (Oxford), 2007,46(2): 250-252.
    [39] Ozaki K, Ohnishi Y, Iida A, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction[J]. Nat Genet, 2002,32(4): 650-654.
    [40] MacGregor AJ, TD. S. Twins and the genetic architecture of osteoarthritis [editorial][J]. Rheumatology (Oxford), 1999,38: 583-588.
    [41] Ioannidis JP, Trikalinos TA, MJ. K. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases.[J]. Am J Epidemiol 2006,164:609-614.
    [42] Ruzickova S, Senolt L, Gatterova J, et al. The lack of correlation between the increased frequency of allele IL-1RN*2 of interleukin-1 receptor antagonist gene in Czech patients with knee osteoarthritis and the markers of cartilage degradation[J]. Folia Biol (Praha), 2008,54(4): 115-120.
    [43] Shi K, Hayashida K, Kaneko M, et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients[J]. J Immunol, 2001,166(1): 650-655.
    [44] Lark MW, Bayne EK, Flanagan J, et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints[J]. J Clin Invest, 1997,100(1): 93-106.
    [45]潘海乐,姚跃,王国文,等.骨性关节炎模型动物血液、关节液中IL-1水平检测[J].哈尔滨医科大学学报, 2001,35(3): 192-194.
    [46] Nakayama EE, Wasi C, Ajisawa A, et al. A new polymorphism in the promoter region of the human interleukin-16 (IL-16) gene[J]. Genes Immun, 2000,1(4): 293-294.
    [47]吴照芳,杨慧. IL-16及其前体对T细胞的调节作用[J].生命的化学, 2006,26(5): 432-434.
    [48] Burkart KM, Barton SJ, Holloway JW, et al. Association of asthma with a functional promoter polymorphism in the IL16 gene[J]. J Allergy Clin Immunol, 2006,117(1): 86-91.
    [49] Gu XJ, Cui B, Zhao ZF, et al. Association of the interleukin (IL)-16 gene polymorphisms with Graves' disease[J]. Clin Immunol, 2008,127(3): 298-302.
    [50] Gao LB, Rao L, Wang YY, et al. The association of interleukin-16 polymorphisms with IL-16 serum levels and risk of colorectal and gastric cancer[J]. Carcinogenesis, 2009,30(2): 295-299.
    [51] Gao LB, Liang WB, Xue H, et al. Genetic polymorphism of interleukin-16 and risk of nasopharyngeal carcinoma[J]. Clin Chim Acta, 2009,409(1-2): 132-135.
    [52] Zhu J, Qin C, Yan F, et al. IL-16 polymorphism and risk of renal cell carcinoma: association in a Chinese population[J]. Int J Urol, 2010,17(8): 700-707.
    [53] Obara W. Editorial comment to IL-16 polymorphism and risk of renal cell carcinoma: association in a Chinese population[J]. Int J Urol, 2010,17(8): 707.
    [54] Hong J, Leung E, Fraser AG, et al. IL4, IL10, IL16, and TNF polymorphisms in New Zealand Caucasian Crohn's disease patients[J]. Int J Colorectal Dis, 2008,23(3): 335-337.
    [55] Courtin D, Milet J, Jamonneau V, et al. Association between human African trypanosomiasis and the IL6 gene in a Congolese population[J]. Infect Genet Evol, 2007,7(1): 60-68.
    [56] Hochberg MC, Altman RD, Brandt KD, et al. Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology[J]. Arthritis Rheum, 1995,38(11): 1541-1546.
    [57] Kessler S, Guenther KP, Puhl W. Scoring prevalence and severity in gonarthritis: the suitability of the Kellgren & Lawrence scale[J]. Clin Rheumatol, 1998,17(3): 205-209.
    [58] Wada M, Baba H, Imura S, et al. Relationship between radiographic classification and arthroscopic findings of articular cartilage lesions inosteoarthritis of the knee[J]. Clin Exp Rheumatol, 1998,16(1): 15-20.
    [59] Bhattacharya R, Kumar V, Safawi E, et al. The knee skyline radiograph: its usefulness in the diagnosis of patello-femoral osteoarthritis[J]. Int Orthop, 2007,31(2): 247-252.
    [60] Magana JJ, Galvez-Rosas A, Gonzalez-Huerta C, et al. Association of the calcitonin gene (CA) polymorphism with osteoarthritis of the knee in a Mexican mestizo population[J]. Knee, 2010,17(2): 157-160.
    [61] Gan XL, Lin YH, Zhang Y, et al. Association of an interleukin-16 gene polymorphism with the risk and pain phenotype of endometriosis[J]. DNA Cell Biol, 2010,29(11): 663-667.
    [62] Bailey SD, Xie C, Do R, et al. Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) study[J]. Diabetes Care, 2010,33(10): 2250-2253.
    [63] Schuurhof A, Bont L, Siezen CL, et al. Interleukin-9 polymorphism in infants with respiratory syncytial virus infection: an opposite effect in boys and girls[J]. Pediatr Pulmonol, 2010,45(6): 608-613.
    [64] Davila S, Froeling FE, Tan A, et al. New genetic associations detected in a host response study to hepatitis B vaccine[J]. Genes Immun, 2010,11(3): 232-238.
    [65] Gao J, Li YY, Sun PN, et al. Comparative analysis of dideoxy sequencing, the KRAS StripAssay and pyrosequencing for detection of KRAS mutation[J]. World J Gastroenterol, 2010,16(38): 4858-4864.
    [66] Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics, 2005,21(2): 263-265.
    [67] Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests ofHardy-Weinberg equilibrium[J]. Am J Hum Genet, 2005,76(5): 887-893.
    [68] http://bioinfo.iconcologia.net/index.php?module=Snpstats[J].
    [69] Sole X, Guino E, Valls J, et al. SNPStats: a web tool for the analysis of association studies[J]. Bioinformatics, 2006,22(15): 1928-1929.
    [70] Demetrius L. Demographic parameters and natural selection[J]. Proc Natl Acad Sci U S A, 1974,71(12): 4645-4647.
    [71] Demetrius L. Natural selection and age-structured populations[J]. Genetics, 1975,79(3): 535-544.
    [72] Neel JV. Hardy-Weinberg Equilibrium and Primitive Populations[J]. Am J Hum Genet, 1965,17(1): 92-93.
    [73] Norton HW, Neel JV. Hardy-Weinberg Equilibrium and Primitive Populations[J]. Am J Hum Genet, 1965,17: 91-92.
    [74] Schork NJ. Genetics of complex disease: approaches, problems, and solutions[J]. Am J Respir Crit Care Med, 1997,156(4 Pt 2): S103-109.
    [75] Gershon ES, Badner JA, Goldin LR, et al. Closing in on genes for manic-depressive illness and schizophrenia[J]. Neuropsychopharmacology, 1998,18(4): 233-242.
    [76] Song JH, Lee HS, Kim CJ, et al. Aspartic acid repeat polymorphism of the asporin gene with susceptibility to osteoarthritis of the knee in a Korean population[J]. Knee, 2008,15(3): 191-195.
    [77] Lorenzo P, Aspberg A, Onnerfjord P, et al. Identification and characterization of asporin. a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan[J]. J Biol Chem, 2001,276(15): 12201-12211.
    [78] Loughlin J, Dowling B, Mustafa Z, et al. Association of the interleukin-1 gene cluster on chromosome 2q13 with knee osteoarthritis[J]. ArthritisRheum, 2002,46(6): 1519-1527.
    [79] Nicklas BJ, Mychaleckyj J, Kritchevsky S, et al. Physical function and its response to exercise: associations with cytokine gene variation in older adults with knee osteoarthritis[J]. J Gerontol A Biol Sci Med Sci, 2005,60(10): 1292-1298.
    [80] Fytili P, Giannatou E, Karachalios T, et al. Interleukin-10G and interleukin-10R microsatellite polymorphisms and osteoarthritis of the knee[J]. Clin Exp Rheumatol, 2005,23(5): 621-627.
    [81] Center DM, Kornfeld H, Cruikshank WW. Interleukin 16 and its function as a CD4 ligand[J]. Immunol Today, 1996,17(10): 476-481.
    [82] Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data[J]. Am J Hum Genet, 2001,69(1): 1-14.
    [83] Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population[J]. Mol Biol Evol, 1995,12(5): 921-927.
    [84]赵玉岩,郭磊,田蕾,等.骨性关节炎软骨细胞中胰岛素样生长因子Ⅱ表达的研究[J].中国老年医学杂志, 2009,29(2): 195.
    [85]曾朝阳,李桂源.单核苷酸多态性[J].国外医学分子生物学分册, 2001,23(3): 149-151.
    [1] Callahan CM, Drake BG, Heck DA, et al. Patient outcomes following tricompartmental total knee replacement. A meta-analysis[J]. JAMA, 1994,271(17): 1349-1357.
    [2] Khatod M, Inacio M, Paxton EW, et al. Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 replacements from 1995 through 2004[J]. Acta Orthop, 2008,79(6): 812-819.
    [3] Kim HA, Kim S, Seo YI, et al. The epidemiology of total knee replacement in South Korea: national registry data[J]. Rheumatology (Oxford), 2008,47(1): 88-91.
    [4] Ranawat CS, Shine JJ. Duo-condylar total knee arthroplasty[J]. Clin Orthop Relat Res, 1973,(94): 185-195.
    [5] Straw R, Kulkarni S, Attfield S, et al. Posterior cruciate ligament at total knee replacement. Essential, beneficial or a hindrance?[J]. J Bone Joint Surg Br, 2003,85(5): 671-674.
    [6] Andriacchi TP, Galante JO, Fermier RW. The influence of total knee-replacement design on walking and stair-climbing[J]. J Bone Joint Surg Am, 1982,64(9): 1328-1335.
    [7] Conditt MA, Noble PC, Bertolusso R, et al. The PCL significantly affects the functional outcome of total knee arthroplasty[J]. J Arthroplasty, 2004,19(7 Suppl 2): 107-112.
    [8] Dorr LD, Ochsner JL, Gronley J, et al. Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty[J]. Clin Orthop Relat Res, 1988,(236): 36-43.
    [9] Maloney WJ, Schurman DJ. The effects of implant design on range of motion after total knee arthroplasty. Total condylar versus posterior stabilized total condylar designs[J]. Clin Orthop Relat Res, 1992,(278): 147-152.
    [10] Swanik CB, Lephart SM, Rubash HE. Proprioception, kinesthesia, and balance after total knee arthroplasty with cruciate-retaining and posterior stabilized prostheses[J]. J Bone Joint Surg Am, 2004,86-A(2): 328-334.
    [11] Simmons S, Lephart S, Rubash H, et al. Proprioception following total knee arthroplasty with and without the posterior cruciate ligament[J]. J Arthroplasty, 1996,11(7): 763-768.
    [12] Insall JN, Ranawat CS, Aglietti P, et al. A comparison of four models of total knee-replacement prostheses[J]. J Bone Joint Surg Am, 1976,58(6): 754-765.
    [13] Bourne RB, Laskin RS, Guerin JS. Ten-year results of the first 100 Genesis II total knee replacement procedures[J]. Orthopedics, 2007,30(8 Suppl): 83-85.
    [14] Ritter MA, Lutgring JD, Davis KE, et al. Total knee arthroplasty effectiveness in patients 55 years old and younger: osteoarthritis vs. rheumatoid arthritis[J]. Knee, 2007,14(1): 9-11.
    [15] Van den Boom LG, Brouwer RW, Van den Akker-Scheek I, et al. Retention of the posterior cruciate ligament versus the posterior stabilized design in total knee arthroplasty: a prospective randomized controlled clinical trial[J]. BMC Musculoskelet Disord, 2009,10(1): 119.
    [16] Hemmingway P, Brereton N. What is a systematic review?[J]. London: Hayward Medical Communications, 2009.
    [17] Cao Y, Gao F, Liao C, et al. Meta-analysis of medical treatment andplacebo treatment for preventing postoperative recurrence in Crohn's disease (CD)[J]. Int J Colorectal Dis, 2009,24(5): 509-520.
    [18] Jacobs WC, Clement DJ, Wymenga AB. Retention versus removal of the posterior cruciate ligament in total knee replacement: a systematic literature review within the Cochrane framework[J]. Acta Orthop, 2005,76(6): 757-768.
    [19] Chaudhary R, Beaupre LA, Johnston DW. Knee range of motion during the first two years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses. A randomized clinical trial[J]. J Bone Joint Surg Am, 2008,90(12): 2579-2586.
    [20] Harato K, Bourne RB, Victor J, et al. Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial[J]. Knee, 2008,15(3): 217-221.
    [21] Kim YH, Choi Y, Kwon OR, et al. Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study[J]. J Bone Joint Surg Am, 2009,91(4): 753-760.
    [22] Crombie IK, Davies HTO. What is meta-analysis?[J]. London: Hayward Medical Communications, 2009.
    [23] Insall JN, Dorr LD, Scott RD, et al. Rationale of the Knee Society clinical rating system[J]. Clin Orthop Relat Res, 1989,(248): 13-14.
    [24] Insall JN, Hood RW, Flawn LB, et al. The total condylar knee prosthesis in gonarthrosis. A five to nine-year follow-up of the first one hundred consecutive replacements[J]. J Bone Joint Surg Am, 1983,65(5): 619-628.
    [25] Higgins JPT, Green S. Chapter 8:Assessing risk of bias in included studies.www.cochranehandbook.org (last accessed 12 November 2008)[J]. Cochrane CollaborationCochrane Handbook for Systematic Reviews of Interventions,Version 501 [updated September 2008].
    [26] Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials[J]. BMC Med Res Methodol, 2001,1: 2.
    [27] Kim YH, Kim JS, Yoon SH. A recession of posterior cruciate ligament in posterior cruciate-retaining total knee arthrosplasty[J]. J Arthroplasty, 2008,23(7): 999-1004.
    [28] Clark CR, Rorabeck CH, MacDonald S, et al. Posterior-stabilized and cruciate-retaining total knee replacement: a randomized study[J]. Clin Orthop Relat Res, 2001,(392): 208-212.
    [29] Maruyama S, Yoshiya S, Matsui N, et al. Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty[J]. J Arthroplasty, 2004,19(3): 349-353.
    [30] Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study[J]. J Bone Joint Surg Br, 2005,87(5): 646-655.
    [31] Shoji H, Wolf A, Packard S, et al. Cruciate retained and excised total knee arthroplasty. A comparative study in patients with bilateral total knee arthroplasty[J]. Clin Orthop Relat Res, 1994,(305): 218-222.
    [32] Misra AN, Hussain MR, Fiddian NJ, et al. The role of the posterior cruciate ligament in total knee replacement[J]. J Bone Joint Surg Br, 2003,85(3): 389-392.
    [33] Catani F, Leardini A, Ensini A, et al. The stability of the cemented tibial component of total knee arthroplasty: posterior cruciate-retaining versusposterior-stabilized design[J]. J Arthroplasty, 2004,19(6): 775-782.
    [34] Tanzer M, Smith K, Burnett S. Posterior-stabilized versus cruciate-retaining total knee arthroplasty: balancing the gap[J]. J Arthroplasty, 2002,17(7): 813-819.
    [35] Nelissen RG, Hogendoorn PC. Retain or sacrifice the posterior cruciate ligament in total knee arthroplasty? A histopathological study of the cruciate ligament in osteoarthritic and rheumatoid disease[J]. J Clin Pathol, 2001,54(5): 381-384.
    [36] Stiehl J, B., Dennis DA, Komistek R, D., et al. In vivo kinematic comparison of posterior cruciate ligament retention or sacrifice with a mobile bearing total knee arthroplasty.[J]. The American journal of knee surgery, 2000,13(1): 13-18.
    [37] Matsueda M, Gengerke TR, Murphy M, et al. Soft tissue release in total knee arthroplasty. Cadaver study using knees without deformities[J]. Clin Orthop Relat Res, 1999,(366): 264-273.
    [38] Harman MK, Banks SA, Hodge WA. Polyethylene damage and knee kinematics after total knee arthroplasty[J]. Clin Orthop Relat Res, 2001,(392): 383-393.
    [39] Ritter MA, Campbell E, Faris PM, et al. Long-term survival analysis of the posterior cruciate condylar total knee arthroplasty. A 10-year evaluation[J]. J Arthroplasty, 1989,4(4): 293-296.
    [40] Scott WN, Rubinstein M, Scuderi G. Results after knee replacement with a posterior cruciate-substituting prosthesis[J]. J Bone Joint Surg Am, 1988,70(8): 1163-1173.
    [41] Buechel FF, Pappas MJ. The New Jersey Low-Contact-Stress Knee Replacement System: biomechanical rationale and review of the first 123cemented cases[J]. Arch Orthop Trauma Surg, 1986,105(4): 197-204.
    [42] Goodfellow JW, O'Connor J. Clinical results of the Oxford knee. Surface arthroplasty of the tibiofemoral joint with a meniscal bearing prosthesis[J]. Clin Orthop Relat Res, 1986,(205): 21-42.
    [43] Jacobs W, Anderson P, Limbeek J, et al. Mobile bearing vs fixed bearing prostheses for total knee arthroplasty for post-operative functional status in patients with osteoarthritis and rheumatoid arthritis[J]. Cochrane Database Syst Rev, 2004,(2): CD003130.
    [44]曹力,龚时国,康雄, et al.活动平台与固定平台假体全膝关节置换术疗效的Meta分析[J].中华骨科杂志, 2008,29(2).
    [45] Gomis M, Gall C, Brahmi FA. Web-based citation management compared to EndNote: options for medical sciences[J]. Med Ref Serv Q, 2008,27(3): 260-271.
    [46] Price AJ, Rees JL, Beard D, et al. A mobile-bearing total knee prosthesis compared with a fixed-bearing prosthesis. A multicentre single-blind randomised controlled trial[J]. J Bone Joint Surg Br, 2003,85(1): 62-67.
    [47] Aglietti P, Baldini A, Buzzi R, et al. Comparison of mobile-bearing and fixed-bearing total knee arthroplasty: a prospective randomized study[J]. J Arthroplasty, 2005,20(2): 145-153.
    [48] Bhan S, Malhotra R, Kiran EK, et al. A comparison of fixed-bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years[J]. J Bone Joint Surg Am, 2005,87(10): 2290-2296.
    [49] Garling EH, Valstar ER, Nelissen RG. Comparison of micromotion in mobile bearing and posterior stabilized total knee prostheses: a randomized RSA study of 40 knees followed for 2 years[J]. Acta Orthop, 2005,76(3): 353-361.
    [50] Henricson A, Dalen T, Nilsson KG. Mobile bearings do not improve fixation in cemented total knee arthroplasty[J]. Clin Orthop Relat Res, 2006,448: 114-121.
    [51] Kim YH, Kim DY, Kim JS. Simultaneous mobile- and fixed-bearing total knee replacement in the same patients. A prospective comparison of mid-term outcomes using a similar design of prosthesis[J]. J Bone Joint Surg Br, 2007,89(7): 904-910.
    [52] Breugem SJ, Sierevelt IN, Schafroth MU, et al. Less anterior knee pain with a mobile-bearing prosthesis compared with a fixed-bearing prosthesis[J]. Clin Orthop Relat Res, 2008,466(8): 1959-1965.
    [53] Ladermann A, Lubbeke A, Stern R, et al. Fixed-bearing versus mobile-bearing total knee arthroplasty: a prospective randomised, clinical and radiological study with mid-term results at 7 years[J]. Knee, 2008,15(3): 206-210.
    [54] Wylde V, Learmonth I, Potter A, et al. Patient-reported outcomes after fixed- versus mobile-bearing total knee replacement: a multi-centre randomised controlled trial using the Kinemax total knee replacement[J]. J Bone Joint Surg Br, 2008,90(9): 1172-1179.
    [55] Harrington MA, Hopkinson WJ, Hsu P, et al. Fixed- vs mobile-bearing total knee arthroplasty: does it make a difference?--a prospective randomized study[J]. J Arthroplasty, 2009,24(6 Suppl): 24-27.
    [56] Hasegawa M, Sudo A, Uchida A. Staged bilateral mobile-bearing and fixed-bearing total knee arthroplasty in the same patients: a prospective comparison of a posterior-stabilized prosthesis[J]. Knee Surg Sports Traumatol Arthrosc, 2009,17(3): 237-243.
    [57] Hartford JM, Hunt T, Kaufer H. Low contact stress mobile bearing totalknee arthroplasty: results at 5 to 13 years[J]. J Arthroplasty, 2001,16(8): 977-983.
    [58] Dennis DA, Komistek RD, Stiehl JB, et al. Range of motion after total knee arthroplasty: the effect of implant design and weight-bearing conditions[J]. J Arthroplasty, 1998,13(7): 748-752.
    [59] Ritter MA, Campbell ED. Effect of range of motion on the success of a total knee arthroplasty[J]. J Arthroplasty, 1987,2(2): 95-97.
    [60] Bellemans J, Banks S, Victor J, et al. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset[J]. J Bone Joint Surg Br, 2002,84(1): 50-53.
    [61] Dennis DA, Komistek RD, Colwell CE, Jr., et al. In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis[J]. Clin Orthop Relat Res, 1998,(356): 47-57.
    [62] Hartford JM, Banit D, Hall K, et al. Radiographic analysis of low contact stress meniscal bearing total knee replacements[J]. J Bone Joint Surg Am, 2001,83-A(2): 229-234.
    [63] Li G, Most E, Sultan PG, et al. Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation[J]. J Bone Joint Surg Am, 2004,86-A(8): 1721-1729.
    [64] McCalden RW, MacDonald SJ, Bourne RB, et al. A randomized controlled trial comparing "high-flex" vs "standard" posterior cruciate substituting polyethylene tibial inserts in total knee arthroplasty[J]. J Arthroplasty, 2009,24(6 Suppl): 33-38.
    [65] Ahmed I, Gray AC, van der Linden M, et al. Range of flexion after primary TKA: the effect of soft tissue release and implant design[J]. Orthopedics, 2009,32(11): 811.
    [66] Huang HT, Su JY, Wang GJ. The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up[J]. J Arthroplasty, 2005,20(5): 674-679.
    [67] Higgins J, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2 [updated September 2009]. [J]. The Cochrane Collaboration, 2009,Available from www.cochrane-handbook.org.
    [68] Kim YH, Sohn KS, Kim JS. Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study[J]. J Bone Joint Surg Am, 2005,87(7): 1470-1475.
    [69] Bajammal S, de Beer J, Petruccelli D, et al. Can a change in implant articular geometry affect postoperative range of movement in patients undergoing primary total knee arthroplasty for osteoarthritis?[J]. SA Orthopaedic Journal, 2006,5(2): 34-42.
    [70] Gupta SK, Ranawat AS, Shah V, et al. The P.F.C. sigma RP-F TKA designed for improved performance: a matched-pair study[J]. Orthopedics, 2006,29(9 Suppl): S49-52.
    [71] Bin SI, Nam TS. Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery[J]. Knee Surg Sports Traumatol Arthrosc, 2007,15(4): 350-355.
    [72] Laskin RS. The effect of a high-flex implant on postoperative flexion after primary total knee arthroplasty[J]. Orthopedics, 2007,30(8 Suppl): 86-88.
    [73] Weeden SH, Schmidt R. A randomized, prospective study of primary total knee components designed for increased flexion[J]. J Arthroplasty, 2007,22(3): 349-352.
    [74] Ng FY, Wong HL, Yau WP, et al. Comparison of range of motion afterstandard and high-flexion posterior stabilised total knee replacement[J]. Int Orthop, 2008,32(6): 795-798.
    [75] Nutton RW, van der Linden ML, Rowe PJ, et al. A prospective randomised double-blind study of functional outcome and range of flexion following total knee replacement with the NexGen standard and high flexion components[J]. J Bone Joint Surg Br, 2008,90(1): 37-42.
    [76] Kim YH, Choi Y, Kim JS. Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study[J]. J Bone Joint Surg Am, 2009,91(8): 1874-1881.
    [77] Malik A, Salas A, Ben Ari J, et al. Range of motion and function are similar in patients undergoing TKA with posterior stabilised and high-flexion inserts[J]. Int Orthop, 2009.
    [78] Minoda Y, Aihara M, Sakawa A, et al. Range of motion of standard and high-flexion cruciate retaining total knee prostheses[J]. J Arthroplasty, 2009,24(5): 674-680.
    [79] Seon JK, Park SJ, Lee KB, et al. Range of motion in total knee arthroplasty: a prospective comparison of high-flexion and standard cruciate-retaining designs[J]. J Bone Joint Surg Am, 2009,91(3): 672-679.
    [80] Wohlrab D, Hube R, Zeh A, et al. Clinical and radiological results of high flex total knee arthroplasty: A 5 year follow-up[J]. Archives of Orthopaedic and Trauma Surgery, 2009,129(1): 21-24.
    [81] Ritter MA, Harty LD, Davis KE, et al. Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis[J]. J Bone Joint Surg Am, 2003,85-A(7): 1278-1285.
    [82] Gandhi R, Tso P, Davey JR, et al. High-flexion implants in primary total knee arthroplasty: a meta-analysis[J]. Knee, 2009,16(1): 14-17.
    [83] Barink M, De Waal Malefijt M, Celada P, et al. A mechanical comparison of high-flexion and conventional total knee arthroplasty[J]. Proc Inst Mech Eng H, 2008,222(3): 297-307.
    [84] Leszko F, Sharma A, Komistek RD, et al. Comparison of In Vivo Patellofemoral Kinematics for Subjects Having High-Flexion Total Knee Arthroplasty Implant With Patients Having Normal Knees[J]. J Arthroplasty, 2009.
    [85] Ranawat CS. Design may be counterproductive for optimizing flexion after TKR[J]. Clin Orthop Relat Res, 2003,(416): 174-176.
    [86] Sharma A, Leszko F, Komistek RD, et al. In vivo patellofemoral forces in high flexion total knee arthroplasty[J]. J Biomech, 2008,41(3): 642-648.
    [87]王韶进,段元涛,刘文广, et al.严重畸形膝骨关节病的人工膝关节置换术[J].中华关节外科杂志:电子版, 2007,1(4).
    [88] He JY, Jiang LS, Dai LY. Is patellar resurfacing superior than nonresurfacing in total knee arthroplasty? A meta-analysis of randomized trials[J]. Knee, 2010: [Epub ahead of print] PMID: 20493712.
    [89]李连华,孙天胜,王静, et al.人工全膝关节置换术髌骨置换有效性的系统评价[J].中国循证医学杂志, 2009,9(10): 1060-1066.
    [90]翟生,凯塞尔江,武忠炎.全膝关节置换过程中是否行髌骨置换的系统评价[J].中国组织工程研究与临床康复, 2009,13(13): 2547-2552.
    [91]张启栋,郭万首,张倩, et al.膝关节置换术中髌骨置换与非髌骨置换比较的Meta分析[J].中国矫形外科杂志, 2010,(1): 17-21.
    [92] Lyback CO, Lehto MU, Hamalainen MM, et al. Patellar resurfacing reduces pain after TKA for juvenile rheumatoid arthritis[J]. Clin Orthop Relat Res, 2004,(423): 152-156.
    [93] Parvizi J, Rapuri VR, Saleh KJ, et al. Failure to resurface the patella duringtotal knee arthroplasty may result in more knee pain and secondary surgery[J]. Clin Orthop Relat Res, 2005,438: 191-196.
    [94]黄德勇,吕厚山.国人类风湿关节炎术中髌骨厚度的测量及置换技术的探讨[J].中国矫形外科杂志, 2009,17(17): 1289-1292.
    [95] Pakos EE, Ntzani EE, Trikalinos TA. Patellar resurfacing in total knee arthroplasty. A meta-analysis[J]. J Bone Joint Surg Am, 2005,87(7): 1438-1445.
    [96] Nizard RS, Biau D, Porcher R, et al. A meta-analysis of patellar replacement in total knee arthroplasty[J]. Clin Orthop Relat Res, 2005,(432): 196-203.
    [97]盛璞义, Matti Lehto,廖威明, et al.全膝关节置换翻修术的Meta分析[J].中华关节外科杂志:电子版, 2007,1(1).
    [98] Higgins J, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2 [updated September 2009]. [J]. The Cochrane Collaboration, 2009, Available from www.cochrane-handbook.org.
    [99] Barrack RL, Bertot AJ, Wolfe MW, et al. Patellar resurfacing in total knee arthroplasty. A prospective, randomized, double-blind study with five to seven years of follow-up[J]. J Bone Joint Surg Am, 2001,83-A(9): 1376-1381.
    [100] John H Newmana, Christopher E Ackroyda, Nilen A Shahb, et al. Should the patella be resurfaced during total knee replacement?[J]. the knee, 2000,7(1): 17-23.
    [101] Wood DJ, Smith AJ, Collopy D, et al. Patellar resurfacing in total knee arthroplasty: a prospective, randomized trial[J]. J Bone Joint Surg Am, 2002,84-A(2): 187-193.
    [102] Burnett RS, Haydon CM, Rorabeck CH, et al. Patella resurfacing versus nonresurfacing in total knee arthroplasty: results of a randomized controlled clinical trial at a minimum of 10 years' followup[J]. Clin Orthop Relat Res, 2004,(428): 12-25.
    [103] Campbell DG, Duncan WW, Ashworth M, et al. Patellar resurfacing in total knee replacement: a ten-year randomised prospective trial[J]. J Bone Joint Surg Br, 2006,88(6): 734-739.
    [104] Myles CM, Rowe PJ, Nutton RW, et al. The effect of patella resurfacing in total knee arthroplasty on functional range of movement measured by flexible electrogoniometry[J]. Clin Biomech (Bristol, Avon), 2006,21(7): 733-739.
    [105] Liu ZT, Wu YL, Li XH, et al. Patella reshaping versus resurfacing in total knee arthroplasty: a prospective randomized study[J]. Zhonghua Wai Ke Za Zhi, 2007,45(16): 1087-1090.
    [106] Smith AJ, Wood DJ, Li MG. Total knee replacement with and without patellar resurfacing: a prospective, randomised trial using the profix total knee system[J]. J Bone Joint Surg Br, 2008,90(1): 43-49.
    [107] Burnett RS, Boone JL, Rosenzweig SD, et al. Patellar resurfacing compared with nonresurfacing in total knee arthroplasty. A concise follow-up of a randomized trial[J]. J Bone Joint Surg Am, 2009,91(11): 2562-2567.
    [108] Gildone A, Manfredini M, Biscione R, et al. Patella resurfacing in posterior stabilised total knee arthroplasty: a follow-up study in 56 patients[J]. Acta Orthop Belg, 2005,71(4): 445-451.
    [109] Lewold S, Goodman S, Knutson K, et al. Oxford meniscal bearing knee versus the Marmor knee in unicompartmental arthroplasty for arthrosis. ASwedish multicenter survival study[J]. J Arthroplasty, 1995,10(6): 722-731.
    [110]吴立东,叶凯山,吴锋锋, et al.全膝关节置换术中是否置换髌骨的比较[J].中华外科杂志, 2007,45(16): 1098-1099.
    [111]盛璞义,张紫机,廖威明, et al.全膝关节置换翻修术的临床疗效及影响因素分析[J/CD][J].中华关节外科杂志:电子版, 2008,2(6): 615-624.
    [1] Srikanth VK, Fryer JL, Zhai G, et al. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis[J]. Osteoarthritis Cartilage, 2005,13(9): 769-781.
    [2] Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II[J]. Arthritis Rheum, 2008,58(1): 26-35.
    [3] Denegar CR, Dougherty DR, Friedman JE, et al. Preferences for heat, cold, or contrast in patients with knee osteoarthritis affect treatment response[J]. Clin Interv Aging, 2010,5: 199-206.
    [4] Xiang YJ, Dai SM. Prevalence of rheumatic diseases and disability in China.[J]. Rheumatol Int, 2009,29: 481-490.
    [5] McKenzie S, Torkington A. Osteoarthritis - management options in general practice[J]. Aust Fam Physician, 2010,39(9): 622-625.
    [6] Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States[J]. Arthritis Rheum, 1998,41(5): 778-799.
    [7] Goldring MB. The role of the chondrocyte in osteoarthritis[J]. Arthritis Rheum, 2000,43(9): 1916-1926.
    [8] Schmalz T, Knopf E, Drewitz H, et al. Analysis of biomechanical effectiveness of valgus-inducing knee brace for osteoarthritis of knee[J]. J Rehabil Res Dev, 2010,47(5): 419-429.
    [9] Corti MC, C. R. Epidemiology of osteoarthritis: prevalence, risk factors and functional impact[J]. Aging Clin ExpRes, 2003,15: 359-363.
    [10] Vijayan S, Bentley G, Briggs T, et al. Cartilage repair: A review of Stanmore experience in the treatment of osteochondral defects in the knee with various surgical techniques[J]. Indian J Orthop, 2010,44(3): 238-245.
    [11] Bar-Ziv Y, Beer Y, Ran Y, et al. A treatment applying a biomechanical device to the feet of patients with knee osteoarthritis results in reduced pain and improved function: a prospective controlled study[J]. BMC Musculoskelet Disord, 2010,11: 179.
    [12]吕厚山.髋、的研究现状和进展[J].实用老年医学, 2001,15(5): 229-233.
    [13] Qin J, Shi D, Dai J, et al. Association of the leptin gene with knee osteoarthritis susceptibility in a Han Chinese population: a case-control study[J]. J Hum Genet, 2010.
    [14] Alcaraz MJ, Megias J, Garcia-Arnandis I, et al. New molecular targets for the treatment of osteoarthritis[J]. Biochem Pharmacol, 2010,80(1): 13-21.
    [15] Losina E, Walensky RP, Kessler CL, et al. Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume[J]. Arch Intern Med, 2009,169: 1113-1121.
    [16] Felson D. Osteoarthritis[J]. Rheum Dis Clin North Am, 1990,16: 499-512.
    [17] Das SK, A F. Osteoarthritis[J]. Best Pract Res Clin Rheumatol, 2008,22: 657-675.
    [18] Peat G, McCarney R, Croft P. Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care[J]. Ann Rheum Dis, 2001,60(2): 91-97.
    [19] MacGregor AJ, TD. S. Twins and the genetic architecture of osteoarthritis [editorial][J]. Rheumatology (Oxford), 1999,38: 583–588.
    [20] Kellgren JH, Lawrence JS, Bier F. Genetic Factors in Generalized Osteo-Arthrosis[J]. Ann Rheum Dis, 1963,22: 237-255.
    [21] Valdes AM, Spector TD. The genetic epidemiology of osteoarthritis[J]. Curr Opin Rheumatol, 2010,22(2): 139-143.
    [22] Zhai G, Ding C, Stankovich J, et al. The genetic contribution to longitudinal changes in knee structure and muscle strength: a sibpair study[J]. Arthritis Rheum, 2005,52: 2830-2834.
    [23] Zhai G, Hart DJ, Kato BS, et al. Genetic influence on the progression of radiographic knee osteoarthritis: a longitudinal twin study. [J]. Osteoarthritis Cartilage, 2007,15: 222-225.
    [24] Loughlin J, Mustafa Z, Irven C, et al. Stratification analysis of an osteoarthritis genome screen-suggestive linkage to chromosomes 4, 6[J]. Am J Hum Genet, 1999,65: 1795-1798.
    [25] Kaprio J, Kujala UM, Peltonen L, et al. Genetic liability to osteoarthritis may be greater in women than men [letter][J]. BMJ, 1996,313: 232.
    [26] Kaprio J, Kujala UM, Peltonen L, et al. Genetic liability to osteoarthritis may be greater in women than men[J]. BMJ, 1996,313: 232.
    [27] Ingvarsson T, S L. .Icelandic genealogical registry sheds light on the significance of heredity in osteoarthritis[J]. Lakartidningen, 2002,99(47): 4724-4728.
    [28] Hristgau S, Tanko LB, Cloos PA, et al. Hristgau S, Tanko LB, Cloos PA, et al. Suppression of elevated carti-lage turnover in postmenopausal women and in ovariectomized rats by e-strogen and a selective estrogen- receptor modulator (SERM)[J]. Menopause, 2004,11(5): 508-518.
    [29] Riancho JA, Garcia-Ibarbia C, Gravani A, et al. Common variations in estrogen-related genes are associated with severe large-joint osteoarthritis: a multicenter genetic and functional study[J]. Osteoarthritis Cartilage, 2010,18(7): 927-933.
    [30]高峰,杜宁.雌激素受体与骨性关节炎[J].医学综述, 2008,14(1): 33-34.
    [31] Sowers MR, McConnell D, Jannausch M, et al. Estradiol and its metabolites and their association with knee osteoarthritis[J]. Arthritis Rheum, 2006,54(8): 2481-2487.
    [32] Cirillo DJ, Wallace RB, Wu L, et al. Effect of hormone therapy on risk of hip and knee joint replacement in the Women's Health Initiative[J]. Arthritis Rheum, 2006,54(10): 3194-3204.
    [33] Ma HL, Blanchet TJ, Peluso D, et al. Osteoarthritis severity is sex dependent in a surgical mouse model[J]. Osteoarthritis Cartilage, 2007,15(6): 695-700.
    [34] Ravn P, Warming L, Christgau S, et al. The effect on cartilage of different forms of application of postmenopausal estrogen therapy: comparison of oral and transdermal therapy[J]. Bone, 2004,35(5): 1216-1221.
    [35] Bergink AP, van Meurs JB, Loughlin J, et al. Estrogen receptor alpha gene haplotype is associated with radiographic osteoarthritis of the knee in elderly men and women[J]. Arthritis Rheum, 2003,48(7): 1913-1922.
    [36] Fytili P, Giannatou E, Papanikolaou V, et al. Association of repeat polymorphisms in the estrogen receptors alpha, beta, and androgen receptor genes with knee osteoarthritis[J]. Clin Genet, 2005,68(3): 268-277.
    [37]田智,郭小芳,周锋,等.雌激素受体-α基因多态性与湖南女性原发性膝骨性关节炎的关系[J].实用预防医学, 2009,16(6): 1724-1727.
    [38] Pelletier JP, McCollum R, Cloutier JM, et al. Synthesis of metalloproteases and interleukin 6 (IL-6) in human osteoarthritic synovial membrane is an IL-1 mediated process[J]. J Rheumatol Suppl, 1995,43: 109-114.
    [39] Kronheim SR, Mumma A, Greenstreet T, et al. Purification of interleukin-1 beta converting enzyme, the protease that cleaves the interleukin-1 betaprecursor[J]. Arch Biochem Biophys, 1992,296(2): 698-703.
    [40] Hall SK, Perregaux DG, Gabel CA, et al. Correlation of polymorphic variation in the promoter region of the interleukin-1 beta gene with secretion of interleukin-1 beta protein[J]. Arthritis Rheum, 2004,50(6): 1976–1983.
    [41] Chevalier X, Giraudeau B, Conrozier T, et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study[J]. J Rheumatol, 2005,32(7): 1317-1323.
    [42]倪海键,史冬泉,蒋青.白介素-1及其基因多态性与骨关节炎[J].国际骨科学杂志, 2008,29(6): 392-394.
    [43] Kanoh T, Hasegawa Y, Masui T, et al. Interleukin-1beta gene polymorphism associated with radiographic signs of osteoarthritis of the knee[J]. J Orthop Sci, 2008,13(2): 97-100.
    [44] Moxley G, Meulenbelt I, Chapman K, et al. Interleukin-1 region meta-analysis with osteoarthritis phenotypes[J]. Osteoarthritis Cartilage, 2010,18(2): 200-207.
    [45] Ruzickova S, Senolt L, Gatterova J, et al. The lack of correlation between the increased frequency of allele IL-1RN*2 of interleukin-1 receptor antagonist gene in Czech patients with knee osteoarthritis and the markers of cartilage degradation[J]. Folia Biol (Praha), 2008,54(4): 115-120.
    [46] Sezgin M, Erdal ME, Altintas ZM, et al. Lack of association polymorphisms of the IL1RN, IL1A, and IL1B genes with knee osteoarthritis in Turkish patients[J]. Clin Invest Med, 2007,30(2): E86-92.
    [47] Ni H, Shi D, Dai J, et al. Genetic polymorphisms of interleukin-1beta (-511C/T) and interleukin-1 receptor antagonist (86-bpVNTR) in susceptibility to knee osteoarthritis in a Chinese Han population[J].Rheumatol Int, 2009,29(11): 1301-1305.
    [48] Kaneko S, Satoh T, Chiba J, et al. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis[J]. Cytokines Cell Mol Ther, 2000,6(2): 71-79.
    [49] Livshits G, Zhai G, Hart DJ, et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford Study[J]. Arthritis Rheum, 2009,60(7): 2037-2045.
    [50] Gordon A, Kiss-Toth E, Stockley I, et al. Polymorphisms in the interleukin-1 receptor antagonist and interleukin-6 genes affect risk of osteolysis in patients with total hip arthroplasty[J]. Arthritis Rheum, 2008,58(10): 3157-3165.
    [51] Kamarainen OP, Solovieva S, Vehmas T, et al. Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteoarthritis[J]. Arthritis Res Ther, 2008,10(1): R21.
    [52] Limer KL, Tosh K, Bujac SR, et al. Attempt to replicate published genetic associations in a large, well-defined osteoarthritis case-control population (the GOAL study)[J]. Osteoarthritis Cartilage, 2009,17(6): 782-789.
    [53] Song JH, Lee HS, Kim CJ, et al. Aspartic acid repeat polymorphism of the asporin gene with susceptibility to osteoarthritis of the knee in a Korean population[J]. Knee, 2008,15(3): 191-195.
    [54] Kizawa H, Kou I, Iida A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis[J]. Nat Genet, 2005,37(2): 138-144.
    [55] Jiang Q, Shi D, Yi L, et al. Replication of the association of the aspartic acid repeat polymorphism in the asporin gene with knee-osteoarthritis susceptibility in Han Chinese[J]. J Hum Genet, 2006,51(12): 1068-1072.
    [56]邵振兴,秦江辉,戴进,等.膝骨性关节炎与asporin基因多态性关系[J].中国公共卫生, 2008,24(5): 558-559.
    [57]Mustafa Z, Dowling B, Chapman K, et al. Investigating the aspartic acid (D) repeat of asporin as a risk factor for osteoarthritis in a UK Caucasian population[J]. Arthritis Rheum, 2005,52(11): 3502-3506.
    [58] Rodriguez-Lopez J, Pombo-Suarez M, Liz M, et al. Lack of association of a variable number of aspartic acid residues in the asporin gene with osteoarthritis susceptibility: case-control studies in Spanish Caucasians[J]. Arthritis Res Ther, 2006,8(3): R55.
    [59] Kaliakatsos M, Tzetis M, Kanavakis E, et al. Asporin and knee osteoarthritis in patients of Greek origin[J]. Osteoarthritis Cartilage, 2006,14(6): 609-611.
    [60] Luyten FP. Cartilage-derived morphogenetic protein-1[J]. Int J Biochem Cell Biol, 1997,29(11): 1241-1244.
    [61] Vaes RB, Rivadeneira F, Kerkhof JM, et al. Genetic variation in the GDF5 region is associated with osteoarthritis, height, hip axis length and fracture risk: the Rotterdam study[J]. Ann Rheum Dis, 2009,68(11): 1754-1760.
    [62] Tsezou A, Satra M, Oikonomou P, et al. The growth differentiation factor 5 (GDF5) core promoter polymorphism is not associated with knee osteoarthritis in the Greek population[J]. J Orthop Res, 2008,26(1): 136-140.
    [63]姚晨,戴进,秦江辉,等. GDF5基因5 7端一功能性SNP与骨性关节炎易感性相关[J].江苏医药, 2008,34(12): 1198-1199.
    [64] Ioannidis JP, Trikalinos TA, MJ. K. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases.[J]. Am J Epidemiol 2006,164:609-614.
    [65] Nakamura T, Shi D, Tzetis M, et al. Meta-analysis of association between the ASPN D-repeat and osteoarthritis[J]. Hum Mol Genet, 2007,16(14): 1676-1681.
    [66] Valdes AM, Arden NK, Tamm A, et al. A meta-analysis of interleukin-6 promoter polymorphisms on risk of hip and knee osteoarthritis[J]. Osteoarthritis Cartilage, 2010,18(5): 699-704.
    [67] Evangelou E, Chapman K, Meulenbelt I, et al. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand[J]. Arthritis Rheum, 2009,60(6): 1710-1721.
    [68] Ozaki K, Ohnishi Y, Iida A, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction[J]. Nat Genet, 2002,32(4): 650-654.
    [69] Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J]. Nature, 2007,447: 661-678.
    [70] Valdes AM, Loughlin J, van Meurs JB, et al. Genome-wide association scanidentifies a prostaglandin-endoperoxide synthase 2 variant involved in risk of knee osteoarthritis[J]. Am J Hum Genet, 2008,82: 1231-1240.
    [71] Spector TD, Reneland RH, Mah S, et al. Association between a variation in LRCH1 and knee osteoarthritis: a genome-wide single-nucleotide polymorphism association study using DNA pooling[J]. Arthritis Rheum, 2006,54(2): 524-532.
    [72] Snelling S, Sinsheimer JS, Carr A, et al. Genetic association analysis of LRCH1 as an osteoarthritis susceptibility locus[J]. Rheumatology (Oxford), 2007,46(2): 250-252.
    [73] Jiang Q, Shi D, Nakajima M, et al. Lack of association of single nucleotide polymorphism in LRCH1 with knee osteoarthritis susceptibility[J]. J Hum Genet, 2008,53(1): 42-47.
    [1] Yoon HS, Han CD, Yang IH. Comparison of Simultaneous Bilateral and Staged Bilateral Total Knee Arthroplasty in Terms of Perioperative Complications[J]. J Arthroplasty, 2010, 25(2):179-85.
    [2]罗世兴,赵劲民,苏伟,等.同期和分期双膝关节置换安全性的Meta分析[J].中国矫形外科杂志, 2010,18(3): 195-200.
    [3]罗世兴,赵劲民,苏伟,等.保留和不保留后交叉全膝置换疗效的系统评价[J].中国矫形外科杂志, 2010,18(14): 1145-1149.
    [4]罗世兴,赵劲民,苏伟,等.旋转平台和固定平台假体全膝置换疗效的系统评价[J].中国组织工程研究与临床康复, 2010,14(13): 2281-2284.
    [5]罗世兴,赵劲民,苏伟,等.膝骨性关节炎初次全膝置换中选择髌骨置换的Meta分析[J/CD].中华关节外科杂志:电子版, 2010,4(4): 451-457.
    [6] Luo SX, Su W, Zhao JM, et al. High-Flexion vs Conventional Prostheses Total Knee Arthroplasty: a Meta-analysis[J]. J Arthroplasty, 2010, [Epub ahead of print], PMID: 21074357.
    [7] Ivory JP, Simpson AH, Toogood GJ, et al. Bilateral knee replacements: simultaneous or staged?[J]. J R Coll Surg Edinb, 1993,38(2): 105-107.
    [8] Ritter M, Mamlin LA, Melfi CA, et al. Outcome implications for the timing of bilateral total knee arthroplasties[J]. Clin Orthop Relat Res, 1997,(345): 99-105.
    [9] Worland RL, Jessup DE, Clelland C. Simultaneous bilateral total knee replacement versus unilateral replacement[J]. Am J Orthop, 1996,25(4): 292-295.
    [10] Reuben JD, Meyers SJ, Cox DD, et al. Cost comparison between bilateralsimultaneous, staged, and unilateral total joint arthroplasty[J]. J Arthroplasty, 1998,13(2): 172-179.
    [11] Berman AT, Zarro VJ, Bosacco SJ, et al. Quantitative gait analysis after unilateral or bilateral total knee replacement[J]. J Bone Joint Surg (Am), 1987,69(9): 1340-1345.
    [12] Borden LS, Perry JE, Davis BL, et al. A biomechanical evaluation of one-stage vs two-stage bilateral knee arthroplasty patients[J]. Gait Posture, 1999,9(1): 24-30.
    [13] Lane GJ, Hozack WJ, Shah S, et al. Simultaneous bilateral versus unilateral total knee arthroplasty. Outcomes analysis[J]. Clin Orthop Relat Res, 1997,(345): 106-112.
    [14] Hutchinson JR, Parish EN, Cross MJ. A comparison of bilateral uncemented total knee arthroplasty: simultaneous or staged?[J]. J Bone Joint Surg (Br), 2006,88(1): 40-43.
    [15] Qian WW, Qiu GX, Weng XS, et al. Comparison of perioperative complications between simultaneous and staged bilateral total knee arthroplasty[J]. Zhonghua Wai Ke Za Zhi, 2008,46(12): 929-931.
    [16] Barrett J, Baron JA, Losina E, et al. Bilateral total knee replacement: staging and pulmonary embolism[J]. J Bone Joint Surg (Am), 2006,88(10): 2146-2151.
    [17] Stefansdottir A, Lidgren L, Robertsson O. Higher early mortality with simultaneous rather than staged bilateral TKAs: results from the Swedish Knee Arthroplasty Register[J]. Clin Orthop Relat Res, 2008,466(12): 3066-3070.
    [18] Walmsley P, Murray A, Brenkel IJ. The practice of bilateral, simultaneous total knee replacement in Scotland over the last decade. Data from theScottish Arthroplasty Project[J]. Knee, 2006,13(2): 102-105.
    [19] Oakes DA, Hanssen AD. Bilateral total knee replacement using the same anesthetic is not justified by assessment of the risks[J]. Clin Orthop Relat Res, 2004,(428): 87-91.
    [20] Straw R, Kulkarni S, Attfield S, et al. Posterior cruciate ligament at total knee replacement. Essential, beneficial or a hindrance?[J]. J Bone Joint Surg Br, 2003,85(5): 671-674.
    [21] Andriacchi TP, Galante JO, Fermier RW. The influence of total knee-replacement design on walking and stair-climbing[J]. J Bone Joint Surg Am, 1982,64(9): 1328-1335.
    [22] Conditt MA, Noble PC, Bertolusso R, et al. The PCL significantly affects the functional outcome of total knee arthroplasty[J]. J Arthroplasty, 2004,19(7 Suppl 2): 107-112.
    [23] Dorr LD, Ochsner JL, Gronley J, et al. Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty[J]. Clin Orthop Relat Res, 1988,(236): 36-43.
    [24] Maloney WJ, Schurman DJ. The effects of implant design on range of motion after total knee arthroplasty. Total condylar versus posterior stabilized total condylar designs[J]. Clin Orthop Relat Res, 1992,(278): 147-152.
    [25] Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study[J]. J Bone Joint Surg (Br), 2005,87(5): 646-655.
    [26] Chaudhary R, Beaupre LA, Johnston DW. Knee range of motion during the first two years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses. A randomized clinical trial[J]. JBone Joint Surg (Am), 2008,90(12): 2579-2586.
    [27] Harato K, Bourne RB, Victor J, et al. Midterm comparison of posterior cruciate-retaining versus -substituting total knee arthroplasty using the Genesis II prosthesis. A multicenter prospective randomized clinical trial[J]. Knee, 2008,15(3): 217-221.
    [28] Kim YH, Choi Y, Kwon OR, et al. Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study[J]. J Bone Joint Surg (Am), 2009,91(4): 753-760.
    [29] Scott RD, Thornhill TS. Posterior cruciate supplementing total knee replacement using conforming inserts and cruciate recession. Effect on range of motion and radiolucent lines[J]. Clin Orthop Relat Res, 1994,(309): 146-149.
    [30] Scott RD, Volatile TB. Twelve years' experience with posterior cruciate-retaining total knee arthroplasty[J]. Clin Orthop Relat Res, 1986,(205): 100-107.
    [31] Ritter MA, Campbell E, Faris PM, et al. Long-term survival analysis of the posterior cruciate condylar total knee arthroplasty. A 10-year evaluation[J]. J Arthroplasty, 1989,4(4): 293-296.
    [32] Scott WN, Rubinstein M, Scuderi G. Results after knee replacement with a posterior cruciate-substituting prosthesis[J]. J Bone Joint Surg (Am), 1988,70(8): 1163-1173.
    [33] Matsuda S, White SE, Williams VG, 2nd, et al. Contact stress analysis in meniscal bearing total knee arthroplasty[J]. J Arthroplasty, 1998,13(6): 699-706.
    [34] Breugem SJ, Sierevelt IN, Schafroth MU, et al. Less anterior knee painwith a mobile-bearing prosthesis compared with a fixed-bearing prosthesis[J]. Clin Orthop Relat Res, 2008,466(8): 1959-1965.
    [35] Ladermann A, Lubbeke A, Stern R, et al. Fixed-bearing versus mobile-bearing total knee arthroplasty: a prospective randomised, clinical and radiological study with mid-term results at 7 years[J]. Knee, 2008,15(3): 206-210.
    [36] Harrington MA, Hopkinson WJ, Hsu P, et al. Fixed- vs mobile-bearing total knee arthroplasty: does it make a difference?--a prospective randomized study[J]. J Arthroplasty, 2009,24(6 Suppl): 24-27.
    [37] Bhan S, Malhotra R, Kiran EK, et al. A comparison of fixed-bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years[J]. J Bone Joint Surg (Am), 2005,87(10): 2290-2296.
    [38] Garling EH, Valstar ER, Nelissen RG. Comparison of micromotion in mobile bearing and posterior stabilized total knee prostheses: a randomized RSA study of 40 knees followed for 2 years[J]. Acta Orthop, 2005,76(3): 353-361.
    [39] Henricson A, Dalen T, Nilsson KG. Mobile bearings do not improve fixation in cemented total knee arthroplasty[J]. Clin Orthop Relat Res, 2006,448: 114-121.
    [40] Beard DJ, Pandit H, Price AJ, et al. Introduction of a new mobile-bearing total knee prosthesis: minimum three year follow-up of an RCT comparing it with a fixed-bearing device[J]. Knee, 2007,14(6): 448-451.
    [41] Kim YH, Kim DY, Kim JS. Simultaneous mobile- and fixed-bearing total knee replacement in the same patients. A prospective comparison of mid-term outcomes using a similar design of prosthesis[J]. J Bone Joint Surg (Br), 2007,89(7): 904-910.
    [42] Wylde V, Learmonth I, Potter A, et al. Patient-reported outcomes after fixed- versus mobile-bearing total knee replacement: a multi-centre randomised controlled trial using the Kinemax total knee replacement[J]. J Bone Joint Surg (Br), 2008,90(9): 1172-1179.
    [43] Hasegawa M, Sudo A, Uchida A. Staged bilateral mobile-bearing and fixed-bearing total knee arthroplasty in the same patients: a prospective comparison of a posterior-stabilized prosthesis[J]. Knee Surg Sports Traumatol Arthrosc, 2009,17(3): 237-243.
    [44] Hartford JM, Hunt T, Kaufer H. Low contact stress mobile bearing total knee arthroplasty: results at 5 to 13 years[J]. J Arthroplasty, 2001,16(8): 977-983.
    [45]黄志峰,翁习生,邱贵兴,等.髌骨置换与否对全膝关节置换效果的影响[J].实用骨科杂志, 2007,13(8): 449-452.
    [46] Smith AJ, Wood DJ, Li MG. Total knee replacement with and without patellar resurfacing: a prospective, randomised trial using the profix total knee system[J]. J Bone Joint Surg (Br), 2008,90(1): 43-49.
    [47] Burnett RS, Boone JL, McCarthy KP, et al. A prospective randomized clinical trial of patellar resurfacing and nonresurfacing in bilateral TKA[J]. Clin Orthop Relat Res, 2007,464: 65-72.
    [48] Campbell DG, Duncan WW, Ashworth M, et al. Patellar resurfacing in total knee replacement: a ten-year randomised prospective trial[J]. J Bone Joint Surg (Br), 2006,88(6): 734-739.
    [49] Chalidis BE, Tsiridis E, Tragas AA, et al. Management of periprosthetic patellar fractures. A systematic review of literature[J]. Injury, 2007,38(6): 714-724.
    [50] Ozturk A, Bilgen S, Atici T, et al. The evaluation of patients undergoingtotal knee arthroplasty with or without patellar resurfacing[J]. Acta Orthop Traumatol Turc, 2006,40(1): 29-37.
    [51] Huang HT, Su JY, Wang GJ. The early results of high-flex total knee arthroplasty: a minimum of 2 years of follow-up[J]. J Arthroplasty, 2005,20(5): 674-679.
    [52] Seon JK, Park SJ, Lee KB, et al. Range of motion in total knee arthroplasty: a prospective comparison of high-flexion and standard cruciate-retaining designs[J]. J Bone Joint Surg (Am), 2009,91(3): 672-679.
    [53] Bin SI, Nam TS. Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery[J]. Knee Surg Sports Traumatol Arthrosc, 2007,15(4): 350-355.
    [54] Gupta SK, Ranawat AS, Shah V, et al. The P.F.C. sigma RP-F TKA designed for improved performance: a matched-pair study[J]. Orthopedics, 2006,29(9 Suppl): 49-52.
    [55] Kim YH, Choi Y, Kim JS. Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses a prospective randomized study[J]. J Bone Joint Surg (Am), 2009,91(8): 1874-1881.
    [56] Nutton RW, van der Linden ML, Rowe PJ, et al. A prospective randomised double-blind study of functional outcome and range of flexion following total knee replacement with the NexGen standard and high flexion components[J]. J Bone Joint Surg (Br), 2008,90(1): 37-42.
    [57] Ahmed I, Gray AC, van der Linden M, et al. Range of flexion after primary TKA: the effect of soft tissue release and implant design[J]. Orthopedics, 2009,32(11): 811.
    [58] Minoda Y, Aihara M, Sakawa A, et al. Range of motion of standard and high-flexion cruciate retaining total knee prostheses[J]. J Arthroplasty,2009,24(5): 674-680.
    [59] Ritter MA, Harty LD, Davis KE, et al. Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis[J]. J Bone Joint Surg (Am), 2003,85-A(7): 1278-1285.
    [60] Most E, Sultan PG, Park SE, et al. Tibiofemoral contact behavior is improved in high-flexion cruciate retaining TKA[J]. Clin Orthop Relat Res, 2006,452: 59-64.
    [61] Most E, Li G, Sultan PG, et al. Kinematic analysis of conventional and high-flexion cruciate-retaining total knee arthroplasties: an in vitro investigation[J]. J Arthroplasty, 2005,20(4): 529-535.
    [62]罗世兴,赵劲民,苏伟.人工膝关节假体选择的研究进展[J].中国修复重建外科杂志, 2010,24(3): 301-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700