不确定结构(机构)分析和可靠性专题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际工程结构中存在大量的误差和不确定性,在结构分析中必须考虑这些不确定因素。研究不确定性问题的数学模型主要有三种:概率模型、模糊模型、凸集模型或区间分析。其中,区间分析具有简单实用的特点。由于机构形体可变、失效模式众多,机构可靠性问题较之结构可靠性问题难度要大得多。目前,关于机构可靠性的理论和方法尚不完善。
     本文对不确定性结构的静力响应分析、动力特性分析和非概率可靠性计算,以及机构运动的可靠性等专题进行了研究。主要内容如下:
     1、基于不确定性的区间模型描述,研究了不确定结构的区间有限元解法。提出了区间静力控制方程组的两种有效解法:区间逐步离散法和区间因子法。区间逐步离散法既考虑到区间线性方程组中各矩阵元素的相关性,又考察了区间元素取区间内点值的情况,结果趋近于真实解。用区间因子法求解不确定性问题方法简便,只需一次结构分析即可获得静力位移和应力响应的区间。
     2、讨论了求解静力区间线性方程组的泛灰数方法。该方法将区间线性方程组转化为泛灰数方程组求解,方法简单易行,但在使用中有不完善的地方。本文对此提出一种新的泛灰数转换规则,通过算例验证了新规则的合理性。
     3、基于区间有限元进行了不确定结构动力特性分析。针对广义区间特征方程的求解提出了区间离散方法和区间因子法,算例分析说明了所建模型和求解方法的可行性、有效性。区间离散算法不引入更多假设,适用面较广,收敛速度较快。区间因子法易于分析结构参数的区间不确定性对结构动力特性的影响。
     4、基于传递矩阵法对不确定链式结构进行动力特性分析。对不确定链式结构导出关于系统固有频率的非线性区间方程,并用区间离散算法求解该方程。基于区间因子法推导了关于动力特性区间变量的计算表达式,并分析了结构参数的区间不确定性对链式结构动力特性的影响。
     5、研究了大型星载天线的展开可靠性问题。分析了周边桁架式星载天线的展开运动机理,并基于随机模型,计算了展开机构的运动可靠性和同步齿轮防卡滞的可靠性。应用失效树分析方法建立起展开系统的失效树,通过各基本事件的失效概率和重要度计算,指出影响天线展开的关键因素
    6、基于非概率可靠性模型提出了结构可靠性的两种计算方法。两种算法对于任意功能函数都是可行的;对于线性功能函数,两者等效;对于非线性功能函数,两者略有差异。计算的差异来源于两种非概率可靠性定义的不同。将非概率可靠性模型应用到星载天线展开机构可靠性研究,并与概率可靠性相比较。结果表明:概率可靠性指标约为非概率可靠性指标的三倍,两者的变化趋势相同。
     7、将灰色理论与方法引入机构的运动可靠性评估。提出了机构的灰色可靠性概念和分析模型。从机构运动条件和运动精度的极限状态方程出发,推导了灰色可靠度计算公式。研究结果表明:机构灰色可靠性模型是可行有效的。
     本文的研究对于提高不确定结构的有限元求解能力,完善结构(机构)的可靠性理论,拓展不确定结构(机构)分析在航天工程领域的应用具有比较重要的理论和现实意义。
A large number of errors and uncertainties exist in the actual structure, and these uncertain factors should be considered in structural analysis. There are three mainly models to deal with uncertainty, which are probability model, fuzzy model and convex model or interval analysis. Among these models, the interval analysis is simple and practical to deal with uncertain structures. For changeable structural forms and sorts of failure types, the reliability analysis of a mechanism is more difficult than a fixed structure. Recently, the theory of mechanism reliability analysis is still imperfect.
    Some researches on special topics are presented in this paper, which include the static response analysis, dynamic characteristic analysis, the non-probabilistic reliability calculating of an uncertain structure, the movement reliability of a mechanism.
    The main research works can be described as follows:
    1. Interval finite element methods (FEM) for uncertain structures are studied. Several efficient methods for solving the static governing equations of interval FEM are proposed, which include an interval-step-dividing method and an interval factor method. The interval-step-dividing method considers the correlation between matrix elements and the condition that each element obtains the interval's inner value. Therefore, it can get a result which is close to the exact one. The interval factor method is easy to solve the uncertain problem, which needs only once structural analysis to get the response intervals of the static displacement and stress.
    2. An approach by using universal grey numbers to solve static interval linear equations is discussed. This method changes interval linear equations to universal grey linear equations to solve, which is simple, but has some disadvantages in application. A new rule of transforming an interval number into universal grey one is presented. Computing results show that the new transforming rule is reasonable.
    3. Based on the interval FEM the dynamic characteristics of uncertain structures are analyzed. To solve the generalized interval eigenvalue equation, an interval-step-dividing method and an interval factor method are presented in this paper. The correctness and validity of the theory and method presented in this paper are inspected by several examples. The interval factor method is easy to analyze the effect of any parameter's uncertain on the dynamic characteristics.
    4. Based on the transfer matrix method, the dynamic characteristics of uncertain chain-structures are analyzed. A nonlinear interval equation of a chain system's natural frequency is developed, which is solved by using the interval dividing method. Based on the interval factor method, some expressions of interval variables about the structure's dynamic characteristics are derived.
    5. The deployment reliability analysis of a large satellite antenna is studied. The movement principium of a large satellite antenna is analyzed. Based on a random model, the movement reliability of the deployment mechanism and the seizure-preventing reliability of synchronous gears are calculated. The faulty tree of the deployment system is built by using the Faulty Tree Analysis method, and from the calculating result of the probability and importance degree of each base affair, some key factors to affect the deployment of the antenna are point out.
    6. Based on a non-probabilistic reliability model, two methods for structural reliability computation are produced, which are practicable for any performance functions. These two methods are equivalent for linear functions but a little different for nonlinear ones. The computing difference comes from two definitions about non-probabilistic reliability. The non-probabilistic model is also used to give the reliability analysis of a satellite antenna's deployment mechanism, and the result is compared with another one based on the probabilistic model. The result shows that the trends of their variation are alike.
    7. The grey theory and method is applied in the mechanism reliability research. The conception and model of grey reliability on a mechanism's movement is presented. From the limiting condition equations of movement requisition and accuracy, the computing formulae of the grey reliability are derived respectively. The research proves that the method is feasible and the result is reasonable.
    The theories founded in the paper are important and meaningful in the following aspects: enhancing the ability of the FEM in solving uncertain structures, completing the structural (mechanism) reliability theory, improving the application of the structural (mechanism) analysis in the aerospace engineering.
引文
[1] 王光远,陈树勋 工程结构系统软设计理论及应用[M].国防工业出版社,1996.
    [2] 王光远.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,(4):1-10.
    [3] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1996.
    [4] Ellishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A M Freudenthal's criticisms to modern convex modeling[J]. Computers & Structures, 1995, 56(6): 871-895.
    [5] Elishakoff I. Three versions of the finite element method based on concept of either stochasticity, fuzziness or anti-optimization[J]. Applied Mechanics Review, 1998, 51:209-218.
    [6] 刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126.
    [7] Rao S S, Sawyer J P. Fuzzy finite element approach for the analysis of imprecisely defined systems[J]. AIAA Journal, 1995, 33(12): 2364-2370.
    [8] Cherki A, Plessis G, Lallemand B, Tison T, Level P. Fuzry behavior of mechanical systems with uncertain boundary conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189:863 -873.
    [9] Rao S S, Chen L. Numerical solution of fuzzy linear equations in engineering analysis[J]. International Journal of Numeric Methods in Engineering, 1998, 43:391-408.
    [10] Mullen R L, Muhanna R L. Bounds of structural response for all possible loading combinations[J]. Journal of Structural Engineering, 1999, 125: 98-106.
    [11] Muhanna R L, Mullen R L. Uncertainty in mechanics problems—interval-based approach[J]. Journal of Engineering Mechanics, 2001, 127: 557-566.
    [12] Alefeld G, Claudio D. The basic properties of interval arithmetic, its software realizations and some applications[J]. Computers & Structures, 1998, 67(1/3): 3-8.
    [13] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics[M]. Amsterdam: Elsevier Science, 1990.
    [14] Lindberg H. An evaluation of convex modeling for multimode dynamic buckling[J]. Journal of Applied Mechanics, 1992, 59: 929-936.
    [15] Lindberg H. Convex modes for uncertain imperfection control in multimode dynamic buckling[J]. Journal of Applied Mechanics, 1992, 59: 937-945.
    [16] Elishakoff I, Elisseeff P, Glegg S A L. Non-probabilistic convex theoretic modeling of scatter in material properties[J]. AIAA Journal,1994, 32(4): 843-849.
    [17] Elishakoff I, Cai G Q, Starnes J H. Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models[J]. International Journal of Non-Linear Mechanics, 1994, 29(1): 71-82.
    [18] Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 104(2): 187-209.
    [19] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells[J]. Journal of Applied Mechanics, 1993, 60(3): 683-695.
    [20] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J]. Structural Safety, 1995,17(2): 91-109.
    [21] Ben-Haim Y, Chen G, Soong T T. Maximum structural response using convex models[J]. Journal of Engineering Mechanics, 1996, 122(4): 325-333.
    [22] Pantelides C P, Ganzeli S. Design of truss under uncertain loads using convex models[J], Journal of Engineering Mechanics, 1998, 124(3): 318-329.
    [23] 邱志平,顾元宪.结构静力位移的非概率凸集合模型的摄动数值算法[J].固体力学学报,1997,18(1):86-89.
    [24] Moor R E. Interval analysis[M]. Prentice-Hall, Englewood, N J. 1966.
    [25] Moor R E. Methods and Applications of Interval Analysis[M]. Philadelphia: SIAM Publications, 1979.
    [26] Alefeld G, Herzberger J. Introduction to Interval Computations[M]. Academic Press, New York, 1983.
    [27] 沈祖和.区间分析方法及其应用[J].应用数学和计算数学,1983(2):34-58.
    [28] 胡承毅,徐山鹰,杨晓光.区间算法简介[J].系统工程理论与实践,2003(4):59-62.
    [29] Rao S S, Berke L. Analysis of uncertain structural system using interval analysis[J]. AIAA Journal, 1997, 35: 727-735.
    [30] Kyluoglu H U, Cakmak A S, Nielsen S R. Interval algebra to deal with pattern loading and structural uncertainty[J]. Journal of Engineering Mechanics, ASMC, 1995, 121(11): 1149-1157.
    [31] Qiu Z P, Elishakoff I. Antioptimization of structures with large uncertain-but-nonrandom parameters via interval analysis[J]. Computer Methods in Applied Mechanical Engineering, 1998, 152(3-4): 361-372.
    [32] 吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法[J].计算力学学报,2002,19(3):260-264.
    [33] 陈怀海.非确定结构系统区间分析的直接优化法[J].南京航空航天大学学报,1999,31(2):146-150.
    [34] 王登刚,李杰.计算不确定结构系统静态响应的一种可靠方法[J].计算力学学报,2003,20(6):662-669.
    [35] 郭书样,吕震宙.线性区间有限元静力控制方程的组合解法[J].计算力学学报,2003,20(1):34-38.
    [36] Mc William S. Anti-optimization of uncertain structures using interval analysis[J]. Computers and Structures, 2001, 79:421-430.
    [37] 邱志平,顾元宪.有界不确定参数结构位移范围的区间摄动法[J].应用力学学报,1999, 16(1):1-10.
    [38] 邱志平,顾元宪.有界不确定性参数结构静力位移范围的区间参数摄动法[J].兵工学报,1998,19(3):255-258.
    [39] Chen S H, Yang X W. Interval finite element method for beam structures[J]. Finite Elements in Analysis and Design, 2000, 34: 75-88.
    [40] Chen S H, Lian H D, Yang X W. Interval static displacement analysis for structures with interval parameters[J]. International Journal for Numerical Methods in Engineering, 2002, 53: 393-407.
    [41] 杨晓伟,陈塑寰,滕绍勇.基于单元的静力区间有限元法[J].计算力学学报,2002,19(2):179-183.
    [42] 郭书祥,吕震宙.区间运算和静力区间有限元[J].应用数学和力学,2001,22(12):1249-1254.
    [43] Qiu Z P. Comparison of static response of structures using convex models and interval analysis method[J]. International Journal for Numerical Methods in Engineering, 2003, 56:1735-1753.
    [44] Deif A S. Sensitivity Analysis in Linear Systems[M]. Springer-Verlag, Berlin and Heidelberg, 1986.
    [45] 陈塑寰.结构动态设计的矩阵摄动理论[M].北京:科学出版社.1999.
    [46] 邱志平,顾元宪,王寿梅.有界参数结构特征值的上下界定理[J].力学学报,1999,31(4):466-474.
    [47] Qiu Z P, Chen S H, Elishakoff I. Natural frequences of structures with uncertain but nonrandom parameters[J]. J Optimization Theory and Applications, 1995, 86: 669-683.
    [48] Qiu Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an description of uncertain-but-nonrandom parameters[J]. Chaos, Solitons and Fractals, 1996, 7(3): 425-434.
    [49] 陈塑寰,邱志平,宋大同,等.区间矩阵标准特征值问题的一种解法[J].吉林工业大学学报,1993,23(3):1-8.
    [50] 邱志平,陈塑寰,周振平.对称区间矩阵标准特征值问题的一种新算法[J].吉林工业大学学报,1994,4(3):62-65.
    [51] Chen S H, Qiu Z P. Perturbation method for com-putting eigenvalue bounds in vibration system with interval parameters[J]. Communication in Numerical Methods in Engineering, 1994, 10: 121-134.
    [52] Chen S H, Qiu Z P, Song D T. A new method for computing the upper and lower bounds on frequencies of structures with interval parameters[J]. Mechanics Research Communications, 1994, 2: 583-592.
    [53] Yang X W, Chen S H, Lian H D. Bounds of complex eigenvalues of structures with interval parameters[J]. Engineering Mechanics, 2001, 23: 557-563.
    [54] 邱志平,王晓军,马一.结构复固有频率区域的区间摄动法[J].北京航空航天大学学报,2003,29(5):406-409.
    [55] 陈怀海,陈正想.求解实对称矩阵区间特征值问题的直接优化法[J].振动工程学报,2000, 13(1):117-121.
    [56] 王登刚,李杰.计算具有区间参数结构特征值范围的一种新方法[J].计算力学学报,2004, 21(1):56-61.
    [57] 王登刚.计算具有区间参数结构的固有频率的优化方法[J].力学学报,2004,36(3): 364-372.
    [58] Qiu Z P, Chen S H, Liu Z S. Matrix perturbation method for the vibration problem of structures with interval parameters[J]. Applied Mathematics and Mechanics, 1994, 15(6): 551-560.
    [59] Qiu Z P, Wang X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach[J]. International Journal of Solids and Structures, 2003, 40: 5423-5439.
    [60] Moens D, Vandepitte D. An interval finite element approach for the calculation of envelope frequency response functions[J]. International Journal for Numerical Methods in Engineering, 2004, 61: 2480-2507.
    [61] Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty-optimization with anti-optimization[J]. Computers & Structures, 1994, 57(6): 1401-1405.
    [62] Lombardi M. Optimization of uncertain structures using non-probabilistic models[J]. Computers & Structures, 1998, 67(1-3): 99-103.
    [63] Lombardi M, Haftka R T. Anti-optimization technique for structural design under load uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 157(1-2): 19-31.
    [64] Pantelides C P, Ganzeli S. Design of trusses under uncertain loads using convex models[J]. Journal of Structural Engineering, 1998, 124(3): 318-329.
    [65] Ganzerli S, Pantelides C P. Load and resistance convex models for optimum design[J]. Structural Optimization, 1999, 17(2): 259-268.
    [66] Ganzerli S, Pantelides C P. Optimum structural design via convex model superposition[J]. Computers & Structures, 2000, 74(6): 639-647.
    [67] 郭书祥,吕震宙,冯元生.机械静强度可靠性设计的非概率方法[J].机械科学与技术, 2000,19(增刊):106-107.
    [68] 郭书祥,吕震宙.基于非概率模型的结构稳健可靠性设计方法[J].航空学报,2001,22(5): 451-453.
    [69] 郭书祥,吕震宙.基于非概率模型的结构可靠性优化设计[J].计算力学学报,2002.19(2): 198-201.
    [70] 李永华,黄洪钟,马启明.轴静强度的非概率可靠性设计[J].可靠性设计与工艺控制, 2003,(3):24-27.
    [71] 程远胜,曾光武.结构非概率可靠性优化设计[J].华中科技大学学报,2002,30(3):30-32.
    [72] 程远胜,曾光武.非概率不确定性及其对船舶坐墩配墩优化的影响[J].工程力学,2003, 20(3):129-133.
    [73] 蔡新,吴威,吴黎华,郭兴文.土石坝结构区间优化设计[J].河海大学学报,1998 26(3): 1-5.
    [74] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14: 227-245.
    [75] Elishakoff I. Discussion on: A non-probabilistic concept of reliability[J]. Structural Safety, 1995, 17(3): 195-199.
    [76] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J]. Structural Safety, 1995, 17(2): 91-109.
    [77] Ben-Haim Y. Robust reliability in the mechanical sciences[M]. Berlin: Springer-Verlag, 1996.
    [78] 郭书样,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报, 2001,18(1):56-60.
    [79] 郭书样,吕震宙.区间可靠性分析的概率和非概率混合模型[J].机械强度,2002,24(4): 524-526.
    [80] 冯元生.机构可靠性理论的研究[J].中国机械工程,1992,3(3):1-3.
    [81] 羊妗,冯元生.机构可靠性破坏模式研究[J].机械科学与技术,1991,(2):62-65.
    [82] 贺东斌,冯元生.航空关节轴承的可靠性分析[J].机械强度,1995,17(1):29-31.
    [83] 任和,冯元生,贾少澎.机构磨损模糊可靠性算法研究[J].机械科学与技术,1998,(1): 46-48.
    [84] Sandler B Z著,马培荪,马烈译.机构概率设计[M].北京:科学出版社,1991.
    [85] Lee S J, Gilmore B J. The Determination of the Probabilistic Properties of Velocities & Accelerations in Kinematic Chains with Uncertainty[J]. Transactions of the ASME, 1991, 113(3): 84-90.
    [86] Rhyu J H, Kwak B M. Optimal Stochastic Design of Four-Bar Mechanisms for Tolerance and Clearance[J]. Transactions of the ASME, 1988, 110(9): 225-262.
    [87] 徐卫良,张启先.空间机构运动误差的概率分析和蒙特卡罗模拟[J].机械工程学报,1988, 24(3):97-104.
    [88] 史天录,邓洪洲,冯元生.RCCC空间机构的运动精度和可靠性分析[J].机械科学与技术, 1995,(1):47-51.
    [89] 张新义.机械精度设计的理论概率法[M].机械工业出版社,1995.
    [90] 贺东斌,冯元生,宋占成.机构变形卡住可靠性分析[J].中国机械工程,1994,5(2):3-5.
    [91] 贺东斌,冯元生,史天录.多支点轴防变形卡住可靠性分析[J].航空学报,1995,16(2): 243-245.
    [92] 贺东斌,冯元生,宋占成.机构容差及其运动可靠性[J].中国机械工程,1993,4(3):16-17.
    [93] 师忠秀,张凤生,徐志良.多臂机构动作可靠性分析及计算方法[J].青岛大学学报,1998, 13(1):5-10.
    [94] 顾长鸿,盛一兴.飞机起落架上位锁机构的可靠性分析[J].北京航空航天大学学报,1995, 21(4):18-23.
    [95] 张树林,黄文敏.飞行器机构的可靠性[J].北京航空航天大学学报,1995,21(4):23-29.
    [96] Jiri Rohn. Systems of Linear Equations[M]. 1993.
    [97] Dessombz O, Thouverez F, Laine J P, et al. Analysis of mechanical systems using interval computations applied to finite element methods[J]. Journal of Sound and Vibration, 2001, 239(5): 949-968.
    [98] 郭书样,吕震宙.区间有限元静力控制方程的一种迭代解法[J].西北工业大学学报,2002, 20(1):20-23.
    [99] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [100] 王清印,刘开第,陈金鹏等.灰色系统理论的数学方法及其应用[M].成都:西南交通大学出版社,1990.
    [101] 王清印.灰色数学基础[M].武汉:华中理工大学出版社,1996.
    [102] 王光远.论不确定性结构力学的发展[J].力学进展,2002,32(2):205-211.
    [103] 吴晓,罗佑新,文会军,等.非确定结构系统区间分析的泛灰求解方法[J].计算力学学报,2003,20(3):329-334.
    [104] 全凌云,杨钊.区间数和泛灰数在区间分析中的比较[J].河北工业大学学报,2001,30(4): 93-96.
    [105] 王小平,曹立明.遗传算法理论应用及软件实现[M].西安:西安交通大学出版社,2002.
    [106] 方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社,1998.
    [107] 孙世向,夏季.考虑连续质量的扭振系统的传递矩阵分析[J].西南科技大学学报,2003, 18(1):30-34.
    [108] 刘开国.变截面高层框架结构的矩阵传递法[J].力学与实践,2004,26(4):34-37.
    [109] 向宇.分析结构自由振动的传递矩阵精确形式[J].振动与冲击,1999,18(2):69-74.
    [110] 于百胜,郑钢铁,杜华军.分叉结构系统传递矩阵计算方法[J].振动与冲击,2003,22(1): 93-95.
    [111] 任辉译.欧洲航天局的天线结构技术[J].通信与测控,1995,(1):59-66.
    [112] 谭全芹,张萍等译.可展开天线综述[J].通信与测控,1995,(4):1-14.
    [113] 韦娟芳,赵仁杰,关富玲.星载天线结构的发展趋势[J].空间电子技术,2002,(1):49-54.
    [114] 陈向阳,关富玲,岳建如.可展星载抛物面天线结构设计[J].空间结构,2000,6(4): 41-46.
    [115] 刘明治,高桂芳.空间可展开天线结构研究进展[J].宇航学报,2003,24(1):82-87.
    [116] 冯达武,赵人杰.空间大型网状展开天线展开机构的研究[J].中国空间科学技术,1997, 17(1):64-70.
    [117] Mitugi J. Comparative Analysis of Deployable Truss Structures for Mesh Antenna Reflectors[J], AIAA Journal, 1998, 36(8): 1546-1548.
    [118] Travis, Langbecker. Kinematic Analysis of Deployable Scissor Structures[J], International Journal of Space Structures, 1999, 14(1): 1-15.
    [119] 金恂叔.论航天器的环境试验和可靠性[J].中国空间科学技术,1997,17(5):33-40.
    [120] 董志强,段宝岩.星载天线缠绕肋条的力学特性研究[J].西安电子科技大学学报,2001, 28(6):755-758.
    [121] 朱敏波,曹峰云,刘明治,等.星载大型可展开天线太空辐射热变形计算[J].西安电子科技大学学报,2004,31(1):28-31.
    [122] Chen J J, Duan B Y. Reliability Aspects in Dynamic & Structural Optimization[M]. Holland: Gordon & Breach Publishers, 1999.
    [123] 吴立言,王步瀛.航空齿轮可靠度计算方法[J].航空动力学报,1995,10(1):79-82.
    [124] 乐晓斌,胡宗武.齿轮弯曲疲劳可靠度的计算方法[J].机械强度,1994,16(3):41-45.
    [125] 韩翔.圆柱齿轮传动磨损可靠性优化设计[J].机械传动,2003,27(5):24-26.
    [126] 陈举华,于浩.硬齿面齿轮弯曲疲劳可靠性仿真试验研究[J].中国机械工程,1999,10(1): 7-9.
    [127] 郑文纬,吴克坚.机械原理[M].北京:高等教育出版社,1997.
    [128] 徐芝纶.弹性力学[M].北京:高等教育出版社,1990.
    [129] 肖芳淳,张效羽,张鹏,姚安林.模糊分析设计在石油工业中的应用[M].北京:石油工业出版社,1993.
    [130] 杨伦标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700