兴奋剂对生长发育期小鼠大脑颞叶皮层组织结构和相关酶活性及学习记忆能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1)通过给孕小鼠注射海洛因观察并检测发育期小鼠大脑颞叶皮层结构的变化及ADA、SDH、NOS、GSH活性,以探讨海洛因对生长发育期小鼠大脑的毒性及其可能机制。
     2)采用给仔鼠注射海洛因和麻黄素,探讨海洛因和麻黄素对仔鼠大脑颞叶皮层结构及学习记忆能力影响的机制。
     方法
     1)对实验组36例受孕小鼠(第8 d开始)分别连续注射三种不同浓度(1.0 g/L、1.5 g/L和2.0 g/L)的海洛因溶液,对照组12例受孕小鼠注射等量的生理盐水直到小鼠分娩,称量检测各实验组仔鼠在胚胎15d(E15)及生后1d、7d、15d时大脑重量的变化,用生物显微技术观察仔鼠大脑颞叶皮层结构的变化,用比色法检测仔鼠大脑ADA、SDH、NOS、GSH的活性变化。
     2)海洛因组36只仔鼠采用递增剂量腹腔连续注射海洛因,麻黄素组36只仔鼠采用递增剂量腹腔连续注射麻黄素,对照组36只仔鼠注射等量的生理盐水,通过食饵迷宫观察仔鼠行为学变化,在光学显微镜和透射电镜下观察大脑颞叶皮层细胞结构的变化,用免疫组织化学方法观察了Bax蛋白和角质细胞生长因子(keratinocyte growth factor,KGF)在大脑颞叶皮层的表达,采用比色法检测了大脑颞叶皮层胆碱乙酰基转移酶(ChAT)活性的变化。
     结果
     1)孕小鼠注射海洛因影响仔鼠大脑的重量。实验组仔鼠大脑重量明显低于对照组。
     2)孕小鼠注射海洛因影响仔鼠大脑颞叶皮层的发育。实验组仔鼠大脑颞叶皮层结构不清,神经元发育不良,皮层厚度减少,除在E15和生后1d大脑颞叶皮层第Ⅵ层神经元细胞数量高于对照组外,其它发育期各层神经元细胞数量均小于对照组。
     3)孕小鼠注射海洛因影响仔鼠大脑ADA、SDH、NOS及GSH的活性。1.0、1.5和2.0g/L三个剂量组在E15时,胎鼠大脑中ADA、SDH及NOS活性高于对照组,差异显著或极显著(P<0.05或P<0.01),GSH活性低于对照组,差异极显著(P<0.01);仔鼠在生后15d的发育过程中,1.0g/L剂量组仔鼠大脑中ADA、SDH、NOS及GSH的活性逐渐恢复到正常水平,1.5g/L剂量组大脑中NOS和SDH的活性逐渐恢复到正常水平,但ADA的活性仍高于对照组,GSH的活性仍低于对照组,2.0g/L剂量组仔鼠大脑中ADA、SDH、NOS的活性在生后15d时仍保持较高的水平,GSH的活性仍低于对照组。双因素方差分析表明剂量因素对结果的影响大于时间因素。
     4)注射海洛因、麻黄素影响仔鼠的学习记忆能力。除麻黄素组5d时与对照组差异不显著(P > 0.05)外,海洛因和麻黄素组各期仔鼠食饵迷宫试验的总测试次数、错误次数及总测试时间均高于对照组,差异显著或极显著(P < 0.05或P < 0.01);海洛因组仔鼠食饵迷宫的上述三项指标均高于麻黄素组,差异显著或极显著(P < 0.05或P < 0.01)。随着海洛因和麻黄素剂量的递增,仔鼠食饵迷宫试验的总测试次数和错误次数呈上升趋势。
     5)注射海洛因、麻黄素影响仔鼠大脑颞叶皮层ChAT的活性。注射海洛因、麻黄素5d、10d、15d、20d,仔鼠大脑颞叶皮层ChAT的活性低于对照组,差异显著或极显著(P < 0.05或P < 0.01)。注射海洛因、麻黄素5d到20d,海洛因和麻黄素对大脑颞叶皮层ChAT活性的抑制率都呈上升趋势,且海洛因对大脑颞叶皮层ChAT活性的抑制率始终高于麻黄素。
     6)注射海洛因、麻黄素影响仔鼠大脑颞叶皮层的显微结构。注射海洛因、麻黄素5d、10d、15 d、20d,仔鼠大脑颞叶皮层锥体神经元树突、轴突萎缩,胞体缩小。海洛因组和麻黄素组仔鼠大脑颞叶皮层凋亡细胞及坏死细胞的数量均高于对照组,差异显著或极显著(P < 0.05或P < 0.01);海洛因组上述两项指标均高于麻黄素组,差异显著或极显著(P < 0.05或P < 0.01)。随着海洛因和麻黄素剂量的递增,仔鼠大脑颞叶皮层凋亡细胞和坏死细胞的数量呈增多趋势。
     7)注射海洛因和麻黄素影响仔鼠大脑颞叶皮层Bax蛋白和KGF的表达。注射海洛因、麻黄素5d、10d、15d、20d,仔鼠大脑颞叶皮层Bax蛋白和KGF阳性表达细胞的数量均高于对照组,差异显著或极显著(P < 0.05或P < 0.01);海洛因组上述两项指标均高于麻黄素组,差异显著或极显著(P < 0.05或P < 0.01)。随着海洛因和麻黄素剂量的递增,仔鼠大脑颞叶皮层Bax蛋白和KGF阳性表达细胞的数量呈增多趋势。
     8)注射海洛因、麻黄素影响仔鼠大脑颞叶皮层的超微结构。随着海洛因和麻黄素剂量递增,神经元核膜失去正常圆形轮廓,胞内细胞器结构不正常或空泡化;毛细血管周围基质溶解破坏,管腔狭窄;突触小泡减少。
     结论
     1)孕小鼠注射海洛因后对仔鼠大脑发育的影响具有长时程效应。妊娠中晚期接触海洛因对仔鼠脑神经元的迁移具有毒性作用。在生后15d时实验组仔鼠大脑重量、颞叶皮层各层的厚度和细胞密度仍小于对照组,可能是海洛因及其代谢产物对胚胎期神经元具有直接毒性作用的延伸结果。
     2)孕小鼠注射海洛因引起仔鼠大脑ADA、SDH、NOS活性升高和GSH活性下降。仔鼠大脑组织结构的改变可能与大脑ADA、SDH、NOS及GSH活性的改变有一定的相关性。
     3)海洛因和麻黄素使仔鼠大脑颞叶皮层ChAT的活性降低。大脑颞叶皮层可能参与了仔鼠记忆的形成。
     4)海洛因和麻黄素使大脑颞叶皮层组织结构发生改变,引起Bax蛋白和KGF阳性表达增强,大脑颞叶皮层组织受损程度随着剂量的升高而升高,具有明显的剂量效应关系。
     5)海洛因和麻黄素对仔鼠学习记忆能力有显著损伤,其可能机制与大脑颞叶皮层组织结构受损及ChAT活性下降有一定的相关性。随着海洛因和麻黄素剂量的递增,仔鼠学习记忆能力的损伤加重。
Objective
     1)To explore the possible mechanism of heroin toxicity on the brain during the developmental mice, The structure of cerebral temporal lobe cortex and activities of adenosine deaminase (ADA),succinate dehydrogenase (SDH),nitric oxide synthase (NOS) and glutathione (GSH) of developmental mice were studied.
     2)To investigate effects of heroin and ephedrine on the structure of cerebral temporal lobe cortex and capability of learning and memory, filial mice were given injection of heroin and ephedrine, and the structure of cerebral temporal lobe cortex and capability of learning and memory were studied.
     Methods
     1)36 pregnant mice from the experimental groups at the eighth day began to be continuously injected with three different concentrations (1.0g/L,1.5g/L and 2.0g/L) of heroin, 12 pregnant mice from the control group were injected with the same amount of saline until the birth of filial mice. Cerebral weight of filial mice was weighted. And it was observed that the changes of the cerebral temporal lobe cortex of filial mice by bio-microscopy,and detected that the activities of ADA,SDH,NOS and GSH by colorimetry at embryo 15 days and postnatal ages of 1 day,7 days,15 days from all experimental groups.
     2)36 filial mice from heroin were given intraperitoneal injection of heroin by gradually increase of doses, 36 filial mice from ephedrine group were injected with ephedrine by gradually increase of doses, and 36 filial mice from the control group were injected with the same amount of saline. The filial mice behavior changes were observed by bait maze. In the same time, the changes of the cell structure of cerebral temporal lobe cortex were observed by light microscope and transmission electron microscope. Expression of Bax protein and keratinocyte growth factor(KGF) was measured by immunohistochemical method, and the ChAT activity was detected by colorimetry.
     Results
     1)Heroin had some adverse effects on cerebral weight of filial mice after injecting heroin in pregnant mice. The cerebral weight of experimental group was significantly lighter than that of control group.
     2)The development of filial cerebral was affected by heroin. The structure of filial cerebral temporal lobe of experiment group was not clear. The thickness of filial cerebral decreased and the number of neurons reduced except those in the cerebral temporal lobe cortexⅥat embryo15 days and postnatal 1 day.
     3)Heroin had effects on activities of ADA, SDH, NOS and GSH. Compared with the control group,ADA,SDH and NOS activities in brain increased while GSH activity decreased significantly at embryo 15 days after administration of heroin (P <0.01 or P <0.05),but the recovery of these activities at postnatal 15 days varied with different doses. All of these activities subsequently recovered to the normal level slowly in heroin administration (1.0 g/L);Activities of NOS and SDH also recovered to the normal level while others remained significantly affected at the dose of 1.5g/L;ADA,SDH and NOS activities were still higher and GSH activity were lower than that of the control in 2.0g/L group. Results of Two-Way ANOVA indicated that dose contributed more to heroin-induced brain damage than treatment time.
     4) Heroin and ephedrine had some effects on learning and memory of filial mice. Total test times, error frequency and total test time of bait maze in the heroin group and ephedrine group were significantly higher than those in the control group (P < 0.05 or P < 0.01) except those at 5 days in the ephedrine group (P > 0.05), and the above-mentioned three indexes of the heroin group were significantly higher than those of the ephedrine group (P < 0.05 or P < 0.01). Total test times and error frequency of bait maze increased by the increase in doses of heroin and ephedrine.
     5)Heroin and ephedrine had effect on the ChAT activity of filial mice’s cerebral temporal lobe cortex. After administration of heroin and ephedrine at 5,10,15,20 days, ChAT activity was lower than that of the control group (P < 0.05 or P < 0.01). Inhibition rate of ChAT activity increased by the increase in doses of heroin and ephedrine. Inhibition rate of ChAT activity in heroin group was higher than that in ephedrine group from 5 days to 20 days.
     6)Heroin and ephedrine had some effects on microstructure of filial mice’s cerebral temporal lobe cortex. After administration of heroin and ephedrine at 5,10,15,20 days, the dendrites and axon of pyramidal neurons in cerebral temporal lobe cortex were atrophied and the cell bodies became small. The number of apoptotic or necrotic cells was significantly higher than that of the control group (P < 0.05 or P < 0.01), and the above-mentioned two indexes of the heroin group were significantly higher than those of the ephedrine group (P < 0.05 or P < 0.01). The number of apoptotic or necrotic cells increased by the increase in doses of heroin and ephedrine.
     7)Heroin and ephedrine had effects on expression of Bax protein and KGF in cerebral temporal lobe cortex. After administration of heroin and ephedrine at 5,10,15,20 days, the number of Bax protein- and KGF-immunopositive neurons was significantly higher than that of the control group(P < 0.05 or P < 0.01), and the above-mentioned two indexes of the heroin group were significantly higher than those of the ephedrine group (P < 0.05 or P < 0.01). The number of Bax protein- and KGF-immunopositive neurons increased by the increase in doses of heroin and ephedrine.
     8)Heroin and ephedrine had some effects on ultrastructure of filial mice’s cerebral temporal lobe cortex. With the doses of heroin and ephedrine increasing,nuclear membrane lost normal round contour, and the structures of organelles showed abnormal or vacuolar. The matrix around capillary dissolved or were destructed, and capillary lumen became narrow. The synaptic vesicles reduced.
     Conclusion
     1) After injecting heroin in pregnant mice, the development of filial mice’s brain was affected for long term. Exposure to heroin at medium and late pregnancy stage had toxic effects on the neurons migration in the filial mice’s brain. Cerebral weight of filial mice, thickness of each cerebral temporal lobe cortex and number of neurons were still lower than that of the control group at postnatal 15 days, which might be the extending results of direct toxicity of heroin and its metabolites on embryonic neurons.
     2)After injecting heroin in pregnant mice, the activities of ADA、SDH、NOS increased and GSH activity decreased. The damage of the histological structure of filial mice’s brains might be correlated with the changes of ADA,SDH,NOS and GSH activities in mice’s brain.
     3)After administration of heroin and ephedrine, the activity of ChAT in cerebral temporal lobe cortex decreased. Cerebral temporal lobe cortex might play an important role in the formation of capability of learning and memory in filial mice.
     4)Heroin and ephedrine had effects on the histological structure of filial mice cerebral temporal lobe cortex. Positive expression of Bax protein and KGF enhanced. With the concentration increasing, the extent of damage of cerebral temporal lobe cortex also increased, which showed an evident logarithm dose-effect relationship.
     5)Heroin and ephedrine had great effect on learning and memory in filial mice, and this effects would be related with the damage of the histological structure of cerebral temporal lobe cortex and low activity of ChAT. With the concentration increasing, the extent of damage of learning and memory in filial mice also increased.
引文
[ 1 ] Loh HH,Tao PL,Smith AP. Role of receptor regulation in opioid tolerance mechanisms[J]. Synapse,1988,2(4): 457-462.
    [ 2 ] Warner-Smith M,Day DS. Morbidity associated with non-fatal heroin overdose[J]. Addiction, 2002,97(8): 963-967.
    [ 3 ] Preti A,Coppi MP. Deaths by unintentional illicit drug overdose in Italy[J]. Drug Alcohol Dependence,2002,66(3): 275-282.
    [ 4 ] Bryant WK,Gakea S,Tracy M,et al. Overdose heaths attributed to methadone and herion in New York city,1990-1998[J]. Addiction,2004,99(7): 846-854.
    [ 5 ]姜佐宁.海洛因成瘾与现代治疗[M].北京:北京科学技术出版社,1995,114-118.
    [ 6 ] Edward JC. Forensic drug testing for opiates. VII. Urinary excretion profile of intranasal heroin[J]. Journal of Analytical Toxicology,1996,20(6): 379-392.
    [ 7 ]龙玉,孔祥泉,徐海波,等.大鼠海洛因中毒性脑损害的实验研究[J].临床放射学杂志,2004,23 (7): 625-629.
    [ 8 ]韦献良,梁莹,叶峻,等.海洛因成瘾复吸大鼠脑组织神经元超微结构和神经递质变化的研究[J].电子显微学报,2004,23 (5): 530-535.
    [ 9 ] Oliveira MT,Rego AC,MorgadinhoMT,et al. Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells[J]. Annals of the New York Academy of Sciences,2002,965 (1): 487 - 496.
    [10]王莹,杜克莘,李明等.海洛因暴露对小鼠前额叶皮层、海马和伏核Caspase 3表达的影响[J].细胞免疫学杂志,2008,24(9): 867-869
    [11] Chang JY,Zhang L,Janak PH,et al. Neuronal responses in pre-frontal cortex and nucleus accumbens during heroin self-administration in freely moving rats[J]. Brain Research,1997,754 (1-2): 12 -20.
    [12]刘小山,臧林泉,蒿自睿,等.海洛因诱导大脑神经元凋亡的研究[J].法医学杂志,2007,19 (1): 14-17.
    [13] Nassogne MC,Evrard P,Courtoy PJ. Selective direct toxicity of cocaine on fetal mouse neurons: teratogenic implications of neurite and apoptotic neuronal loss[J]. Annals of the New York Academy of Sciences,1998,846(2): 51-68.
    [14] Nassogne MC,Evrard P,Courtoy PJ. Selective neuronal toxicity of cocaine in embryonic mouse brain co-cultures[J]. Proceedings of the National Academy of Sciences,1995,92(24): 11029-11033.
    [15] Nassogne MC,Evrard P,Courtoy PJ,Louahed J. cocaine induces apoptosis in cortical neurons of fetal mice[J]. Journal of Neurochemistry,1997,68(6): 2442-2450.
    [16]郑春兰.阿片类药物依赖戒断时神经内分泌、细胞内信使系统的变化及影响上述变化的药物[J].医学综述,1999,5(3): 127-132.
    [17]邹冈编.基础神经药理学[M].北京:科学出版社,1988,145-147.
    [18]何鸣,杨德森,程介士,等.氟哌啶醇与电针对吗啡依赖大鼠的行为和中枢阿片肽系统的影响[J].中国行为医学科学,1995,4(1): 8-14.
    [19]康立生,程燕,吴崇厚,等.长波紫外线照射对吗啡戒断大鼠血液中去甲肾上腺素及多巴胺含量影响[J].中国药物依赖性通报,1996,5(1): 25-28.
    [20]李密.药物滥用与药物依赖性[M].北京:中国科学技术出版社,1992,49-52.
    [21]李钧.依赖性药物及其管理[M].北京:中国医药科技出版社,1994,140-155.
    [22] Holland LN,Shuster LC,Buccafusco JJ,et al. Role of spinal and supraspinal muscarinic receptors in the expression of morphine withdrawal symptoms in the rats[J]. Neuropharmacology,1993,32(12): 1387-1395.
    [23]张开镐,龚苕.阿片药物戒断的生化机制[J].中国药物依赖性通报,1993,2(4): 230-233.
    [24]张克锦.药理学进展[M].北京:人民卫生出版社,1981,190-201.
    [25] Hollot CV,Misra V,Towsley D,et al. On designing improved controllers for AQM routers supporting TCP flows[J]. Journal of Applied Probability,1975,12(4): 779-792.
    [26]郑广华编.细胞内信使系统[M].广州:广东高等教育出版社,1988,80-82.
    [27]刘闻. G蛋白-cAMP系统与阿片类药物依赖[J].中国药物依赖性通报,1996,5(4): 201-205.
    [28]陈世铭,应晓.钙拮抗剂与阿片类戒断综合征[J].中国药物依赖性通报,1995,4(1):1-3.
    [29]刘屏,陈世铭,应晓.钙拮抗剂治疗大白鼠吗啡戒断综合征的研究[J].中国药物依赖性通报,1994,3(3): 166-169.
    [30] Zadina JE,Hackler L,Ge LJ,et at. Apotent and selective endogenous agonist for theμ-opiate receptor[J]. Nature,1997,386: 499-502.
    [31] Stone LS,Fairbanks CA,Laughlin TM,et al . spinal analgesic actions of the new endogenous opioid peptides endomorphin-1 and -2[J]. Neuroreport,1997,8(14): 3131-3135.
    [32] Goldberg IE,Rossi GC,Letchworth SR,et al. pharmacological characterization ofendomorphin-1 and endo-morphin-2 in mouse brain[J]. Journal of Pharmacology and Experimental Therapeutics,1998,286(2): 1007-1013.
    [33]杨良等.海洛因依赖者血浆β-内啡肽测定[M].中国药物依赖性通报,1993,2(2): 85-90.
    [34] Goodman and Ginman’s. The pharmacological basis of therapcutics[M]. The Eidition,1995,491-499.
    [35]刘敏等.吸食鸦片药物死者体内吗啡的免疫组化检测[J].华西医科大学,1996,27(2): 151-159.
    [36]张益鹄等.急性吗啡中毒大鼠主要器官内吗啡的免疫组化定位研究[J].法医学杂志,1996,12(4): 204-208.
    [37] Mg Lander. Levels of dynorphin, peptides substance P and CGRPin the spinal cord afer Subchronic administration of Morphine in the rat[J]. Neuropharmacology,1991,30(1): 1219-1226.
    [38] Herkenham M,Lynn AB,Little MD,et al. cannabinoidreceptor localization in brain[J]. Proceedings of the National Academy of Sciences USA. 1990,87: 1932-1936.
    [39] Vik PW,Cellucci T,Jarchow A,et al. congnitive impairment in substance abuse[J]. Psychiatric Clinics of North America,2004,27(1): 97-109.
    [40] Solowij N,Stephens RS,Roffinan RA,et al. marijuana treatment project research group congnitive functioning of long-term heavy cannabis users seeking treatment[J]. JAMA,2002,287(9): 1123-1131.
    [41] Mittenberg W,Motta S. effects of chronic cocaine abuse on memory and learning[J]. Archives of Clinical Neuropsychology,1993,8(6): 477-483.
    [42] Stone WS,Walker F. scopolamine and morphine induced impairments of spontaneous alternation performance in mice: reversal with glucose and with cholinergic and adrenergic agonists[J]. Behavioral Neuroscience,1991,105(4): 264-269.
    [43] Kaneto H. role of opioids in memory processes[M]. In: neurotransmitters in neuronal plasticity and psychiatric disorders. Exerpta Medica, Ltd Tokyo,1993,3-11.
    [44] Harris HW,Nestler EF. Opiates regulation of signal-transduction pathways[M]. In: Hammer RP ed. The neurobiology od opiates, USA: CRC Press Inc,1993,301-332.
    [45] Spain JW,Newsom G. Chronic opioids impair acquisition of both radial maze and Y-maze choice escape[J]. Psychopharmacology,1991,105(3): 10-15.
    [46] YU Zhiing,Takahashi M,Kaneto H. Effects of acuteand chronic scopolamine and morphineon memory in mice: using a Y-maze spontaneous alternation task[J]. Journal of china Pharmaceutiacal University,1996,27(11): 680-686.
    [47] Sala M,Braida D,Leone MP,et al. chronic morphine affects working memory during treatment and withdrawal in rats:possible residual long-term impairment[J]. Behavioral Neuroscience, 1994,5(6): 570-576.
    [48]马光瑜,攀小力,徐小虎,等.吗啡成瘾对大鼠及小鼠学习与记忆能力影响的实验研究[J].中国行为医学科学,2000,9(5): 329-331.
    [49] Buccafusco JJ. Inhibition of the morphine withdrawal syndrome by a novel muscarine antagonist(4-DAMP)[J]. Life Science,1991,48(8): 794-796.
    [50]何鸣,杨德森,陈向一等.吗啡依赖大鼠的行为与VTA单胺释放改变研究[J].中国临床心理学杂志,1995,3(1): 1-11.
    [51] Chiara GD. In vivo brain dialysis of neurotransmitters[J]. Trends Pharmacology Science,1990,654: 116-121.
    [52]叶晓明,王新华.海洛因依赖大鼠模型的建立[J].第二军医大学学报,2001,21(1): 95-98.
    [53]蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,2001,112-317.
    [54]陈玉琴,俞诗源,张虎林,等.红腹锦鸡肾的组织结构及EGFR、TGF-β、AQP-2在肾脏中的表达[J].动物学报,2008,54(2): 323-331.
    [55] Nunez J.Effect of thyroid hormones during brain differentiation[J]. Molecular and Cellular Endocrinology,1984,37(3): 125-128.
    [56] Chasnoff IJ,Griffith DR,Freier C,et al. Cocaine/polydrug uses in pregnancy: two-year follow-up[J]. Pediatrics,1992,89(2): 284-287.
    [57] Chen WJ,West JR. Cocaethylene exposure during the brain growth spurt period: brain growth restrictions and neurochemistry studies[J]. Brain Research Developmental Brain Research,1997,100(2): 220-229.
    [58] Howell LL,Schama KF,Ellis JE,et al. Fetal development in rhesus monkeys exposed prenatally to cocaine[J]. Neurotoxicology and Teratology,2001,23(2): 133-140.
    [59]关晓伟,宋君,何威,等.妊娠中晚期暴露于可卡因对后代脑发育影响的形态学观察[J].解剖学报,2003,34(2): 193-196.
    [60] Stanwood GD,Washington RA,Levitt P. Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex[J]. Cerebral Cortex,2001,11(5): 430-440.
    [61] Levitt P,Harvey JA,Friedman E,et al. New evidence for neurotransmitter influences on brain development[J].Trends Neuroscience,1997,20(6): 269-274.
    [62] Tavares MA,Silva MC. Differential effects of prenatal exposure to cocaine and amphetamine on growth parameters and morphometry of the prefrontal cortex in the rat[J]. Annals of the New York Academy of Sciences,1996,801(2): 156-273.
    [63] Coupar IM,Tran BI. Withdrawal and bidirectional cross-withdrawal responses in rats treated with adenosine agonists and morphine[J]. Life Science,2001,69(7): 779-790.
    [64] Sawynok J,Liu XJ. Adenosine in the spinal cord and periphery: release and regulation of pain[J]. Progress Neurobiology,2003,69(5): 313-340.
    [65] Rodwell VW. Metabolism of purine and pyrimidine nucleotides[M]. In: MurrayRK, ed. Harper’s biochemistry. 25th ed. USA:McGraw-Hill,2000,390-391.
    [66]程丕显,洪敏,杨宇丹,等.海洛因对脑及肌肉组织中腺苷脱氨酶含量的影响[J].吉林大学学报(医学版),2005,31(3): 384-386.
    [67]牛勇,卢延旭,董鹏.小鼠注射海洛因即刻死后体内ACP和SDH活性变化[J].中国法医学杂志,2007,22(3): 190-191.
    [68] Moncada S , Palmer RMJ , Higgs EA. Nitric oxide: physiology, pathology and pharmacology[J]. Pharmacol Rev,1991,43(2): 109-142.
    [69] Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide[J]. Nature,1990,347(6295): 768-700.
    [70] Wink DA,Nguyen T,Brunson D,et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors[J]. science,1991,254(5034): 1001-1003.
    [71] Wink DA,Vodovotz Y,Laval J,et a1. The nmltifaceted roles of nitric oxide in cancer[J]. Carcinogenesis,1998,19(5): 711-721.
    [72] Laval F,Wink DA. Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA- methyltransferase[J]. Carcinogenesis,1994,15(3): 443-447.
    [73] Machelska H,Ziolkowska B,Mika J,et al. Chronic morphine increases biosyntheses of nitric oxide synthase in the rat spinal cord [J]. NeuoReport,1997,8(12): 2743-2747.
    [74]张国华,王保捷,吴旭,等.海洛因慢性依赖大鼠神经元一氧化氮合成酶变化[J].中国法医学杂志,2003,19(2): 68-71.
    [75] Smart D,Lambert DG. The stimulatory effects of opioids and the their possible role in the development of tolerance[J]. Trends Pharmacology Science,1996,17(7): 264-269.
    [76] Hwang C,Sinskey AJ,Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum[J]. Science,1992,257(5076): 1496-1502.
    [77] Ciriolo MR,Palamara AT,Incerpi S,et al. Loss of GSH, oxidative stress, and decrease of intracellular PH as sequential steps in viral infection[J]. Journal of Biological Chemistry,1997,272(5): 2700-2708..
    [78] Bai C and Jones DP. GSH transport and GSH-dependent detoxication in small intestine of rats exposed in vivo to hypoxia[J]. American Journal Physiology,1996,271(4): 701-706.
    [79]郑秋生.海洛因依赖者小鼠体内氧化损伤与抗氧化治疗[D].兰州大学优秀博士论文数据库,2003,60-86.
    [80] Eisch AJ,Barrot M,Schad CA,et al. Opiates inhibit neurogenesis in the adult rat hippocampus[J]. Proceedings of the National Academy of Sciences USA,2000,97(13): 7579-7584.
    [81]梅镇彤.学习和记忆的神经生物学[M].上海:上海科学教育出版社,1997,96-120.
    [82]包新民,舒斯云.大鼠脑立体定位图谱[M].北京:人民卫生出版社,1991,3-20.
    [83]徐广有,张翠香,冯化杰,等.吉姆萨染色法对大脑组织凋亡细胞的染色.解剖学杂志,2005,28(3): 362-363.
    [84]张文跃,朱岳正.海洛因依赖对记忆功能影响的研究[J].北华大学学报(自然科学版),2001,2(1): 54-55.
    [85] Bigl V,Schlieba R. Simulation of cortical cholinergic deficits-a novel experimental approach to study pathogenetic aspects of Alzheimer’s disease[J]. Journal of Neurology Transmission (Suppl),1998,54(1): 237-247.
    [86]吕心瑞,潘娅,李清春,等.冈田鼠对大鼠学习记忆功能及脑内ChAT和GFAP表达的影响[J].神经解剖学杂志,2006,22(4): 399-403.
    [87]李良成,杜继曾,杨生妹.发育中根田鼠下丘脑乙酰胆碱水平及其受急性低氧的影响[J].兽类学报,1998,18(3): 238-239.
    [88] Rada PV,Mark GP,Taylor KM,et al . Morphine and naloxone, ip or locally, affect extracellular acetylcholine in the accumbens and prefrontal cortex[J]. Pharmacology Biochemistry and Behavior,1996,53(4): 809-816.
    [89]韦世秀,蒙子卿,叶峻,等.不同阶段海洛因成瘾大鼠脑内单按递质的变化[J].中国医院药学杂志,2005,25(5): 396-398.
    [90]邱平明,王慧君,李学锋,等.海洛因成瘾大鼠相关脑区多巴胺及其代谢产物的变化[J].广东医学,2007,28(5): 690-692.
    [91]赖苗军,刘惠芬,宋琦琳,等.海洛因慢性处理对大鼠脑内一氧化氮合酶阳性神经元数量和形态的影响[J].中国行为医学科学,2006,15(1): 964-966.
    [92] Shuzo O,At sushi S,Takeshi H,et al. The c-jun N-terminal protein kinase signaling pathway mediates bax activation and subsequent neuronal apoptosis through interaction with bim after transient focal cerebral ischemia[J]. Journal of Neuroscience,2004,24 (36) : 7879-7887.
    [93] Shibata M,Murray M,Tessler A,et al. Single injections of a DNA plasmid that contains the human bcl-2 gene prevent loss and atrophy of distinct neuronal populations after apinal cord injury in adult rats[J]. Neuroehabilitation and Neural Repair,2000,14(4): 319-330.
    [94] Goll DE,Thompson VF,Li HQ,et al. The calpain system[J]. Physiological Review,2003,83(3): 731-801.
    [95]邵寒娟,陈亮,林涛.角质细胞生长因子研究进展[J].生命科学,2004,16(1): 27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700