欢127块稠油油藏出砂机理及流场变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欢127东块位于辽河断陷盆地西斜坡欢喜岭油田西南部,是被两条断层切割的西北高东南低的鼻状构造。该区块开发过程中,油藏出砂和微粒运移是突出的问题。该类油藏经过长期开发,由于流体的长期冲刷作用,在油层内部引起微粒释放与出砂。水敏和出砂导致油藏孔渗特性改变。在油井近井带出砂严重时会影响正常生产,在注水井和生产井之间的储层内出砂,将在生产井和注水井之间形成水道,降低波及体积和驱油效率。出砂问题不仅损坏套管,增加作业费用,而且增加油藏非均质性,增加提高采收率的难度。粘土矿物的膨胀也是引起的油藏流场变化的主要原因之一,由于注入水与地层水的不配伍会引起粘土矿物的膨胀,导致储层的孔隙度减小,渗透率降低。造成储层渗流场物性变化的原因,既有油藏岩石固有的因素,也有开发因素(如流体的冲刷和热力开采)。全面地研究开发因素引起的渗流场场物性变化规律,对研究欢127块的剩余油的形成规律和剩余油挖潜工作具有非同寻常的意义。
     该论文综合应用理论研究、实验模拟、数学模拟等手段,利用多种矿场资料,综合运用油层物理、油藏工程、渗流力学、油藏数值模拟等学科,进行了如下研究:
     (1)研究了稠油疏松砂岩油藏油层出砂的机理;
     (2)建立了诊断该类油藏出砂及对渗流场影响的有效诊断方法;
     (3)应用现代渗流力学和应用数学,建立描述稠油疏松砂岩油藏流场变化的数学模型;
     (4)建立了出砂引起的油藏流场变化的数学模型的数值求解方法,编程实现稠油疏松砂岩油藏数值模拟器;
     (5)用数值模拟方法研究了开发过程中流场变化及其对油田主要开发指标的影响。取得了如下成果与认识:
     (1)油田开发过程中胶体力和水动力是引发油层出砂的主导因素;
     (2)油层出砂与微粒运移和粘土的敏感性是引起该区块开发过程中渗流场变化的两个主要原因;
     (3)单井多轮次吞吐导致近井带地层严重出砂,渗流场变化剧烈;
     (4)蒸汽驱引起的出砂会导致油层的非均质增强,高渗条带的形成,降低了驱油效果,增加了提高采收率的难度;
     (5)稠油出砂油藏渗流数学模型的建立和模拟器的实现,提高了疏松砂岩稠油油藏数值模拟的精度。
Block Huan127 loates at south-west of Huanxiling oil field which is on the western slope of Liaohe faulted basin. The block cut by two faults is a nose-like structure sloping down south-east. During the development of the block, sanding and fines migration in the oil reservoir is a serious problem. After a long term development of the kind of reservoirs, sand particles release and fines migration in the oil formation will occur due to water flooding for long time. Water sensitivity and sanding problem will lead to the change in porosity and permeability of reservoirs. The serious sanding problem occurred in the vicinity of wellbore will influence oil production. The sanding problem occurred in the formation between injection well and production well will form water flow channels between injection and production wells and leads to reduciton in sweep volume and displacement efficiency. Sanding problems not only cause case damages and high costs for well operation, but also lead to more heterogeneity of formation and more difficulty in improving oil recovery. The water sensitivity of clay is also one factor to change percolation field. Clay swell caused by incompatible injection water and formation water may lead to the reduction in porosity and permeability of oil reservoirs. The causes leading to the changes in properties of percolation field lie in not only reservoir rock facors, but also operation factors such as fluid flooding and thermal prodution. Comprehensive study on the changes caused by oil production in the properties of percolation field has significance for describing remaining oil and improving the recovery of Block Huan 127.
     By comprehensively using the approaches such as theoratical study, physical simulation in lab, mathematical simlation, and refering to multi-data from oil fields, this paper combines with oil formation physics, oil reservoir engineering, fluid mechanics in porous media and oil reservoir numercial simulation and conduct the following researches.
     (1) The sanding mechanism of heavy oil and unconsolidated sandstone resvervoirs was studied in this work.
     (2) The methods to diagnose sanding problems and its effects on the percolation fields in this kinds of reservoir was presented.
     (3) Theory of modern percolation mechanics and applied mathematics were used to present a percolation mathematical model considering the change in the formation parameters in heavy oil and unconsolidated sandstone resvervoirs.
     (4) The numerical solution method to solve the percolation mathematical model was chosen and the simulator suit for simulating heavy oil and unconsolidated sandstone resvervoirs was written in computer language Fortran.
     (5) The changes in the percolation field parameters and their effects on oil production performances were studied by oil field simulaion on the simulator.
     Achievements and Understandings are obtained from this work:
     (1) Colloidal force hydrodynamic force are the major causes stimulating sand particles release and migration in oil formation during oil development.
     (2) Sanding and fines migration and clay sensitivity are two main factors leading to the changes in percolation field during oil production.
     (3) multi-period Huff and puff of a well causes to serious sanding problems in the vicinity of wellbore and leads to dramatic change in percolation field.
     (4) Sanding problem caused by steam flooding will leads to strong heterogeneity and high permeability bands, which leads to low flooding efficiency and increase the difficulty in oil recovery.
     (5) The foundation of mathematical model of heavy oil and sanding percolation and developed simulator improve the prediction accuracy to simulate heavy oil and unconsolidated sandstone resvervoirs.
引文
[1] 王艳辉、刘希圣、王鸿勋,油井出砂预测枝术的发展与应用综述,石油钻采工艺,1994;5:79-85
    [2] Stein N.and Hilchie D. W.,1972:Estimation the Maximun Producing Rate Possible from Friable Sandstone without Using Sand Control, JPT.Trans,Sept.1972,P1157-1160
    [3] Tixier M.P., Estimation of Formation Strength from the Mechanical Properties log,JPT,May.1975,P283-293
    [4] Costes G.R.and Denoo S.A.,1981: Mechanical Properties Program Using Borehole Analysis and Mohr`s Circle,SPWLA 22nd Ann.Logging Symp.,Jun.23-26,1981
    [5] 朱德武,出砂预测技术进展,石油钻采工艺,1996;6(19):23-26
    [6] Selby R.J.and Faroug Ali S.M.,Mechanics of Sand Production and the Flow of Fines in Porous Media,JPT,May-June 1988,55-63
    [7] 王建等,预测油层出砂状况室内模拟实验方法的建立与应用,西北地质,2000;2(33):8-14
    [8] Morita N.and Whitfill D.L.,Realistic Sand Production Predic- ation,Numerical Approach,SPE 16989
    [9] Morita N.and Whitfill D.L., Parametric Study of Sand Production Predication Analysis Approach,SPE 16990
    [10] Peden J.M.and Yassin A.A.M.,The Determination of Optimum Completion and Production Conditions for Sand-Free Oil Production, SPE 15406
    [11] Morita N.and Whitfill D.L.,Realistic Sand- Production Predication,Numerical Approach , SPE Prod.Eng.,Feb.1989,P15-24
    [12] Vriezen P.B.,Spijker A.,and Wan der Vlis A.C.,Erosion of Perfortion Tunels in Gas Wells,SPE 5661
    [13] Antheunis D.,Vriezen P.B.,Schipper B.A.and Vander A.C.,Perforation Collapse,Failure of Perforated Friable Sandstones,SPE 5050
    [14] Nordgreen R.P.,Strength of Well Completions 18th U.S.Symp.on Rock Mech.Proc.,Jun 22-24,1977
    [15] Chenevert M.E.and Thompson T.W.,Perforation Stability in Low Permebility Gas Reservoirs,SPE 13902
    [16] Weissnburger K.W. and Morlta N.,The Engneering Approach to Sand Production Prediction,SPE 16 892
    [17] Varlrl H.H.,Mechanics of Fluid and Sand Production from Oil Sand Reservoirs, CIM 87-38-60
    [18] Yew C.H.,孔隙流体与井眼稳定性,SPE 22318
    [19] 霍树义等,油井出砂层位预测技术,地球物理测井,1992;15(6): 427-431
    [20] 范兴沃等,应用人工神经网络技术预测地层出砂,石油钻采工艺,2002;6(24):39-43
    [21] Kartic C. Khilar and Hscott Fogler. Migration of Fines in Porous Media.Kluwer Publishers,1999: 12~55
    [22] Gerald E. Smith.Fluid Flow and Sand Production in Heavy-oil Reserviors Under Solution-gas Drive.SPEPE,1988;May:169-180. 325-338.
    [23] 周建良,李敏,王平双.油气田出砂预测方法.中国海上油气(工程),1997;9(4):26-36.
    [24] Priisholm S. et al. Fines Migration, Blocking, and Clay Swelling of Potential Geothermal Sandstone Reserviors, Denmark, SPE Formation Evaluation, 1987.6, 168~178
    [25] Neasham,J.W., The Morphology of Dispersed Clay in Sandstone Reservoirs and its Effect on Sandstone Shalines. SPE6858,1977.
    [26] Almon, W.R. and Davies,D.K.. Formation Damage and the Crastal Chemistry of Clays. In: longstaffe eds. Mineralogical Association of Canada, 1981. Vol.7. chap5
    [27] Mungan ,N., Permeability Reduction through Changes in PH and Salinity. J.Pet.Tech., pp.1449-53,1965,12.
    [28] Clementz, D.M.,Clay Stabilization in Sandstones through Adsorption of Petroleum Heavy Ends, J.Pet.Tech.,pp.1061-66,1977,9.
    [29] Sarkar,A.K. and Sharma M.M.,Fines Migration in Two-Phase Flow, J.Pet.Tech.,pp.646-52,1990.5.
    [30] Muecke ,T.W. Formation Fines and Factors Controlling Their Movement in Poros Media, J.Pet.Tech.,pp.144-50,1979.2.
    [31] Khilar, Kartic C., Fogler, H. Scott Water Sensitivity of Sandstones. Paper SPE10103. JPT, 1983,35(1): 55~56
    [32] 曾流芳,疏松砂岩油藏大孔道形成机理及渗流规律研究,石油大学出版社,2002.11
    [33] 曾流芳,赵国景,张子海,等. 疏松砂岩油藏大孔道形成机理及判别方法.应用基础与工程科学学报,2002,10(3):268~275
    [34] 朱德武.出砂预测技术进展,石油钻采工艺,1996;6(19):23-26。
    [35] 尹庆文,潘淑琴等.大孔道地层注水剖面测井技术.测井技术,1999 ,23(2) :146~149。
    [36] 艾长虹,高维衣等.吸水剖面曲线与大孔道定量分析技术的应用.油气田地面工程,2003,22(4):51~52。
    [37] 史有刚,曾庆辉等.大孔道试井理论解释模型.石油钻采工艺,2003,25(3):48~50。
    [38] 窦之林,曾流芳等.大孔道诊断和描述技术研究.石油勘探与开发,2001 ,28(1) :75~77。
    [39] 陈月明,姜汉桥等.井间示踪剂监测技术在油藏非均质性描述中的应用.石油大学学报(自然科学版),1994,18(增):1~6。
    [40] 姜汉桥,刘奋等.用概率模型方法确定卞东油田高渗通道地质参数的研究.石油勘探与开发,1997,21(1):55~58。
    [41] 商志英,万新德等.应用水利探测方法确定储层大孔道及剩余油分布状况的研究.大庆石油地质与开发,2004,23(2):30~32。
    [42] 周丽清,沈平平等.注水开发过程中变差函数的变化及孔隙度变化规律.石油学报,2001,22(4):77~81。
    [43] 张家良.枣南孔一段油藏强水淹层孔隙喉道半径半定量分析和治理对策.石油勘探与开发,1999,26(2):31~35。
    [44] Gruesbeck, C. and Collins, R.E., Entrainment and Deposition of Fines Particles in Porous Media[J], SPEJ.1982.2,Vol. 22(6),847-855.
    [45] Khilar, K.C. and Fogler, H.S., Water Sensitivity of Sandstones[J], SPEJ. 1983.2,Vol.23(1),55-60
    [46] Ohen, H.A. and Civan, F., Simulation of Formation Damage in Petroleum Reservoirs, [R].SPE 19420 , 1990.
    [47] Sharma, M.M. and Yortsos, Y.C.,Permeability Impairment Due to Fines Migration in Sandstones paper [R]. SPE14819,1986.
    [48] Liu, X. and Civan, F., Formation Damage and Skin Factor Due to Filter Cake Formation and Fines Migration in the Near-Well Region, [R]. SPE 27364,1994.
    [49] 陈才侃.计算流体力学.重庆出版社:1991.55-89
    [50] 鞠斌山,马明学,邱晓燕. 弹性多孔介质粘土膨胀和微粒运移的数学模拟方法[J],水动力学研究与进展,A辑, 2003, 18 (1): 9-11.
    [51] Xinghui Liu and Faruk Civan, Characterization and Prediction of Formation Damage in Two-Phase Flow Systems. [R].SPE25429,p231-234,1993.
    [52] 陈月明,注蒸汽热力采油,石油大学出版社,东营,1996, 176-177
    [53] 孙讷正,陆祥璇,李竟生译.科学和工程中的偏微分方程数值解法.煤炭工业出版社:1985.
    [54] 姜礼尚,孙和生,陈志浩等.偏微分方程选讲.高等教育出版社:1997. [1 ]《欢喜岭油田欢 127 块兴隆台油层精细油藏描述》 [2 ]《欢 127 块兴隆台 2007 开发方案》

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700